用于微型流体分析器的固定相的制作方法

文档序号:5021147阅读:331来源:国知局
专利名称:用于微型流体分析器的固定相的制作方法
用于 流体分析器的固定相本申请要求申请日为2005年2月28日的美国临时申请No.60/657,557的权益。站且NT豕本发明涉及流j微测,特别是流微测器。更特别地,本发明涉及与检测 器制造相关的流鹏测器的材料。申请日为2005年2月28日的美国临时申请No.60/657,557在此引入作为参考。关于流体分析器的结构和加工方面可能公开在美国专利No.6,393,894Bl 中,其于2002年5月28日授禾又给Ulrich Bonne等,名称为"具有分段加热器 以提高灵敏度的气体传感器",其在此引入作为参考。鹏本发明涉及为流体分析器选择固定相,该流体分析器使用特定的标准来确 定用于如 流体分析器的合适的材料。 附图简要说明

图1为固定相性质简图; 图2为选择固定相的流程亂 图3为&或空气载气的MGA性能表; 图4显示了极性化合物的保留指数表; 图5为说明性的分段加热器结构的布置亂 图6显示了单膜元件的截面端视亂 图7为分析物上吸附能量的分子建模检验图表; 图8为显示妊作用焓的比较的图表; 图9显示了分析物的吸附烚;图10显示了相平衡常数或K值的实验值和计算值之间的相关量; 图11为计算的和测定的分配常数的图表; 图12-16为K对介电常数或极性的曲线图;图17显示了介电常数的计算iW文献值的曲线图;图18为模拟^IX^温^J变的图;图19和20显示了 k'和tr对材料的沸点的绘制图;图21显示了测定的K对材料的沸点的图;图21a为材料K值的计算f就测定值的纟飾幅;图22和23为气相色谱绘制图;图24显示了在固定相之间f縱烃分离的比较;图25为检测器输出对流体分析器时间的图;图26为预浓缩增益对解吸温度的图;图27为预浓縮增益对解吸、M和吸附能量的图;图28为预浓縮增益对解吸和吸附温度的图;图29显示了不同材料的△ H kj/摩尔的值;图30显示了不同材料的相对吸附烚;图31和32分别显示了相对吸附能量对未7K合和7jC合固定相的不同分析材 料的沸点的图;图33为吸附烚对不同材料的沸点的图;图34显示了未7jC合和7jC合瞎况下材料中SiOH和SiO的含量;图35显示了几种化合物的混合物的实验GC分析,其显示出在聚硅氧烷 固定相上的相对保留顺序;图36显示了几种组分的混合物在使用碳纳米管固定相的GC基片上的实 验性气相色谱(GC)分离;图37显示了根据石墨、PDMS和有机硅M&三个固定相的模拟瞎况所期 望的相对平均洗胸顿序;图38显示了保留值对分析物在不同固定相上的沸点的图;图39显示了在PDMS上的分离模拟;图40显示了在有机硅酸盐上的混合物洗脱;图41显示了在石墨表面上的洗脱模拟;图42显示了相对冼胸顿序,期莫拟值和实验值可能接近于相同; 图43显示了不同有机硅酸盐上残余物的实例,其中,在表面的凹陷内膦 ,获得了稳定;图44显示了在硅酸盐固定相上使用^分析物的几个分子分离己烷和十二烷混合物的构型,其揭示了 OH的影响;图45显示了揭示OH的影响的硅酸盐固定相上的构形; 图46为作为浓縮器或分离器组成部分的流体分析器的一部分的简图; 图47为在一个通道中的加热器元件的纵向截面视亂 图48为描绘加热器温度轮廓图以及相应的由传感装置的*加热器元件 产生的浓度脉冲的图表;图49-63涉及苯醚化氧化硅-NG的吸附能量;图64-91涉及CWA's的吸附能量;图92-102涉及四氟乙烯上的CWA;图103-110涉及一些具体的固定相;说明微型气体分析器(MGA)固定相可以利用那些在MGA系统带来特定性 质的材料。MGA的例子在本文另一处有所描述。如图1所示,固定相理想的 标准或性质200包括项201——具有与样品气体中湿汽浓度无关的保留值和 吸附烚;项202——没有暴露于样品气体混合物的SiOH (甲硅烷醇),由于甲 麟醇具有高于正常吸附烚的保留/反应烚,且弓胞峰值拖尾项203——具有 随分子量或沸点单调增加的吸附能量;项204——适用于标准沉积方法,例如 旋涂或喷涂或真空沉积;项205——对光致抗蚀剂产品提供合理的附着或者可 形成光刻图案;项206——可Mffl常的方法,例如DRIE (深反应离子蚀刻)、 等离子体蚀刻或最重要的,液体蚀刻,进行蚀刻并形成图案;以及项207—— 展示了对目标分析物的高渗透率,或者展示了对干扰气体(例如链烷烃)的非 常低的吸附烚和对于极性分析物的高(物理吸附和非反应化学)值。固定相材料的一錢本性质或标准可包括高吸收性和低水干涉性。水阻力 可能来自于疏水性基团的大量使用。吸收性的可能来源于在表面使用了足够的 极化性而没有加入会折中水阻力的活性氢键。在这里,项可以包括用于,GC l縮器/分离器的非极性吸附抓用于多孔电介质的甲硅烷超曾韧剂的新的离去 基团和化学过程、用于多孔吸附SOG's的封端剂、以及作为固定相用于聚降冰 片烯上的M GC基体的疏u7jC聚合物。多 L材料可以作为旋涂配制用于MGA 或GC。孔隙的引入产生了具有樹氐k值的电介质。图案形成和/或装置结构固定之后,可能存在表面功能化。该结构可能由于高度多孑L配制之一而形成,但是单独的多孔性(高表面积)不能形成好的固定相,并且表面上发现的特定官 能团可以将该表面调整到预期的活性。将要使用的聚合物的基体可以得到扩 展。聚合物可以形成多孔结构以增大表面积,但是碱性材料具有潜在的活性以 阻止水在吸附过程中的渗透。在MGA应用中,可具有高表面积介电结构。在基片处理过程中,可以获 得具有纳米管结构的多孑L材料和高温下的相对稳定性。实例包括具有开放式多 孔结构的GX3P,和NANOGLASS (霍尼韦尔)。高表面积碳的实例包括碳 纳米管。还有其它多孔的实例,例如SiLK (陶氏化学),其表面的孔最初被 等离子体或湿法蚀刻打开以增大表面积。这样的结构可以具有一金属涂层以给 吸附剂提供金属表面。在这里,需要指出的是,高表面积的功能化,与相关技斜目比。作为建模 的结果,三氟丙基甲硅烷基基团是一个受至咲注的实例。NANOGLASS,f顿 二氯-或二乙氧基-三氯丙基甲基硅烷或类似单体进行旋涂处理,可以形成三氟 丙基甲基甲硅烷基基团。在建模中可以发现其它水不敏感性的聚合物。尽管这些聚合物可能不是高 度多孔,孔隙也可以被引入。聚降冰片烯是一个实例,但是其它的可以包括环 氧-酚醛清漆、pdms、聚四氟乙烯以及类似物。