餐厨废水处理装置的制作方法

文档序号:11765773阅读:266来源:国知局

本发明属于一种餐厨垃圾浆料厌氧消化废水处理装置,具体涉及一种餐厨垃圾浆料厌氧消化脱水后的废水,及餐厨垃圾处理其它工序所产生废水的处理装置,属于污水处理领域。



背景技术:

餐厨垃圾浆料厌氧消化脱水后的废水,以及餐厨垃圾处理其它工序产生的废水,废水成分复杂,属处理难度大的高浓度有机废水。废水中污染物浓度高,化学需氧量(cod,8000~20000mg/l)、bod5(4000~8000mg/l)、总氮(tn,2000~3000mg/l)、氨氮(nh3-n,1500~2500mg/l)、总磷(tp,50~150mg/l)、悬浮物(ss,>8000mg/l)、含盐量(15000~30000mg/l)、动植物油(800~1500mg/l)、色度(300~800倍)。废水中的纤维素、蛋白质、脂类等难生物降解有机物质所占比大,其碳氮比(bod5:tkn)低,仅为2:1~3:1,废水的碳氮比低不利于总氮的有效去除。

餐厨废水处理目前主要采用厌氧生物处理、好氧生物处理、高级氧化和膜技术处理等几种或多种单元组合的处理装置。废水经处理后应达到《污水综合排放标准(gb8978-1996)》中“三级标准”和《污水排入城镇下水道水质标准》gb/t31962-2015)中“b级”标准,部分地区还需达到更为严格的《污水综合排放标准》(gb8978-1996)“一级标准”,且对总氮排放值有要求。

公开号cn106396282a的文献公开了一种“餐厨垃圾浆料厌氧发酵废水处理装置”,该装置包括隔油初沉池、调节池、第一ph调节池、氨吹脱塔、第二ph调节池、a/o生化处理装置、沉淀池、芬顿反应器、混凝沉淀池。废水先后经隔油初沉池调节池、第一ph调节池、氨吹脱塔、第二ph调节池、a/o生化处理装置、沉淀池、芬顿反应器、混凝沉淀池进行处理,在去除废水中cod、bod5、ss等污染物的同时,可有效去除tn、tp和有效降低废水色度,并提高tn、tp去除率,处理后的废水中cod、bod5、tn、nh3-n、tp、色度等污染物均可稳定达到《污水综合排放标准》(gb8978-1996)“三级标准”和《污水排入城镇下水道水质标准》(gb/t31962-2015)“b级”要求,具有较好效果,但不满足《污水综合排放标准》(gb8978-1996)“一级标准”的要求。

现有技术中还有一种由“预处理装置+厌氧处理装置+好氧处理装置+反渗透膜过滤装置”等组合而成的处理装置,其不足是,一是厌氧处理单元运行管理要求高,尤其是厌氧处理装置在运行过程中消耗废水中的碳源,使废水中碳氮比进一步下降(cod、bod5降低,氨氮升高),碳氮比的降低更不利于废水的生物脱氮;二是反渗透膜过滤装置作为末端的深度处理,虽然可以满足《污水排入城镇下水道水质标准》“b级”标准的要求以及《污水综合排放标准》(gb8978-1996)“一级标准”的要求,其不足是废水中的油脂易导致反渗透膜堵塞,废水中的高盐分会加速反渗透膜的老化,反渗透膜使用寿命短,尤其是反渗透膜过滤装置是一种物理过滤装置,只是将废水中的污染物进行了截留,并未将污染物真正降解,所产生的大量浓缩液需另行进行复杂过程的处理,容易导致二次污染,且运行成本较高。



技术实现要素:

针对现有技术的不足,本发明提供一种餐厨废水处理装置,即餐厨垃圾浆料厌氧消化脱水后的废水及餐厨垃圾处理过程其他工序所产生废水的处理装置,本装置在满足有效去除废水中cod、bod、ss等污染物的同时,可有效去除tn、nh3-n、tp和有效降低废水色度,并提高tn、nh3-n、tp的去除率,处理后的废水中cod、bod5、nh3-n、tp、色度等污染物均可稳定达到《污水综合排放标准》(gb8978-1996)“一级标准”的要求,且tn可小于70mg/l。

本发明的技术方案如下:

参见附图,包括隔油初沉池1、调节池2、第一ph调节池3、氨吹脱塔4、第二ph调节池5、a/o生化处理装置6、沉淀池7、第一混凝沉淀池8、芬顿反应器9、第二混凝沉淀池10、曝气生物滤池11;

