一种利用铁基非晶合金降解焦化废水的方法

文档序号:10641284阅读:804来源:国知局
一种利用铁基非晶合金降解焦化废水的方法
【专利摘要】本发明公开了一种利用铁基非晶合金降解焦化废水的方法,属于废水处理领域。铁基非晶合金中铁元素的原子百分比在50%以上,合金以粉末形式存在。铁基非晶合金中的铁原子相对于传统的还原铁粉或铸铁铁屑处于更高的能量状态,在还原降解焦化废水的同时可以实现高表面催化作用,且经过高能球磨的铁基非晶合金粉末具有高的比表面积,为降解反应提供了更多的活性位点。非晶合金的成分均匀性大大降低了铁的腐蚀速率,参与降解焦化废水后的粉末仍可保持非晶结构,这种稳定性加之铁基非晶合金的磁性使其可以回收重复利用,延长了使用寿命。将铁基非晶合金应用于焦化废水的降解不仅操作简单,成本低,而且可以达到高的降解效率,具备非常好的应用前景。
【专利说明】
一种利用铁基非晶合金降解焦化废水的方法
技术领域
[0001]本发明涉及铁基非晶合金材料及其应用技术领域,具体涉及一种用于焦化废水降解的铁基非晶合金粉末及其应用。
【背景技术】
[0002]焦化废水成分非常复杂,含有酚类、多环芳香类化合物以及氰化物、硫化物等多种污染物质,色度及化学需氧量(COD)高,且具有较大的生物毒性,是较难生化降解的高浓度有机工业废水。目前,焦化废水一般要通过一级处理(预处理)、二级处理(一般采用生化法)和三级处理(深度处理)才能排放。一级处理主要采用氨水脱酚、氨水蒸馏等方法降低剩余氨水和终冷水中的氨、酚等的浓度,避免对微生物产生抑制或毒害作用。二级处理主要对酚、氰污染物进行无害化处理。传统活性污泥法对酚、氰污染物去除效果较好,但对难降解有机物和氨氮去除效果差,且废水中高浓度的氨氮、氰化物对活性污泥中的微生物有毒害作用。改进的生物脱氮处理技术,如缺氧/好氧(A/0)、厌氧一缺氧/好氧(A2/0)、缺氧/好氧一好氧(A/02)、序批式反应器(SBR)等多种工艺,在较难处理的C0D、氨氮等因子方面取得了很大进展。但是生化法处理设施规模大,停留时间长,投资费用较高,对废水的水质条件要求严格,而且由于难降解有机物的存在,生化处理后的出水仍未达到排放标准,需进一步深度处理。现有的焦化废水深度处理方法主要有物理化学法、生物处理法、催化湿式氧化法等技术。物理化学法包含的絮凝-吸附法、Fenton氧化法、臭氧氧化法等由于吸附剂和氧化剂等价格昂贵、运行成本高而在实际应用中有所限制。催化湿式氧化法属于高级氧化技术,净化效率高、操作简单,具有较好的经济效益,但存在酸度范围窄、催化剂溶出污染、催化剂昂贵等冋题。
[0003]铁炭内电解法(零价铁法)在工业废水处理中有重要应用,可以去除部分难降解物质,大幅度降低工业废水色度和COD,提高废水可生化性。该方法操作方便,处理成本低,适用范围广,易于与其他方法联合使用,而且能以废治废,因此备受关注。然而零价铁在处理废水时在一定的pH范围内才能起到明显作用,且降解反应缓慢,另外还原铁粉或铁肩在废水中的锈蚀消耗使得成本升高,这都限制了该方法的广泛应用。

【发明内容】

[0004]本发明的目的在于提供一种利用铁基非晶合金降解焦化废水的方法,该铁基非晶合金粉末在焦化废水的处理过程中既表现出对废水的降解能力,又具较好的耐腐蚀性能,为其回收再重复利用提供了保障。
[0005]本发明的技术方案如下:
[0006]—种利用铁基非晶合金降解焦化废水的方法,该方法是采用高能球磨法制备的铁基非晶合金粉末降解焦化废水,所述铁基非晶合金粉末在焦化废水中的浓度大于0.lg/L;所述铁基非晶合金中铁元素的原子百分比大于50%,铁基非晶合金中铁元素优选的原子百分比为68-84 %。
[0007]所述焦化废水溶液的COD为200mg/L?10000mg/L,焦化废水温度为环境温度到1000C,焦化废水的pH值为I?12。
[0008]所述高能球磨法中,原料为通过气体雾化方法制备的铁基非晶合金粉末,高能球磨过程中原料与轴承钢球按1: (4?10)的重量比例混合。采用高能球磨法制备的铁基非晶合金粉末具有高的比表面积,比表面积不小于0.304m2/g。
[0009]所述铁基非晶合金降解焦化废水过程中,用机械搅拌器以200rpm?600rpm的转速对焦化废水进行搅拌,保证铁基非晶合金粉末在焦化废水中均匀分散。
[0010]所述铁基非晶合金粉末能够多次回收再利用。