高Tg值的材料可以4柳与GX3P 和NANOGLASS 类似的技术形成多孔,该技术禾拥成孔剂组分的热分解来 形成 L。低Tg值的材料可以利用7jC溶性成孔剂方法或由HFC,s制成的低温成 孔剂来形成多孔。图2为示范性的给出此姆旨出的不同材料性质之间连接的简图。以方框150 开始,选择一种用于MGA固定相的^^材料。然后转到菱形框151中的问题, 其问对于MGA固定相来说材料的多 L性是否令人满意或可接受。如果回答为 否,那么转到模块157,在那里,例如,可使用成孔剂形成多 L材料。然后从 方框157转到菱形框156,框中的问题是材料的多孔性是否令人满意。如果不 满意,就转至帳块155鄉择一种替代材料,期每被弓l导到菱形框151中的多 孔性问题。如果对于菱形框156中问题的回答为是,那么可以转到菱形框152 以回答水干扰性的问题。同样的,如颗于菱形框151中问题的回答为是,那 么转到菱形框152回答关于材料的水干涉性是否令人满意或者可接受的问题。如果是,转到另一个菱形框153回答材料的吸附性是否可接受。如果回答为是, 那么材料就可以被接受用于方框154中的MGA。如果回答为否,那么就需要 转到替代材料方框155选择一种材料,其可包括用作聚降冰片烯上的M GC 基体的固定相材料的疏水聚合物,和其它具有高吸附性和低水敏感性的聚合 物。然而,从方框155可以基于新选择的材料转到菱形框151对材料是否具有 足够的多孔性作出回答。如果回答为是,材料可以转到菱形框152并继续上面 指出的步骤。如果为否,就转到方框157,在那里材料的多孔性可以使用成孔 剂得到促进。可以从方框157转到菱形框156回答多孔性是否令人满意的问题。 如果不满意,就转到模块155选择一种替^^料。如,菱形框156的回答为 是,夷(3么就转到菱形框152回答7jC干扰性是否可接受或令人满意。如果回答为 是,那么就从那里按照此处所述的步骤继续进行。如,菱形框152的回答为 否,夷卩么可以在方框158对如多孔吸附SOG的材料进行水干扰性处理,例如 封端处理。从那里可以转到菱形框159,其中的问题是水干扰性是否可接受。 如果回答为否,那么转到方框155并继续此处所述的方框155之后的步骤。如 果回答为是,转到菱形框160回答吸附性是否可接受的问题。如果回答为否, 转到方框155选择一种替代材料并继续此处规定的步骤。如果回答为是,贝啭 到方框161,其中,材料可以被接受用于MGA。作为一项挑战,可以对固定膜材料盼性质进行评估,以允许至少相对的预 观卿评估。PHASED鹏GC预浓縮器和/或分离器所需要的吸附剂应当高度 疏冰但保持一定的极化率,含有非常低的氢键键合属性,而且可以耐受高于300 摄氏度的温度,并在高于200摄氏度的空气中重复循环。它还应当具剤氐的吸 水性。这种需要可用在此駄的几种材料实现。剩列来说,高度非极性的材料可 以使用。可以使用有机低k值电介质,例如作为非极性吸附剂的Silk或GX3P。纳米管可以用作非极性吸附剂。为了获得需要的材料,可以用金属涂布当前的 氧化磁氧化铝吸附剂,用金属涂布有机低k值电介质或纳米管。另一种可用的 材料是低k值的复合物。这些材料可以为试剂提供结合能,并在没有热,军的 情况下为分离提供表面积。GX3P膜廳可以用作具有开孔的吸附靴分离剂。该层可以提供M GC 所需的开孔、高表面积糊敞性的表面。芳香性可以为隔离的试齐鹏供一定的结合力。该层不太可能像经受象ic一样多的处理,因此它适于作j舒莫量材料。可以制造碳纳米管(CNT's)(具有标准CVD沉积)的涂层以提供高表面 积。CNT's可以提供非常高的表面积,同时具有热稳定性(高于有机的低k值 电介质,例如Silk或GX3P)。石墨碳可以对吸收类型提供一定的活性,同时 维持高度it7jC的环境。可以借助CVD或ALD为当前的多孔无机材料涂布上一层薄(也就是说, 在埃的范围之内)金属涂层。该CVD或ALD薄金属涂层可以用于有机的低k 值电介质或纳米管,其可以包括结节涂布的载体以增加金属的表面积。金属涂 层甚至可以为非极性实体提供活性,并且提供比无机吸附剂更低的吸水性。低k值无机和低k值有机材料的复合结构可以在高度亲水的无机物和高度 疏水的有机物之间提供部, 决的方案,但由于极性的提高,也可以提供比单 独有机溶液更高的吸附活性。另一个解决办法可以包括使用改性的NANOGLASS 。分子式中不使用 甲基基团,取而代之的是其他有机硅烷。化学计量也需要进fiH周整以增加有机 物的含量。硅上的有机基团可以改性硅酸盐的氢键键合活性并为表面带来更高 的疏水性。模拟显示苯醚化的nanoglass可以更好地抗水分影响;然而,标准 的nanoglass具有更好的CC^EtOH能量分离。这可能需要是几个单元或标准 nanoglass结构和其它具有苯醚化nanoglass的nanoglass结构组成的混合物。需要有新的离去基团和用于多孔电介质的甲硅烷基增韧剂的化学过程。目 前已知的甲硅烷基乙酰氧基增韧剂(TA)的不足在于与铜的反应性,这导致铜 的蚀刻和残,的形成。在该TA中使用的醋酸铵和醋酸劍牛会导致铜的蚀刻 和残余物的形成。试图远离这些斜牛导致几种新的化合物的形成。在一个族中, 可以使用中性的离去基团,而且文献显^^样的基团具有类似于甲硅烷基醋酸 的水分敏感性并易于水解与基体SiOH发生反应。另一个方^似于HMDZ,但是使用二甲基甲硅烷基基团而不是三甲基甲硅烷基基团。这种情况下,氨或酰 胺可以作为离去基团。新的TA试齐啲第一族可以{顿中性的离去基团。中性的离去基团可以避 免刻蚀的发生和当前的乙酰氧基基团的催化问题。本发明的解决方案提出醐安 离去基团可以是相关技术中使用的二乙酰氧基的好的替代品。因此,二甲基甲 硅烷基二乙翻安或二甲基甲硅烷基二甲,安是离去基团为中性液体的最简单的化合物。TA反应包括Si(NCOR) ^ SiOH + HNCOR和SiOH +SiOH今SiOSi。 相关技术显示出,Si(NCOR)易zK解。已知翻安基团是中性的或接近中性,因此 它不涉及酸蚀刻问题。随着中性离去基团的形成,縮合反应能够在更高的pH 值斜牛下进行(与乙酰氧基基团的酸性^(牛截然相反)。氨作为离去基团的第二化学过程是可以预想的,且与HMDZ具有相似关 系。但是新的化合物应该育^l多与nanoglass或二氧化硅反应以形成二甲基桥连 基其比形成自HMDZ的三甲基甲硅烷基封端基团更加稳定。这些新的化合 物包括(但不限于)六甲,丙硅氮烷、双二甲氨基二甲基,和双二乙氨基 二甲基硅烷。