所述隔油初沉池1上部有浮油挡板1a,下部有污泥腔1b,所述污泥腔1b底部有污泥出口,隔油初沉池1的废水出口与所述调节池2相通;所述隔油初沉池对废水进行隔油、初沉处理,去除大部分悬浮物ss;

所述调节池2的出水口与所述第一ph调节池3相通;调节池2对废水水量、水质进行调节;

所述第一ph调节池3内有第一搅拌机构3a,第一ph调节池3内腔并与碱投加构件相通;第一ph调节池3对废水的ph值进行第一次调节,使废水中氨氮的形态由nh4+转化为游离氨(nh3),为后续氨吹脱塔处理过程中有效去除氨氮提供有利条件;

所述氨吹脱塔4上部有尾气出口4a,下部有空气进口4b,氨吹脱塔4内腔上部有配水构件4c,配水构件4c的废水进口与所述第一ph调节池3相通,所述氨吹脱塔4的废水出口与第二ph调节池5相通;废水经氨吹脱塔处理,实现游离氨的吹脱与去除,使废水中的碳氮比(bod5:tkn)提高,为后续a/o生化处理装置的生物脱氮提供适宜的碳氮比条件;

所述第二ph调节池5内有第二搅拌机构5a,第二ph调节池5内腔并与硫酸投加构件相通;第二ph调节池对废水的ph值进行第二次调节,形成微生物适宜的生长环境,为后续a/o生化处理装置的生化处理提供必要环境;

所述a/o生化处理装置6包括缺氧区6a和好氧区6b,所述缺氧区6a与好氧区6b上部相通,所述第二ph调节池5与a/o生化处理装置6的缺氧区6a相通,a/o生化处理装置6的好氧区6b与所述沉淀池7相通;a/o生化处理装置6对废水进行生化处理,有效去除大部分cod、bod5,进一步去除nh3-n、tn,有效去除磷;

所述沉淀池7下部有贮泥腔7a,贮泥腔7a底部有污泥排出口;废水经沉淀池7沉淀处理,进一步去除ss和tp;

所述第一混凝沉淀池8包括第一混凝区8a和第一沉淀区8b,第一混凝区8a与第一沉淀区8b上部相通,所述第一混凝区8a与所述沉淀池7上部的出水口相通,第一混凝区8a内设有第三搅拌机构8c,第一沉淀区8b下部有第一污泥斗8d,第一污泥斗8d底部有出泥口,第一混凝区8a与混凝剂投加构件相通,所述第一混凝沉淀池8的第一沉淀区8b的废水出口与芬顿反应器9相通;作业中,由混凝剂投加构件向混凝区中投加混凝剂,并与废水进行混凝,去除废水中的磷酸盐、胶体类污染物,进一步去除cod、ss、色度等污染物,经所述第一混凝区8a处理后的废水进入第一沉淀区8b,实现固液分离,第一沉淀区8b内的上清液进入芬顿反应器9,第一污泥斗8d内的污泥通过其下部的出泥口排入另外设置的贮泥池12;

所述芬顿反应器9内设有气体搅拌构件9a,芬顿反应器9内腔与硫酸投加构件及芬顿试剂投加构件相通;废水在所述芬顿反应器9内在酸性ph值环境下与芬顿试剂进行接触反应,废水经芬顿反应器处理,进一步降低废水中的cod、bod5,同时,废水中的有色基团被破坏,为后续第二混凝沉淀池有效降低废水的色度创造条件;

所述第二混凝沉淀池10包括第二混凝区10a和第二沉淀区10b,第二混凝区10a与第二沉淀区10b上部相通,所述第二混凝区10a内设有第四搅拌机构10c,第二沉淀区10b下部有第二污泥斗10d,第二污泥斗10d底部有出泥口,第二混凝区10a与碱投加构件相通,所述芬顿反应器9的废水出口与第二混凝沉淀池10的第二混凝区10a相通,第二混凝沉淀池10的第二沉淀区10b上部出水口与所述曝气生物滤池11上部相通;作业中,由碱投加构件向混凝区中投加碱,并与废水进行混合,将废水ph值调节为中性,废水在中性ph值环境下,在混凝沉淀池的第二混凝区10a内发生混凝反应,形成不溶于水的氢氧化铁、磷酸铁絮体,去除废水中的铁离子与tp,同时,进一步去除废水中的cod、ss、色度和其它污染物,经所述第二混凝区10a处理后的废水进入第二沉淀区10b,实现固液分离,第二沉淀区10b内的上清液进入曝气生物滤池11,第二污泥斗10d内污泥通过其底部的出泥口排入另外设置的贮泥池12;