[0011]相对于传统的晶态零价铁,本发明具有以下优点:
[0012]1.相对于传统晶态的零价铁,本发明铁基非晶合金粉末中的铁将晶态零价铁的氧化性能与非晶合金优异的耐腐蚀性能集于一体,不仅保持了晶态零价铁的还原降解焦化废水的能力,而且铁基非晶合金中的铁原子处于更高的能量状态,在还原降解焦化废水的同时可以实现高表面催化作用。
[0013]2.本发明铁基非晶合金粉末在降解焦化废水时稳定性好、适用范围广。
[0014]3.铁基非晶合金的成分均匀性大大降低了铁的腐蚀速率,提高了用于还原降解焦化废水的铁原子的利用率,为其回收再重复利用提供了保障。
[0015]4.铁基非晶合金粉末在高能球磨过程中产生的残余应力以及塑性变形能对焦化废水的降解反应起促进作用。
[0016]5.本发明涉及的制备方法操作简单,生产成本低,技术成熟,无需大量资金、技术投入即可投入生产,产业化较为容易,铁基非晶合金作为一种环境友好型材料应用于焦化废水的降解,具备非常好的应用前景。
【附图说明】
[0017]图1为通过高能球磨法制备得到的铁基非晶合金粉末Fe78Si8B14Ut.%)和Fe73.SNb3CuiSii3.5B9(at.% )的XRD图谱。
[0018]图2为通过高能球磨法制备得到的铁基非晶合金粉末FeTsSisBWat.^)处理厌氧前的焦化废水不同时间后溶液的COD变化曲线。
[0019]图3厌氧前的焦化废水在经过铁基非晶合金粉末Fe78Si8B1Kat.%)处理前后的取样照片。
[0020]图4为重复五次使用铁基非晶合金粉末Fe78Si8B1Kat.% )处理厌氧前焦化废水时降解效率随时间的变化曲线。
[0021]图5为通过高能球磨法制备得到的铁基非晶合金粉末Fe73Jb3CmSi13.5B9(at.%)处理好氧后的焦化废水不同时间后溶液的COD变化曲线。
[0022]图6为重复七次使用铁基非晶合金粉末?的3.5他3(:1115丨13.出9(&1%)处理厌氧后焦化废水时降解效率随时间的变化曲线。
【具体实施方式】
[0023]以下结合附图及实施例详述本发明。
[0024]通过高能球磨法制备铁基非晶合金粉末,所述高能球磨法中,原料为通过气体雾化方法制备的铁基非晶合金粉末,高能球磨过程中原料与轴承钢球按1:(4?10)的重量比例混合。采用高能球磨法制备的铁基非晶合金粉末比表面积不小于0.304m2/g。
[0025]利用高能球磨法得到两种不同组分的铁基非晶合金粉末,分别为Fe78Si8B14(at.%)和Fe73.SNb3Cu1Si13.5B9(at.%),并应用于焦化废水的降解试验。
[0026]1.名义成分分别为 FeTsSisBWat.^)和 Fe73Jb3Cu1Si13.5B9(at.%)的铁基非晶合金具有较强的非晶形成能力,生产技术较为成熟,其中铁元素的原子百分比为78%和73.5%,满足技术方案中所要求的成分区间。
[0027]2.图1为得到的铁基非晶合金粉末的XRD图谱,弥散峰说明了样品的非晶态结构,衍射峰为少量的a-Fe。
[0028]实施例1
[0029]将高能球磨法制备的铁基非晶合金粉末Fe78Si8B14(Ig)加入盛有厌氧前的焦化废水的烧杯中,焦化废水体积为200mL。将烧杯放置于恒温水浴系统中保温60°C,用机械搅拌器以400rpm的转速对焦化废水进行搅拌,保证铁基非晶合金粉末在溶液中均匀分散。反应开始后每间隔十分钟取出约3mL溶液进行COD检测。图2为厌氧前的焦化废水在铁基非晶合金粉末的降解作用下不同反应时间的COD变化曲线,可以看出反应进行至1min时,焦化废水的(300已经从初始的790011^/1^降低至484411^/1^,反应进行至30111;[11,COD继续降低至4512mg/L。图3为厌氧前的焦化废水反应前后的照片,反应30min后焦化废水几乎呈无色透明状态,可以看出铁基非晶合金对焦化废水还有明显的脱色作用。
[0030]实施例2
[0031]利用铁基非晶合金的磁性,将实施例1中参与焦化废水处理后的铁基非晶合金粉末Fe78Si8B14收集起来,首先经过0.lmol/L的HCl震荡清洗1min,之后再经无水乙醇震荡清洗至少三次,最后进行真空干燥。将干燥之后的铁基非晶合金粉末再次用于焦化废水的处理。重复以上过程,直至铁基非晶合金粉末降解焦化废水的效率出现明显降低。图4为重复五次使用铁基非晶合金粉末Fe78Si8B14处理焦化废水时降解效率随时间的变化曲线。可以看出铁基非晶合金粉末Fe78Si8B14重复使用四次,焦化废水的降解效率没有明显衰减,第五次重复使用铁基非晶合金粉末Fe78Si8B14处理焦化废水时,降解效率有所降低,但是如果适当延长反应时间,降解效率也会有所提升。