应当注意到,二翻安化合物与HMDZ或者二乙酸基有着很大的 化学区别。氨基化合物具有类似的化学过程,但是保护二甲基甲硅微安用于TA 应用,因为在TA应用中发现二甲基基团具有比在HMDZ中的三甲基基团更好 的稳定性。多孔吸附SOG具有封端剂。封端剂被用来皿用于M色谱应用中的薄 膜多孔SOG's的疏水性。M气体分析器中使用的薄膜应该多 L、薄和高度疏 水。通常用作吸附器材料的SOG's可能会遭受能引起高度亲水性的未反应的 SKDH的功能性的影响。这些试剂的使用能够足够有效的提高疏水性,从而使 得吸附特性对于7jC干扰不敏感。该解决方案可能与描述用于色谱应用的nanoglass和GX3P的使用的另一 种方案相关,也可能与描述用于多孔电介质的甲硅烷基增韧齐啲新离去集团和 化学过程的另一种方案相关,也可能与此处指出的已有的增韧剂相关。这里的 相似性为与硅酸盐的SiOH基团反应的相似的化合物的描述;然而,本发明的 解决方案以提高疏水性达到增强吸附能力为明确的目的,而不是主要地进行增 韧。附带的好处是得到了更坚固的膜。本方案可以使用如DMDAS、 HMDZ、 MNCTZ、 DMSF、 DMSDA、 BDMADS、 BDEADMS、 二甲基甲硅垸基二乙酰胺和二甲基甲硅烷基二甲酰 胺的试剂 SOH fflil有机功能性进行封盖,其也可起至赠韧齐啲作用。可 作为封端齐啲列表也包括战化合物的二烃基甲硅烷基和二芳基甲硅離衍生 物。 一种特别好的封端剂可以是衍生自三氟丙基甲硅烷基氯的三氟丙基甲硅烷 基基团,其最^I31计算显示了低7jC敏感性。作为固定相用于M GC's的疏水聚合物可以基于聚降冰片烯和其他聚合物。,GCs固定相应当具有与分析物的高度亲和力,且少魏不受大气中水气的干扰。本方案揭示了由具有高度吸附性和低水敏感性的疏水聚合物制成的 固定相。肝建模研究显示,具有高度it^性的材料作为GC固定相应当对水干扰 具有抵抗力,因而应当在PHASED M气体分析器中具有比硅酸盐更好的效 果。应注意到高碳基材料,例如碳纳米管和GX3P,与硅酸盐型材料相比因其 更低的水干扰性而成为好的GC载体。本方案可以将能成为更好的固定相的疏水材料的名单扩展到包括聚降冰片 烯、PDMS、 Teflon (聚四氟乙烯)或氟化聚烯烃以及酚醛清漆树脂。聚降冰 片烯(通过环烯烃不开环聚合而成)表面显示出有趣的现象,因为其吸附能量 比在其它表面上发现的更高,并可成为 器的基础。该聚合物的密度比其他 聚合物低得多,而且可以允许分析物类更深的渗入并改善吸附。当分析物置于 大量物质之间时,高吸附能量的发现即意 这就是应该选择的。Teflon 和 PDMS表面显示出对水吸附效果的积极抵制。因为极性基团也显示出有助于对 高极性种类的吸附能力,贝何以得出结论,由于缺少任何氢键合态氢而高度疏 水的固定相,可以具有低的水干扰性,并且如果固定相也含有极性基团(没有 氢键合态氢),贝树极性分析物的吸附能力可以得到提高。在二氟甲基基团具 有大的偶极矩的聚四氟乙烯模型中,以及含有大量更多极性的醚键(其中,模 型假定了将多数自由羟基基团固定起来的高度固化)的环氧酚醛清漆模型中, 会发现使用更高极性聚合物的提高了的性能。这里所描述的用于PHASED (用来强化检测的分段加热器阵列结构)微 型气体分析器的膜的发展成为获得其高速(总分析时间<38=、灵敏度(<lppb =和选择性性能的关键。该微型分析器可以基于SbM机气相色谱通道,其 具有集成的流量、^^和热导检测器(TCD),具有多级预 (PC),无阀注 入以及除该(空气)样品气体外无额外载气。可以制造PHASED具有40、 60和100个元件的加鹏阵列;在晶片上,集成有20-50级的PC;流量传繊;分段分离柱;以及TCDs。可以制造和封装升级的版本,以适应用于在选择的 过程工业场所进行的NeSSI (新型自动取样/传感)系统领域测试的标准化、模 i央化的1.5X1.5"的SP-76基底,以及于环境、本国安全、生物工程和医学诊断 的应用,、同时要满足适于掌端应用的尺寸和普及性目标的要求。得到的观糧结果具剤艮好的可重复性;针对一个20级预、MI器解吸的约 8ms (也就是〉100/sec的峰容量)的TDC峰宽,该解吸过程与样品/载体气体 流速同步并且然后热脉冲注样,与作为附加的具有《3ms的峰宽、<lms的TCD 响应时间、和灵敏的M排放装置的检测器保持一致。
建模的努力集中顿最佳的吸附器、分离器和聚合物膜材料的建模、合成 和选择上。可以使用一种方法来估计介电常数e (也就是分析物和可能的固定 膜的极性)、分配系数K、保留因子k'、和保留时间tf、对于任何分析物的沸点 Tb和元素组成。对于K的估计,在沸点Tb之外加入"与仅仅基于Tb的估计 相比,会使得不确定性因子降低24倍。这一建模的努力育號供对于分析物的 保留性质和极性之间关系的预料不到的新认识,例如当极性增加至鹏腿大值 K时,可获得斷氐的分配系数和保留时间。
根据衍生的K和k'值以及它们估计得到的膜吸附烚,通过扩展等温GC(气 相色谱)分离的试验结果或者iM从起点生成这样的色谱图,可以模拟和设想 分离柱受控MJ^坡度的好处。
为了预测和满足规定的MDLs (最低可检测限)并由此预测给定分析物所 需的PC 7jl平,多级预浓缩器的第一原理模型3M (OT PHASED芯片获得的实 验娄 行验证。 一单7jC平、薄膜型毛细管PC所获得的PC值作为该膜厚 度、级数、浸渍和排放温度、以及相关分析物的吸附烚的函数进行计算,结果 典型地会落在6到15kcaJ/mole或者20到70kJ/mole的范围内。接下来,可以 评估固定膜材料盼性质以{輕少相对的预测和评估成为可能。
不考虑尺寸,气相色谱可以被看作沸点分光计,因为它们可以依靠物质在 分离柱固定相上的不同保留性质对气体混合物进行分离,这主要受这些物质依 次与沸点相关的吸附能量的支配。随后,不同沸点的化合物会经历不同的交互 肯糧,被保留不同的时间,并因此被彼此分离和单独分析。固定相的性能也会
影响保留时间tR、相关保留因子k'气vg&、以及分析物i的保留指数