所述曝气生物滤池11内腔底部设有曝气构件11a,中部有生物滤料层11b,曝气生物滤池11下部有出水口;曝气生物滤池11对废水进行生物和物理处理,废水与微生物膜充分接触,降解废水中的有机物并进行硝化反硝化脱氮,同时进行滤料的过滤和吸附,进一步去除了废水中的cod、bod5、tn、nh3-n、ss;所述曝气生物滤池11处理后的废水达标排放。

本发明具有以下特点与技术效果:

1、本发明中采用“第一ph调节池+氨吹脱塔”组合为一种新的处理单元,在第一ph调节池内对废水的ph值进行第一次调节,使废水中氨氮的形态从nh4+转化为游离氨(nh3),为后续氨吹脱塔处理过程有效去除废水中的游离氨提供了有利的技术条件,在氨吹脱塔处理中通过液——气传质过程,经转化的游离氨则由液相转为气相而成为含氨尾气并排出,从而实现氨吹脱塔对废水中部分游离氨的有效去除,为实现有效去除tn、nh3-n和提高tn、nh3-n去除率的目的建立了良好基础。

2、本发明中将所述的“氨吹脱塔+第二ph调节池+a/o生化处理装置”组成另一创新的处理单元,由于所述氨吹脱塔的处理将废水中的游离氨进行有效去除,有效提高废水中的碳氮比,为后续a/o生化处理装置的生物脱氮提供适宜的碳氮比条件,氨吹脱处理后的废水进入第二ph调节池内对废水的ph值进行第二次调节,又形成了微生物适宜的生长环境;

由于氨吹脱塔的处理为a/o生化处理装置的生物脱氮提供适宜的碳氮比条件,对废水的ph值进行第二次调节又形成了微生物适宜的生长环境,在a/o生化处理装置对废水进行生化处理的过程中,a/o生化处理装置的好氧区内活性污泥中的微生物可有效地进行新陈代谢,将废水中cod、bod5降解,同时活性污泥中的硝化菌将废水中的氨氮氧化为硝酸盐氮和亚硝酸氮,由于氨吹脱处理过程有效提高了废水中的碳氮比,废水中的碳源丰富,a/o生化处理装置缺氧区内的反硝化菌消耗碳源在去除废水中cod、bod5的同时,将硝酸盐氮和亚硝酸氮转化为氮气,通过硝化-反硝化反应,实现了有效脱氮;同时,活性污泥中的聚磷菌(微生物)在新陈代谢过程中吸收磷,形成聚磷酸盐贮存于所述的聚磷菌(微生物)体内,有效去除废水中的磷。

3、本发明后续的“沉淀池+第一次混凝沉淀+芬顿反应+第二次混凝沉淀+曝气生物滤池”与前述处理单元的组合构成了本发明对废水进行处理的整体新方案,在前述处理单元获得相应有效的处理效果的基础上,在沉淀池的沉淀池处理中,进一步去除了废水中的ss;在第一混凝沉淀池内进一步去除了胶体类污染物、cod、ss、tp,废水经第一混凝沉淀池处理后,水中的cod污染物,特别是大分子难降解污染物得到部分去除,可减小后续芬顿反应器中芬顿试剂的投加量,节约芬顿试剂的成本;芬顿反应器进一步降低了废水中的cod、bod5,废水中的有色基团被破坏,为后续第二混凝沉淀池有效降低废水的色度创造条件;在第二混凝沉淀池处理中,将芬顿反应出水ph调节至中性,进一步去除废水中cod、ss、色度和其它污染物;在曝气生物滤池的生物和物理处理步骤中,进一步去除cod、bod5、tn、nh3-n,同时去除废水中尚存的ss,使经本发明处理后的废水中cod、bod5、nh3-n、tp、色度等污染物均可稳定达到《污水综合排放标准》(gb8978-1996)“一级标准”的要求,且tn可小于70mg/l。