[0032]其中,降解效率11=1-0?*/(:00(),0)0()为焦化废水初始化学需氧量,0)0*为反应七时刻焦化废水的化学需氧量。
[0033]实施例3
[0034]将铁基非晶合金粉末Fe73.5Nb3CmSi13.5B9(0.2g)加入好氧后的焦化废水(200mL)中,在同样的条件下进行降解试验,测试反应不同时间焦化废水COD的变化,结果如图5所示。在铁基非晶合金粉末Fe73.^Nb3Cu1Si13.5B9的降解作用下,好氧后的焦化废水的COD从初始的263mg/L降低至143mg/L(反应20min),随着反应的继续进行,COD稳定在113mg/L(反应40min?60min)。
[0035]实施例4
[0036]与实施例2相同,研究铁基非晶合金粉末Fe73Jb3Cu1SimB9降解焦化废水的可重复使用性。铁基非晶合金粉末的回收、清洗、干燥等实验方法同实施例2。将干燥之后的铁基非晶合金粉末Fe73.SNb3Cu1Si13.5B9多次用于厌氧后焦化废水的处理,直至焦化废水的降解效率出现明显降低。图6为重复七次使用铁基非晶合金粉末Fe73.5Nb3CmSi13.5B9处理厌氧后焦化废水时降解效率随时间的变化曲线。可以看出重复使用六次,焦化废水的降解效率仅有微弱衰减,第七次重复使用时,降解效率才有所降低。
[0037]实施例5
[0038]与实施例3技术方案相同,不同的是铁基非晶合金粉成分为Fe84P1QC4B2。降解结果表明,反应40min后,好氧后的焦化废水的COD从初始的263mg/L降低至100mg/L以下,取得了较好的降解效果。
[0039]实施例6
[0040]与实施例1技术方案相同,不同的是铁基非晶合金粉成分为Fe68C01QSi8B1^利用高能球磨得到的非晶合金粉处理厌氧前的焦化废水,结果表明,随着降解的进行,焦化废水的颜色逐渐变淡,直至无色透明状态;COD检测结果表明,反应30min后,好氧后的焦化废水的COD从初始的7900mg/L降低至4244mg/L。
[0041]上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
【主权项】
1.一种利用铁基非晶合金降解焦化废水的方法,其特征在于:该方法是采用高能球磨法制备的铁基非晶合金粉末降解焦化废水,所述铁基非晶合金粉末在焦化废水中的浓度大于0.lg/L;所述铁基非晶合金中铁元素的原子百分比大于50%。2.根据权利要求1所述的利用铁基非晶合金降解焦化废水的方法,其特征在于:所述焦化废水溶液的⑶D为200mg//L?10000mg/L,焦化废水温度为环境温度到100°C,焦化废水的pH值为I?12。3.根据权利要求1所述的利用铁基非晶合金降解焦化废水的方法,其特征在于:所述铁基非晶合金中铁元素的原子百分比为68-84%。4.根据权利要求1所述的利用铁基非晶合金降解焦化废水的方法,其特征在于:所述高能球磨法中,原料为通过气体雾化方法制备的铁基非晶合金粉末,高能球磨过程中原料与轴承钢球按I: (4?10)的重量比例混合。5.根据权利要求1或4所述的利用铁基非晶合金降解焦化废水的方法,其特征在于:高能球磨法制备的铁基非晶合金粉末的比表面积彡0.304m2/g。6.根据权利要求1所述的利用铁基非晶合金降解焦化废水的方法,其特征在于:所述铁基非晶合金降解焦化废水过程中,用机械搅拌器以200rpm?600rpm的转速对焦化废水进行搅拌,保证铁基非晶合金粉末在焦化废水中均匀分散。7.根据权利要求1所述的利用铁基非晶合金降解焦化废水的方法,其特征在于:所述铁基非晶合金粉末能够多次回收再利用。
【文档编号】C02F1/70GK106006916SQ201610569480
【公开日】2016年10月12日
【申请日】2016年7月18日
【发明人】朱正旺, 秦鑫冬, 张海峰, 王爱民
【申请人】中国科学院金属研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1