1「10(Hlog(VtjJ/logUV)+^,其中,n^个碳原子的烷烃,或2,因为 每种膜材料也影响吸附能量或焓厶H。k,和△ H具有非常简单的关系bg(k,2/k,一 AH/RCI/TVIA^尽管这种影响相对适当且总共不^31约50%,但它是分离策 略一部分的基础。通常,极性化合物如醇、水和酮被确信具有比非极性化合物 如烷烃、双分子气体和惰性气体更高的吸附能量以及更长的保留时间,正如所测定的一样。具有大范围保留时间和能量的固定相对于好的分离来说是理想 的。对于好的预 鄉来说,也会需要高比表面积以获得高传质率和存储容量。需要进行权衡。如果一个未知的分析物混合物包括极性和非极性两种化合 物,并且如果当务之急是设计一种策略以进行分离洗脱和对所有分析物进行分 析,应确认所选择的柱的分离动力足够分离所有化合物。这可以通过使用具有20到60m长度和5-30 ^H中分析时间的台式GCs来实现。如果需要在少于4到 10秒钟之内、在紧张的能量预算之下、并使相关的目标分析物预浓缩到1000 到IO,OOO折来完成,那么就需要去寻找和设计更灵活更快的分析方法。需要一个解决方案来处理样品气体中l-3mol。/。的水蒸气,其会占据许多吸 附位并降低吸附器和分离器膜材料的效力。如果这些材料的保留时间和分离能 够得到预测,对它们的选择就会更容易。顿1,000-10,000折pc的寻找中,需要对预、M进行权衡,艮P,加热vs. 加热和冷却,问题是,只加热预浓縮器阵列中所需数量的元件,或在加热解吸 之前冷却该阵列中更少的元件(在更短的时间内、用更少的,能量实现更佳 的分段吸附),哪种获得结果的方式更具有能量效率。看起来,如果可行的话, "只加热"的方法显然最有效率,因为(Peltier)冷却方法在浸衛吸附时间内 应当包括不变的消耗功率。选择空气、H2或He作载气需要进行权衡。从流体和机械复杂性的观点来 看,i顿空气作为载气对于紧凑、独^M行的MGA来说是最简单的方案。应 该不需要原位&或He的存储或制备,并且最佳的GC分离所需的流量应当更 低,因而减小了泵的尺寸和功率。然而,l顿4的TDC、 MDD和MS检测 器的S/N和灵 会更高,使用He的MDD和MS更是如此。另一个需要考 虑的方面是软离子化的1t念,其中下述的任何一个方面都需要注意。有一些中间离子,典型地是H^+,将自身的H+离子传递给相关的分析物, 这在空气作载气时比较有利,因为02、 &和Ar对H+离子的亲合力远低于大 多数分析物;或者样品气体中的分析物M被置于强电区域中而被离子化。尽 管一种方案会欢迎分析物的破碎实现的离子化从而辅助鉴别。当前,应考虑用 于紧凑、高速的M分析器的软离子化。图3中的表格总结了这些方案的利与 弊。在一些实施例中,在非极性相PDMS上和极性相PEG上的n-辛醇-l保留指数的变化可以从1=1038到1545或者增加50%,尽管已经比参照物PDMS上 的n-辛烷高了 30%。图4的表显示了一些其它相关的指数值。需要注意PHASED MGA分离的操作和性能。为了描述和模拟任何分析物 或分析物混合物的PHASED分离和洗脱,应该从物理学和热力学开始,基于 分析物和固定相的物理性质对分离进行评估。可以讨论PHASED分析器上的 分离度结构特征带来的贡献,然后致力于分析物的热力学和物理性质是如何帮^PHASED分析器结构由一列预浓縮器和形成连续柱的分离元件组成,如 图5所示。这样的柱具有方形的截面,见图6,其中薄膜加热器阵列和相应的 薄膜固定相占据四,幢之一。这是与其它类型特别是用于分离柱的GC结构 的显著不同,其他类型可能由圆形截面的毛细管组成,其内径均匀地涂布有固 定相或厚度为0.1到10 u m的膜。考虑到对方形截面柱一侧的涂布,以及PHASED柱未涂布的壁上不均匀 的加热或完全的缺乏,应注意到分离度。通过降低低性能风险方式的理论解决 方案需要在下面予以关注。一项是在一侧具有涂层。在展开的用于GC柱理论塔板高度以及非圆形、 矩形和部分涂布的柱的分离度的Gday方程式中,有对具有固定相的均匀内部 涂层的圆形柱、全部壁都被涂布的方形柱以及一个壁被涂布的方形柱进行的比 较。这些设计的理论塔板高度之比分别为l丄5:2。未涂布壁没有弓胞塔板高度 更大幅度的增加,原因是决速的径向扩散起到的作用,其大大消除了层流效应。 没有气相扩散的话,在未涂布壁附近保留时间tf=t。,相当于非保留时间t。,因 而结果是根本没有分离以及由一定范围的保留时间构成的非常宽的洗脱峰。 PHASED单涂布壁分离率相对于同等尺寸的毛细管低了 2倍的显著性在于其并 没有更大的尺寸,这得到了实验证据的支持。战2倍的降低因数可以更小。不均匀的加热不是必然的争论。需要注意的是l)柱温中每段15到20°C 的升温的洗脱时间可以縮短约2倍;以及2)根据洗脱时间以k'《tf-g/t。的形式 表示的洗脱或容量因子与固定膜厚度成比例(例如,将厚度从600nm减小到10 或0.5nm会使k'减小60-1200倍)。在温度坡度期间,未加热的壁(面向已加 热的膜壁)有时会比已加热的膜 ,低20-18(TC,并因此在至少部分时间内使 k'增大2-1500倍。这可以部分平衡对未加热壁(其可能仅仅由厚度《l-nm、用^^寸端硅織或S^基的柱上残余SiOH的"失活"膜和膜材料组成)的更薄 的膜k'的影响。因为冷翻厚度(及质量负载容量)这样小,它对于整体分离 "工作"的贡献显得很小,但是被认为是获得k'(冷)》0的支持,其可以依 次对将理论塔板高度罚因子的2倍降低提供支持。"单壁"和"不均匀加热"效果的定量值通过实验来确定。可以计算用 于工业、环境、医药和家庭安全的分析物的GC保留时间。以GC为基础的分 析器可通过控律個定膜温度、特定膜厚度和能实J舰小、中或大的分析物分子 謝ff页定分离的材料种^^制造。修翻莫和柱的几何结构以得到k'值,并因此 对一组只有原子组成和沸点已知的分析物进行预定的分离,对色谱工作人员来 说是可行的。分析物性质和洗脱时间之间简单的关系为分析物的沸点温度。可 以确定分配(或平衡)系数K,并由此使用已知的关系式k^K/e和t"。(k,+l), ilil下列方法的一种或几种方法来确定k'和tf的值。一种方法是实验性的,fflii分析物与膜k'itt^库来获得。这些k'值(尽 管膜厚度不确定)可以通过它们特有的P K气体^f只)/(固定膜体积)的值转换为 K=k'j,从而其他柱结构的k'值就可以推导出来了。另一种方法是计算K,通过吸附烚△ H和它与K的关系ln(K)= △ H/RT- A S/R进行分子建模,其中,根据特鲁顿法则(Trouton's rule),在沸点i;处,蒸 发熵大约为△ S= △ H/Tb。关于这一建模工作的信息在图7和8的柱状图中展示, 其中前者显示了来自文献值的不同Mit下实验性等温GC保留时间和^建模 的蒸发烚之间的比较。