4、本发明在“公开号cn106396282a”的技术方案基础上,在芬顿反应器前端增设了“第一次混凝沉淀”,在芬顿反应器后端依次增设了“第二次混凝沉淀”、“曝气生物滤池”,即构成本发明方案的后部“第一次混凝沉淀池+芬顿反应器+第二次混凝沉淀池+曝气生物滤池”的处理单元,使得经本发明处理后的废水中cod、bod5、nh3-n、tp、色度等污染物均可稳定达到《污水综合排放标准》(gb8978-1996)“一级标准”的要求,且所增设的部分均可采用现有技术结构,运行稳定,便于维护,可降低运行成本,相对于现有的“预处理+厌氧+好氧+深度处理(反渗透膜过滤)”组合装置,避免了该组合装置因采用厌氧处理和膜技术而存在的不足。

下面结合具体实施方式对本发明进一步说明。

附图说明

附图是本发明的结构示意图。

具体实施方式

参见附图,以处理规模为100m3/d的餐厨垃圾废水为例,具体实施方式如下:

餐厨垃圾浆料厌氧消化脱水后的废水及餐厨垃圾处理其它工序产生的废水水质:cod:12000~15000mg/l,bod5:4500~5000mg/l,tn:2100~2400mg/l,nh3-n:1800~2000mg/l,tp:110~130mg/l,ss:7000~10000mg/l,动植物油:800~1000mg/l,ph:7.5~8,色度:800~1000倍。

参见附图,本发明包括隔油初沉池1、调节池2、第一ph调节池3、氨吹脱塔4、第二ph调节池5、a/o生化处理装置6、沉淀池7、第一混凝沉淀池8、芬顿反应器9、第二混凝沉淀池10、曝气生物滤池11;

所述隔油初沉池1上部有浮油挡板1a,下部有污泥腔1b,污泥腔底部有污泥出口1c,废水由废水管进入隔油初沉池,隔油初沉池对废水进行隔油、初沉处理,去除大部分悬浮物ss,隔油初沉池1的废水出口与调节池2相通;作业中,所述浮油挡板隔除自由上浮于废水上层的浮油,截留的浮油采用相应的装置定期清除,废水中的大颗粒杂质及大颗粒悬浮物在重力的作用下而沉淀于隔油初沉池下部的污泥腔,沉淀的污泥由污泥腔1b底部的污泥出口1c排出,实现大部分悬浮物ss的去除;具体实施中,由污泥腔1b排出的污泥进入另外设置的贮泥池12内;所述隔油初沉池1的废水出口与调节池2通过管件或槽式构件连通。

所述调节池2对废水的水量、水质进行调节,以利于后续处理工序的稳定运行,调节池2的出水口与第一ph调节池3相通;

所述隔油初沉池和调节池可采用钢筋混凝土池体或者碳钢防腐设备池体,本例的隔油初沉池尺寸:5m×2m×3m(深),调节池有效容积100m3

经隔油初沉池和调节池处理后,废水的ss<2000mg/l,动植物油<300mg/l。

所述第一ph调节池3内有第一搅拌机构3a,第一ph调节池3内腔并与碱投加构件相通,第一ph调节池3对废水的ph值进行第一次调节,将废水的ph值调节至10.5~12,在该ph值下,使废水中氨氮的形态由nh4+转化为游离氨(nh3),为后续氨吹脱塔处理过程中有效去除氨氮提供有利条件;作业中,向池内投加碱并进行搅拌混合,实现对废水ph值的第一次调节,碱可采用氢氧化钠、氧化钙、氢氧化钙等;本例投加的碱为氢氧化钠,第一ph调节池3尺寸为1.5m×1.5m×1.5m(深),配置ph值检测仪与控制仪自动控制碱溶液的投加量。

所述氨吹脱塔4上部有尾气出口4a,下部有空气进口4b,氨吹脱塔4内腔上部有配水构件4c,配水构件4c的废水进口与第一ph调节池3相通,废水经氨吹脱塔处理,实现游离氨的吹脱与去除,使废水中的碳氮比(bod5:tkn)提高至4:1~6:1,为后续a/o生化处理装置的生物脱氮提供适宜的碳氮比条件,氨吹脱塔4的废水出口与第二ph调节池5相通;所述氨吹脱塔4内腔中部设有填料层4f,废水经配水构件4c配水,由上部淋洒到填料上而成水滴状态沿填料下落。作业中,经第一ph调节池处理后的废水进入氨吹脱塔内上部的配水构件4c,经配水构件配水,废水成水滴状态由上向下降落,空气由氨吹脱塔底部的空气进口4b进入,气液比为2500~3500:1,并由氨吹脱塔内腔的底部向上吹送,上升的气流与均匀下落的废水充分接触,通过液——气传质过程,游离氨则由液相转为气相而成为含氨尾气并由尾气出口4a排出,由于部分或大部分游离氨被吹脱与去除,从而使废水中碳氮比(bod5:tkn)提高至4:1~6:1,从而为后续的生物脱氮提供适宜的碳氮比条件,以利于后续a/o生化处理装置的生物脱氮效果,本例中:气液比为3000:1,废水中碳氮比提高至5:1~6:1,氨氮去除率达60%以上,经氨吹脱处理后的废水中的氨氮<800mg/l;所述第一ph调节池3与所述配水构件4c上的废水进口通过输送管件4d连通,输送管件4d设置输送泵4e;所述氨吹脱塔4的废水出口与第二ph调节池5通过管件或其它构件连通。具体实施中,由尾气出口4a排出的含氨尾气可使用相应处理装置——尾气吸收塔另行处理。

所述第二ph调节池5内有第二搅拌机构5a,第二ph调节池5内腔并与硫酸投加构件相通,第二ph调节池对废水的ph值进行第二次调节,将废水ph值调节至7.0~8.5,形成微生物适宜的生长环境,为后续a/o生化处理装置的生化处理提供必要环境,第二ph调节池5与a/o生化处理装置6内的缺氧区6a相通;作业中,向第二ph调节池5池内加入硫酸(h2so4)并进行搅拌混合,实现对废水的ph值进行第二次调节,配置ph值检测与控制仪自动控制硫酸溶液的投加量;本例中,第二ph调节池尺寸:1.5m×1.5m×1.5m(深)。所述氨吹脱塔4的废水出口通过管件或其它构件与第二ph调节池的废水进口连通。所述第二ph调节池5通过泵5b及相应管件与a/o生化处理装置6内的缺氧区6a相通。

所述a/o生化处理装置6内包括缺氧区6a和好氧区6b,所述缺氧区6a与好氧区6b上部相通,所述第二ph调节池5与a/o生化处理装置6内的缺氧区6a相通,a/o生化处理装置6内的好氧区6b与所述沉淀池7相通;a/o生化处理装置6对废水进行生化处理,有效去除大部分cod、bod5,进一步去除nh3-n、tn,有效去除磷;实施中,在所述a/o生化处理装置6中,设有将所述好氧区6b内的泥水混合液回流于缺氧区6a内的回流管件6c,回流管件6c上设有第一回流泵6d,好氧区6b内的泥水混合液由回流构件6c回流于所述缺氧区6a内,形成“内回流”,回流比为200%~500%,本例中的内回流比为300%~400%。作业中,a/o生化处理装置6好氧区6b(溶解氧为1.5~2.5mg/l)内活性污泥中的微生物可有效地进行新陈代谢(活性污泥浓度mlss,3.5~4.5g/l),将废水中cod、bod5降解,有效去除大部分cod、bod5,同时活性污泥中的硝化细菌将废水中的氨氮氧化为硝酸盐氮和亚硝酸氮,由于废水中的碳氮比(bod5:tkn)在氨吹脱处理过程中得到有效提高,废水中的碳源丰富,a/o生化处理装置6缺氧区6a(溶解氧为0.2~0.5mg/l)内的反硝化菌消耗碳源在去除废水中cod、bod5的同时,将硝酸盐氮和亚硝酸氮转化为氮气,进一步去除nh3-n、tn,通过硝化-反硝化反应,实现有效脱氮,同时,活性污泥中的聚磷菌(微生物)在新陈代谢过程中吸收磷,形成聚磷酸盐贮存于所述的聚磷菌(微生物)体内,有效去除废水中的磷(生物除磷);废水在所述a/o生化处理装置6内的的总水力停留时间为10~20天,其中缺氧区4~6天、好氧区6~15天,本例中,总水力停留时间为17天,其中缺氧区4天、好氧区13天;作业中,所述a/o生化处理装置6内泥水混合液的温度控制在20~35℃,本例中控制在25~35℃;本例中,所述a/o生化处理装置为现有的缺氧-好氧活性污泥法污水处理装置或现有结构的缺氧-好氧活性污泥法污水处理池,由缺氧区、好氧区及回流构件、阀、管道、搅拌机构、曝气机构等组成,尺寸为20m×20m×5m(深);经a/o生化处理装置处理后的出水cod<700mg/l,bod5<200mg/l,nh3-n<30mg/l,tn<80mg/l;作业中,当所述a/o生化处理装置6内泥水混合液的温度低于20℃时,设置将所述a/o生化处理装置6内泥水混合液温度升至20~35℃的加热装置,如:采用直接加热的电加热器或采用热交换装置等加热装置,当所述a/o生化处理装置6内泥水混合液温度高于35℃时,设置将所述a/o生化处理装置6内泥水混合液温度降至20~35℃的冷却装置,如采用冷却器或冷却塔等装置。