图7的模型检验结果显示,建模的不确定性并不比实验'ffiil分析物沸点Tb和显示其极性的它的(液体)相对介电常数s之间的 相互关系,即K=K(Tb, e )来计算K值,计算在启发式假定下进行,这可以得 到相对于K:KO;)更精确的K值。M31线性溶解能量关系(LSERs)计算K值。在LSERs的展开中,会用 到介电常数,但是已被对于建模更好的参数组冗、a、 3、 R和logL16代替。 摩尔折射率和e被嵌入LSERs的极化率参数R中。需要注意分子建模和K=K(Tb, s )方法获得的结果。按照分子建模,计算 出的倉g量可舰i顿标准牛顿力场(CVFFAf顿Accehys Ins.的Discover)生成。 力场可以包括重要的键合与非键合力的参数化以计算系统的总育遣。<formula>formula see original document page 16</formula>其中,前4项分另^懐结合强度、角度、糊和无平面运动,第5-9项代表偶合形变,而最后两项4樣范德华力和库仑力贡献的非键合相互作用。力场 的牛顿分子建模通常^ffl 了所有这些贡献。图7显示了计算得到的蒸发焓,其可M:模型化的从压缩态到M状^I古计总体内部能量的变化而得到,其中,AH=AE+nRT。模型蒸发能量显示出 与文献值很相符,因而提供了一种检验计算的形式。然而,研究工作应从分子 模型在筛选固定相吸附能力(图8)和确定固定相对于通常的水干扰的抵制能 力的应用出发。图8显示了一些相关的化合物的相互作用/吸附(内部)能量以及它们对 于分析物样本混合物中水蒸气存在(引起膜表面的水合vs.非水合状态)的依 赖。在所指出的固定相膜材料中,材料显示了降低的AH对水存在的纖,特 别是极性分析物,例如DMMP,同时保持相对大的吸附能量。材料包括有机 硅酸盐、环氧酚醛、PDMS、石墨/碳纳米管、聚金刚烷亚芳基和聚四氟乙烯。 图8显示了非极性(癸烷)和极性(DMMP)分析物之间吸附的区别,以及极 性DMMP的更高的水合效应。高度疏水表面,如石墨和亚芳基乙炔,当水合 时具有更高的DMMP吸附,因而显出在吸附极性分析物时,固定相表面极性 性质的重要性。更值得注意的表面是聚四氟乙烯,其具有高的单键偶极矩(C-F),和非常低的7jC干扰性。这些项显示出,在固定相中含有一些形式但具有低 的氢键键合能力以减小来自7jC分的干扰的极性体是理想的。这些观察与QSAR 分析一致,该分析与模型化的不同样品分析物吸附到其自身M表面的吸附能 量不符。分子描述符可用作变量,包括偶极矩、摩尔折射率、原子极化率、溶 解度、分子量、密度和氢键键合能力。在此情况下,偶极矩所显示的极性成为 重要的变量(—0.998)。A£。A raW) = 28.4871 + 1.19332. /"eWz'a/M,ew/ + 4.10169 Z)—/eM喂.ft/cfe -5.10113* feZco甲wW - 0.108962 *Mo/Re /极性问题对于固定相的设计是重要的,特别是当考虑到浓縮/分离应当在 相对短的时间内、j柳芯片规模的體上非常小的特征而进行时。然而,既然 现在建模能更加定量地图解吸附能力由于材料设计的变化,那么表面功能化对 于基础固定相的最佳适应问题就应弓胞注意,因为基础聚合物不是必须的,它 会给装置薄膜格式中的活性带来有害的影响。此外,需要限制提供充足表面积 的可用基础材料的种类。由于当前模型假定吸附是一个关键的性能变量,贝犍 丰,于动态问题如表面扩散的改进就不得不与材料性能需要相联系。需要注意K=K(Tb, e )方法。为了推导或"训练"K(Tb, e )关联,需要提 供一组k'值(标准化到298K)用于PDMS—基柱的GC测量。图10中的表3 列出了用于训练的分析物(顶部的组A)和用于"测试"或"检验"的分析物 (组B),由其可以获得k'和K数据。图11显示了训练组(组A的黑菱形和 方形)的计算K值对比实验K值以及"检验"组(组B的菱形、方形和倒三 角形)的计算K值对比实验K值的图表; 一些没有e数据的化合物的K值从 它们的沸点和计算介电常数估计得来。对于大部分纯净的PDMS固定相(RTX-1 和DB-5),推导的关联式^K(Tb,0在基于下列项减小的不确定性(1-sigma) 方面显示出进步。l一线性Tb项和无e项对于组"A"的11种化合物±15.8%; 2 — T: e n项且无线性指数对于组"A"的11种化合物±7.4%;3. 单独的T,和e n项,且m=l:对于组"A"和"B"(删除2个异常值 后)的16种化合物±6.6%;禾口4. 单一的线性Tb加两个非线性e和Tb' e项,未删除异常值对于组"A" 和"B"的18种化合物±3.4%;用于F-100、 PDMS/RTX-1和it(RTX-200)的氟化卩翅而推导出的最后一禾中类型的关联式如下所示log]0〖=—3.624056 + 0.01636964. 7; — 1.216989. £07910柳+ 3.198916/7;01薦".,7,64±3.38%18Z)0, 7ZS = 31.35,7ME = 8.88%7 - J庸-05灯X- 1(1)log]。《=—3.982456 + 0.01640873 7; — 1.513345 e1 117895 + 2.55G284/7;謹985425 扁02± 7.34% 18D0,= 161,7ME = 17.1 %3 - J腐_ 05iOT - 200(2)iog。〖=—3.954085 + 0.01700603.7; — 1.694788. e111793 +2.818873/7;。。柳.,' ± 2.77% 14D1, 71^1 = 3.74, 7ME = 5.17%9 - J腐-05F -100(3)由于介电常数加入至鹏点、鹏,关联式不确定性改善了约24倍。对于在 PDMS JliS行分析和分离的气体,改善为标准偏差从士15.8变到3.4%,尽管 分析物的数量从11增加到了 18。对于在F-IOO上进1亍分析和分离的13种气体, 改善为标准偏差从土4.47变到±2.77%。图12至16显示了关联式的图形表现。图12和13中,点恰好tt对应于 以圆形表示的沸点温度200、 300、……、500。K的曲线上,通过选择它们的沸 点代入Tb*=MT((Tb+50)/100)*100和它们真实的介电常数e来计算K(Tb*, e ), 这也是曲线会魏啲方法。然而,在图14、 15和16中,纟賴啲K通过K:KmK(T工 e )/K(Tb, s )绘制保持了它们的观糧值^的可变性"风格",其通过仅一个单 独的因素来移动^hK值对平均沸点、aS (开氏温度200、 300、 400° 、……) 的常数丁b曲线,其方式是保持它们距实际关联式方程的距离,同时将其纵坐标 值向所示常数Tb曲线之一移动,而不改变其e值。如果测量值Km=K(Tb, e ), 距平均温度曲线的K刻度距离为零。进4谅一过程的原因在于,在不诉诸3-D 绘图的前提下,更好地将K-Tb- e的3-D表面具体化,和理解与e的暗指关系 和e的作用。可以在K对e的图中,比较三种固定相PDMS、 RTX-200和F-100的常数沸点温度曲线,并注意这些曲线对某些分析物极性如e值显示出最大的K 值,对如K值在其最大值之后和在e值较低时下降得更快的更具极性的固定相 显示出对e更强的依赖,还有极性非常高的分析物具有比仅仅根据其沸点估计出的更低的K值,从而显示出相对低的k'值并被保留更短的时间。如果这些趋势和关系得到了更多分析物的证实,特别是高极性的那些,那 么就可以预想得到了分离极性化合物但不保留太多水的固定相。高极性分析物和其e值的例子包括甲翻安-84、 7K-79、甲醇-33和乙醇-25。依然存在的其它挑战包括精确地确定毛细管柱内部固定相膜的厚度,其通 过容积比P K气相)/(固定相)和K=k, P将测量到的保留或容量因子k'与分配系 数K关联起来。为解决这一问题,应基于毛细管在沉积固定相之前和之后的微 重量增加而对重量分析方法的可行性进行研究,然后1OT其密度来获得其体积 和其(假定均匀的)膜厚度;还有精确地确定零保留时间t。, 3^t于传统的FID 检测器通常是困难的,但对于包含在PHASED内、对非有机气体有响应的TCD 或MDD检测器不会。需要注意对分析物极性或介电常数e的估算。为了支持和补充对分配系数 (分析物和固定相之间)K的估算,其中知道e值是有利的,可以展示在分析 物的液体状态下估算分析物电容率或相对介电常数e的思维过程,所述状态与 其在气相色谱柱的固定相膜上的溶解/吸附相关。这依然将固定相的e对于K 的设想的影响留待分析。M极性、摩尔折射率和介电常数之间的关系涉及到经典光学的洛仑兹一 劳伦茨方程(Lorentz-Lorenz equation),其涉及平均极化率a 、摩尔折射率A、 和介电常数e ,其中,a -4. :t .N/3^A=( e -1)/( e +2),其中N=6.02'10-23阿伏伽 德罗常数每摩尔。麦克斯韦关系式e =n2意味着e是依赖于频率的,正如表示 一摩尔物质或分析物总的极化率的摩尔折射率A,因此完^^虫立于其气压或是 其气体或液懒犬态。在预测K时, 一部分是A为材料常数,其为它的原子组 成A,的函数并育詢多从中预测出来,如同02、 HC1、 Hp、 CS2和丙酮所显示的 那样。为了明确地获得e,可以将战方程改写为e =(l+2-A)/(l-A),尽管这意 tWA的值被限制为A《1,因为A的值〉l会导致e的值为负。分析物在聚合膜材料上的吸附/溶解不会受到高(光学频率)介电常数或 极化率的影响,而会更多穀U DC或低频率e值的影响,而且可以为一组已知 的e值藶理新的、低频率A值,从中可以通iW涉及到的原子种类的贡M行 回归分析而推导出劍门所关注的分析物需要的A。从而,可以选择i=l-7来分别代表H、 C、 O、 Cl、 S、 N和P,并启发式地扩展到Fll以允许额外的〗懐基团HC、 0H、 HC1和HP的贡献,以及舰 允许这些原子贡献的前七个的非线性指数来优化回归。这可使l-sigma回归不 确定性从±13变窄到5.4%。图17显示了以图形方式表示的文献值和^ffi这种 方法计算出的e值之间获得的关系。黑色的(小菱形或方形)点代表用于推导 关系式的那组数据,而亮绿色的(大方形)点代表用于验证该关系式的e数据。 三角形仅代表计算值或估计值,因为那些化合物没有可用的测量的e值。参数分析应基于实验的GC数据。由8种化合物(十二烷、辛醇、甲苯、 己烷、DMMP、 DEMP、 DEEP和DCH)组成的分析物混合物被分析和分离, 并显示于图18的成分中。这些是在100、 110禾口125。C下等温运行,^ffil.5m 长、100 um内径的毛细管,非常薄、中等极性的固定相(F-100),以及平均 速度的&载气而获得的。可以对实验色谱内含的信息进行平衡以用于基于相同毛细管的分离和 PHASED芯片中可用的、如其自身所代表的通道几何结构参数分析。从ll(TC 下、H2载气i^i!(在假定的周围劍牛下)为8.96mL/min的8组分运行得到的 保留时间tf中,可以确定t。和k',以模拟毛细管^^坡度的益处,该温度坡度 无法在高速色谱设置的实验中获得,然后将这些项转化为预计的PHASED性 能。需要确定t。和k'。在这些确定之前,应注意GC数据分析的一些方面。 ffiil将ln(k')对沸点Tb (这里DEMP和DCH的Tb不详)绘图,并改变t。 (零保留时间)以期获得直线,可推导出对t^227ms数据的最佳匹配,这一过 程纟魏啲图显示于图19 (离散的点属于DMMP,其总是突出出来)中,流动 和GC条件为,对于十二烷,k,=1.696,柱入口处26.26psid, g的平均气速为 5.55m/s,其结果为在环境条件下g流速2mL/min比8.96mL/min的实验值小得ffljl从8.96mL/min计算t。,修正速度和t。上的温度效应,可以得到t。=60.4ms 以及图20 (这里离散的点属于己烷和甲苯),流动和GC条件为,对于十二烷, k'=9.21, 117.6pS1d (未根据温升修正粘度,温升可以导致约20%的额外增加), 以及&平均气速为24.85m/s。对于这些方案,连接k'对Tb图上顶端4个点的k'在ll(TC的线的斜率与 取更大组分析物的平均值的线的斜率相等,其使用相同的设置进4于分析,并且结果乡魏U于图21中。图21a显示了f-100的计算对领懂的k值。为了使这些结果一致,可以检查压力效果,因为显著的压降会涉及到毛细 管流。由于从入口到出口的压降,层流流动会加速但会以相同的方式影响分析 物保留时间,如在压降范围对于,情况的线性平均,其对应于约为59psig的 平均载体压力和从24.85m/s减少到被(59+14.5)/14.5=5.06倍的时间平均因子压 缩了的气体的平均纟鹏,其会导致500cm/s的非残留速度禾口 t。