所述沉淀池7下部有贮泥腔7a,贮泥腔7a底部有污泥排出口,废水经沉淀池沉淀处理,进一步去除废水中的ss和tp,沉淀池7上部的出水口与所述第一混凝沉淀池8的第一混凝区8a废水进口相通;实施中,设有将所述沉淀池7下部贮泥腔内的部分污泥混合物回流于a/o生化处理装置中缺氧区6a内的回流管7b,回流管7b上设有第二回流泵7c,所述沉淀池7下部贮泥腔7a内的部分污泥混合物回流于a/o生化处理装置中的缺氧区6a内,回流比为50~100%,用于维持a/o生化处理装置的活性污泥浓度;作业中,废水在沉淀池7内实现泥水分离,进一步去除ss、tp;经沉淀池处理后的废水ss<100mg/l、tp<30mg/l。具体实施中,所述贮泥腔7a内的剩余污泥排入另外设置的贮泥池12内。

所述第一混凝沉淀池8包括第一混凝区8a和第一沉淀区8b,第一混凝区8a与第一沉淀区8b上部相通,第一混凝区内设有第三搅拌机构8c,第一沉淀区8b的下部有第一污泥斗8d,污泥斗8d底部设有出泥口8e,第一混凝区8a与混凝剂投加构件相通,所述第一混凝沉淀池8中的第一沉淀区8b的废水出口与芬顿反应器9的进水口相通;作业中,向进入第一混凝区8a的废水中投加混凝剂,与废水进行混凝,去除废水中的磷酸盐、胶体类污染物,进一步去除cod、ss、色度等污染物,经所述第一混凝区8a处理后的废水进入第一沉淀区8b后,实现固液分离,第一沉淀区8b内的上清液进入芬顿反应器9,沉淀于第一污泥斗8d内的污泥排入另外设置的贮泥池12。混凝剂可采用铁盐、铝盐或高分子絮凝剂等;本例中,第一混凝沉淀池为现有技术结构,通过管道混合器构件在所述第一混凝区8a的进水管中添加三价铁盐作为混凝剂,实施例中,废水在第一混凝区8a的反应时间为20min,第一沉淀区8b内设有斜管沉淀组件,废水在沉淀区8b的表面水力负荷为1m3/m2.h。经第一混凝沉淀池8处理后的出水cod<300mg/l,bod5<150mg/l,tp<6mg/l,ss<50mg/l,色度<50倍。

所述芬顿反应器9内设有气体搅拌构件9a,芬顿反应器9内腔与硫酸投加构件及芬顿试剂投加构件相通;废水在所述芬顿反应器9内在酸性ph值环境下与芬顿试剂进行接触反应,进一步降低废水中的cod、bod5,废水中的有色基团被破坏,为后续第二混凝沉淀池有效降低废水的色度创造条件;作业中,通过硫酸投加构件向芬顿反应器9的进水管中投加硫酸,将进入芬顿反应器9内的废水ph值调节至酸性,进入芬顿反应器9内的废水与投加的芬顿试剂在酸性ph值环境下进行接触反应,废水中的难生物降解的有机物污染物在芬顿试剂的强氧化作用下被氧化,大分子变为小分子,易于生化降解,废水的可生化性提高,同时部分有机物被彻底氧化为无机物,进一步降低废水中的cod、bod5,同时,废水中的有色基团被破坏,为后续第二混凝沉淀池有效降低废水的色度创造条件;芬顿反应器为现有的,废水在芬顿反应器9内的反应时间(水力停留时间)为1~2小时,芬顿试剂中过氧化氢与亚铁离子的摩尔比为1~3:1,芬顿试剂的投加量由进水中cod的浓度确定。本例中:芬顿反应器尺寸为φ2m×3m,废水在芬顿反应器9内的反应时间(水力停留时间)约为1.5小时,通过管道混合器投加硫酸,设置ph值检测与控制仪自动控制投加量,将废水的ph值调节为3~5,投加的芬顿试剂中过氧化氢与亚铁离子的摩尔比为1.5:1。经芬顿反应器9处理后的出水cod<200mg/l,bod5<50mg/l。

所述第二混凝沉淀池10包括第二混凝区10a和第二沉淀区10b,第二混凝区10a与第二沉淀区10b上部相通,所述芬顿反应器9的废水出口与第二混凝沉淀池10的第二混凝区10a相通,第二混凝沉淀池10的第二沉淀区10b上部出水口与所述曝气生物滤池11上部相通,第二混凝区10a内设有第四搅拌构件10c,第一沉淀区10b下部有第二污泥斗10d,第二污泥斗10d底部有出泥口10e,第二混凝区10a与碱投加构件相通;废水在中性ph值环境下进行混凝沉淀,去除废水中的铁离子与tp,进一步去除废水中的cod、ss、色度和其它污染物,并对废水实现固液分离;作业中,向进入第二混凝区10a的废水中投加碱,使废水的ph值调节为中性,废水中的铁离子在中性条件下在混凝区发生混凝过程,形成不溶于水的氢氧化铁、磷酸铁絮体,去除废水中的铁离子与tp,同时絮凝作用可进一步去除废水中的cod、ss、色度和其它污染物;经所述第二混凝区10a处理后的废水进入所述的第二沉淀区10b,实现固液分离,第二沉淀区10b内的上清液进入曝气生物滤池11;碱可采用氢氧化钠、氧化钙、氢氧化钙等;本例中,第二混凝沉淀池10为现有结构的混凝沉淀池,通过管道混合器构件在所述第二混凝区10a的进水管中添加碱的种类为naoh,设置ph值检测与控制仪自动控制碱溶液的投加量,将进入第二混凝区10a的废水ph值调节至7~8即中性,实施例中,废水在第二混凝区10a的反应时间为20min,所述第二沉淀区10b内设有斜管沉淀组件,废水在第二沉淀区10b的表面水力负荷为1m3/m2.h,经第二混凝沉淀池处理后的出水,cod<150mg/l,bod5<50mg/l,tp<0.5mg/l,ss<50mg/l,色度<40倍,沉淀于所述第二污泥斗10d内污泥排入另外设置的贮泥池12。

所述曝气生物滤池11内腔底部设有曝气构件11a,中部有生物滤料层11b,曝气生物滤池11下部有出水口;曝气生物滤池11对废水进行生物和物理处理,废水与微生物膜充分接触,降解废水中的有机物并进行硝化反硝化脱氮,同时进行滤料的过滤和吸附,进一步去除了废水中的cod、bod5、tn、nh3-n、ss;生物滤料层11b的滤料可采用陶粒滤料、颗粒活性炭滤料或其它类似滤料;作业中,曝气构件由气源装置提供空气进行曝气;本例中,曝气生物滤池为现有结构的曝气生物滤池,采用陶粒滤料,滤速3~4m/h,曝气生物滤池的出水溶解氧不高于5mg/l,曝气生物滤池定期采用其出水进行反冲洗,经曝气生物滤池处理后的出水,cod<100mg/l,bod5<20mg/l,tp<0.5mg/l,tn<70mg/l,nh3-n<10mg/l,动植物油<10mg/l,ss<40mg/l,色度<40倍。

所述曝气生物滤池11处理后的废水达标排放;需要时,设置消毒池,所述消毒池的进水口与所述曝气生物滤池11下部的出水口相通,曝气生物滤池11处理后的废水进入所述消毒池消毒处理后排放;本实施例设置消毒池,曝气生物滤池11处理后的废水进入所述消毒池消毒后排放,消毒剂可采用二氧化氯、臭氧、漂白粉等,实施例采用二氧化氯作为消毒剂。

具体实施中,贮泥池12内的污泥经另外设置的污泥脱水设备处理后另行处置;污泥脱水设备可采用离心脱水机或带式脱水机等,脱水后的污泥外运。

废水经本发明装置处理后,污染物浓度值和污染物去除率如下:

出水中污染物指标均达到《污水综合排放标准(gb8978-1996)》中“一级标准”,且tn小于70mg/l。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1