=150/500=0.3s, 这相比60ms更接近227ms。总的来说,对于毛细管分离过程的模拟,可选择 t。=227ms,平均载气压力为59pS1g,以及相关的^气体扩散系数相对于雜环 境压力下的值降低74/14.5 ,约为5倍。ffl3K顿战的参考数据,已知本PHASED芯片可j顿最大长度为25cm、 具有方形截面和仅在四个壁中的一个上具有固定相加加热器的组合(用于受控 的温度坡度)的"柱" 道,就可以估计PHASED分离性能。这会导致相 对于圆形和均匀涂布的毛细管的2倍的性能退化,表现是与分离度*11*的损失 相关的半峰宽w的变宽。该退化可M^&S佳速度的PHASED通道操作来 部分地予以平衡,所述最佳速度对应于戈雷(Golay's)方程中理论塔板高度对 载气鹏的最小值,结果是介于1和1.38之间额外的退化因子,如此处指出的, 其M^、于k,值。分离度可被定义为"嗜/wKL/(H'5.54)H例如,高分离度是理 想的,就像光谱学中获得高入/A入是理想的),其中L—主长度而H:理论塔板 咼度°判虫地,柱长度斷氐6倍的结果是分离度*降低605=2.45倍,或者峰宽的 相应增加,如果H为常数。然而,对于一定范围的k'值来说,载气性质(扩散 系数和速度)的额外效果应当予以考虑。对于k'=0.1并将具有加压&的毛细 管同以空^/l^为载气的PHASED进行比较,通过戈雷方程,对于I^25cm、 等价7K压ID也为100 u m、以及膜厚度为 0.1 u m的PHASED方 M面fflit, 可以得到174cm/s的最佳N2皿和15.5的分离度^对于具有L-150、平均1^ 气压59+15=74psia、 &扩散系数D=5 X D。、以及同样的 0.1-u m膜厚度的毛 细管,可以得到93.34cm/s的最佳速度,且分离度为38。但是当组平均速度为 5.55-6m/s以满足分析鹏的目标时,则只能4顿21.6的分离度*。因此,对于1^=0.1, PHASED分离度*比用的毛细管低2倍(单壁对圆形 通道),再乘以分离度之比21/15.5=1.39,总的损失约为2X1.39=2.8倍。对于k,=10并将具有加压&的毛细管同以空^/N2为载气的PHASED进行比较,对 于L=25cm 、等价水压ID也为100 u m、以及膜厚度约0.1 u m的PHASED 方形截面通道,可以得到67.2cm/s的最佳N2速度和9.5的分离度气其中如果 速度是在k,魂l而不是k,二l时优化且v (最佳)=98cm/s,贝识能《顿7.8。对于具有I^150、平均H2气压59+15二74psia、 &扩散系数D=5XD。、以 及同样的 0.1-um膜厚度的毛细管,可以得到35.9cm/s的最佳速度,且分离 度为23.4,但是当组平均鹏为555cm/s时,贝识能j柳8.4的分离度*。因此, 对于k'40, PHASED分离度*比毛细管低2倍(单壁对圆形通道),再乘以接 近l的分离度之比,总的损失约为2倍。具剤氐2倍的分离度的模拟气相色谱纟魏'j于图22中(从底部起为第一条 曲线),其中将針半峰宽(假定为高斯型曲线)增加了 2倍。它代表了同样 的气体分析物的4/4混合物的PHASED分离,但具有L=25cm、 100 u m方形 通道、速度 70cm/s、仅有一个壁被涂布、并且在ll(TC下等温运行。如图22 所示,相对于第二条毛细管曲线的退化值得注意但并不显著。另外的实验结果 参见图23和24:图23显示了质量的迹线,其源自于分离一约80ms的50nL空气中浓度为 720ppm的己烷样品的注射脉冲,其在流入具有42cm长的、 一侧涂布有0.6" m的NGE、且使用Leco ToFMS作检测器的Wit的PHASED芯片之前注入 TS^载气。 一尖的02峰应接近1。时间。己烷峰S/N象征约40ppm的MSMDL(对 于为l的零到峰S/N)。图24显示了使用两种不同PDMS掺杂膜的烷烃分离的比较, 一种使用苯 酚(DB-5),另一种4OT甲硅烷基亚芳基(F-IOO)。它们在厚度上大约5倍的 区别引起了洗脱时间上最大的区别,但它们的化学性质才是不同保留比的原 因。应注意柱温的坡度。图18显示了色谱图,可以预计 ,坡度的益处并改 变柱的几何结构。实际上,可以将等温色谱图(110°C,在薄的、极性固定相 上的8组分分离)数字化,然后根据、^M"k':V4。'(k'+l)的影响移动时间标尺。 从图18中k'对T的数据中,可以推导出对于从己烷到十二烷的化合物的k'的 ^S依赖,并注意到它会带来AT47到26"C的坡度温度变化从而以2倍的因 子改变k'。使用简单的因子2。,以及尝试不同的T—坡度函数,结果得到图22中的计算色谱图,其最下面的那条对应于具有比图18的ll(TC色谱图低2 倍的分离度*的模拟PHASED。图22的所有迹线中,己烷和甲苯的FID信号 为了清楚的缘故在数字上M^到它们实验值的25%。除底部鹏(1号)夕卜, 所有其它显示的 都代 于1.5-m毛细管的结果。从底部向上移动,2号 迹线可能是图18中原始的ll(TC (无a^坡度)等温色谱图。3号迹线显示了 模拟的125。C等温色谱图,同图18中部的测量图进行比较,并以将全部k'减 小大约2倍且包括由热膨胀引起的更高^I为基础。4号迹线仅考虑了 200°C/ 秒温度坡度的热膨胀效应,没有改变k'。5号鹏为t。之后保持了 200ms才开始、且之后^Jt坡度率为50。C/秒 所得到的模拟色谱图。6号迹线与5号迹线相似,只是坡度率为2倍大(IO(TC /s),以显^1高的坡度率是有害的,因为会弓胞不同化合物的保留时间彼lt啦 于接近。因而,谨眞选微度率可以优化分离度和峰容量。这些采用仅为50-100°C/s的坡度率进4亍的PHASED操作的测量和模拟说 明,来自实验色谱图的8个峰在最初的400ms内即被洗脱出来,將舰50 个峰在<1秒的时间内(包括t。)。预,建模包括来自第一原理的多级PC模型,并与实验 进行比较。 这样的数据可使用PHASED芯片PC加热器阵列的20个元件获得,其中这20 个元件暴露于恒定的含有720ppm己烷的空气流中,然后经受分段的、单独的 每次6ms解吸脉冲。M这种方法,从所有元件中解吸出来的己烷会对注射脉 冲有贡献,产生图25所示的TCD和ToFMS迹线。ffl51将解吸脉冲长度从20斷氐到6ms,并将解吸峰 驢从约135增加到 165°C,也就是说更接近最佳条件,可以取得(也就是说,对包括当峰从PHASED 芯片移动至U质谱仪时的扩散增宽在内的全部峰的增宽进行修正)对己烷而言从 34倍到约62倍的PC增益当量的增长,尽管有仍然为次优的样品流(约60cm/s 而非110cm/s)和一些剩余的电和流体泄漏。因为其便利性(无毒性,且由于 其高蒸气压而冷凝危险小,但是它的高挥发性会倾向于困难的PC条件),可以 继续使用720-ppm的己烷源。如上所述的固定相膜可为0.6 n m的NGE,其被 旋涂在4〃的PHASED加热器片上。建模和实验的增益依据其已知的分配系数(K值)被转换为低蒸气压分析 物的值。对于可取得的实验条件,上述PC增益数据与计算结果保持一致,然后其可被外推到>10,000倍增益的情况并保持高的可靠度,其可ilil在更高的样品流量和更大的吸附温度下M具有更大的吸附能量的分析物来取得,如图 26、 27、 28和23所示,其揭示了对在所有附图中作为独立变量的解吸鹏(拿 所有分析物进行解吸)的敏感性、有效的PC级数(图26)、分析物吸附热(图 27)、以及吸附温芰(图28)。建模结果与图25的实验数据进行有助的比较己烷峰高比720-ppm基线 MS (飞行时间质谱仪)迹线高大约5.2倍,但是由于次优流量和在穿过并, 分离器到达MS的传递期间的扩散,在分离开始时,峰显得比最佳的大约7-8-ms峰宽增宽了约12倍。如果假定峰为三角形,它的高度比720-ppm基线高了 约5》12=63倍。在20级PC、 20。C吸附、165。C解吸^^以及己烷蒸:g/解吸 焓AH介于28.85和20.42kJ/摩尔(6.89和4.87kcaJ/摩尔)时,计算得到的己烷 PC增益,分别根据文献和^顿DB-5[5]的GC实验结果,可以得至阶于125到 4倍的PC增益值。这与记载的63倍的实验值的区别不仅仅归因于模型的不确 定性,还要归因于AH的可变性,其对于"未处理的"NANOGLASS,所测 量的结果,蒸发焓比文献值AHy高约1.2倍,但对于DB-5,测量的结果比A Hy低了 1.2-1.7倍,如图9所记载的。如果该因素,与解吸^g升高到200°C 以及PC级提高到50 —起被加以考虑,对于NGE,计算得到的PC增益为约 >3700倍。对于图26、 27和28所表示的厚度大于0.6 u m的膜,该增益可能 会更高,而对于膜分析物组合,会显示出更高的吸附烚和K值,其被显示于图 7、 8、 9和11的范围内。对聚合物传感器的响应进行评估。聚合的固定相薄膜在分析物的预浓缩和 分离之外,还可以在GCs中执行第三项功能,也就是检测。这样的对于分析物 的聚合物膜检测基于膜的电阻、电容或应力的变化。由于制造上的兼容性,除 现有的微分TCD和其他检测器之外,基于电容的检测器可用于PHASED中。在分析器应用中,不论是工业、医药、环境或祖国安全领域,用新的分析 物对检测器的性能进行评估是一项挑战,即〗ER是检测一种分析物是否存在。 然而,许多应用要求该项检测以低失败率,特别是低误报率或者判断失败率实 现。为了满足这种需要,需要j柳几种基于不同物理感测现象的不同的检测器。 这些检测器的每一种都有自身的弱点或"盲点",如用于检测导热系数接近背 景或载气的分析物的导热系数检测器、用于检测在氢火焰中不产生离子的火焰离子化检测器、或者用于检测与聚合物膜自身相比介电常数或其他性质接近于 载气的分析物的电容聚合物检测器。当聚合物检测器膜暴露于分析物时,它们的气相浓度会在膜中^一个平 衡浓度,其可通过相同的平衡或分配系数K来定量,如同对保留时间的预测一样。其他人已经将恶臭物质或分析物的分配系数与分析物的蒸气压关m来,并显示这种聚合膜对于几种分析物的低ppm灵i^可ilil电^i!j量获得。可基 于测量或计算得到的K值预测这样的灵敏度。可以假定,当焦点唯一地落在由 K确定的平衡现象上时,无论是否与膜的膨胀有关,膜可薄到足以使传递和扩 t^女应忽略不计。可以获得几种鄉的聚合物的K值数据源,其与SAW (表 面声波)检测器性能的特性描述相关联。为了计算电Wi专感器的响应,可以设想一对叉指型电极,沉积在绝缘的和 低介电常数的基底上,其上可能沉积有传感膜。为了获得预定的毫秒级响应时 间,可以4顿亚毫米级的膜厚度,就像高速气相色谱所4顿的一样。检测器信 号即在那些膜主体加载气或吸附的和溶剂化的分析物之间合成物介电常数的变 化的基础上被测量和计算。需要一种方法来估算那些只有沸点Tb和元素组成已知的分析物的液体介 电常数e (也就是分析物或固定膜的极性)、分配系数K、保留因子k'和保留 时间V沸点Tb为近似的预测分析物的k邻K提供了主要基础,其中,它们 的元素组成使得能够粗略地估计它们的极性、(低频)电容率或介电常数e , 其依次可将K值估计的不确定性与仅仅依靠Tb估计相比减少了 24倍。这种 建模的努力可以提供对K和假设Tb相等而e增大的分析物之间的关系预料不 到的了解,这显示当它们的极性增加舰了 K取得最大值的那点时,K值和保 留时间减小。f顿推导的K和k'值以及它们估算出来的膜吸附烚,可以模拟和1J1化 ,的分离柱温度坡度的好处,其要么通过扩展实验等温GC分离的结果,要 么通过从起点生成这样的色谱图。这使得可以设计如何满足和超越额定峰容量 和给定范围的分析物的分离时间。为了预测和满足额定MDLs (最小检出限)并从而预测给定分析物的PC 增益,多级PC的第一原理模型4OT来自于PHASED芯片的实验 进行验证。 该模型使得可以定量地预测^f柳一级PC作为其级数、浸渍和排放纟鹏(《300°C )以及相关的分析物的吸附/溶解烚的函数以获得预浓缩增益的性能和限度,所述焓典型地落在6到15kcal/摩尔或20到70kJ/摩尔的范围内。实验数据能被转化为可获得的PHASED芯片的计算的分离性能,该芯片 具有长度至多为25cm的分离通道、在1秒分析时间内取得〉20的峰容量,特别是如果包括了鹏坡度时。K值禾口 e值可以用来评估聚合物气体传li^作为GC检测器盼性能。这和 确定固定相的e对于K的影响、以及在暴露于水蒸气之后和在IOT光致抗蚀剂 形成图案之后固定相膜对于时间的稳定性,可能被用来评估用于微量分析测量 的固定相膜。存在高级膜材料的应用,如不同风格的高比表面积、纳米孔有机硅Wi膜 (旋涂玻璃(SOG)),其可被涂布至贩片上或毛细管中。存在分析物在MEMS GC固定相上吸附的W建模。未来的微电机系统 (MEMS)、纳米电机(NEMS)和微光学机电系统(MOEMS)需要对界面效 应有一个清楚的理解,以预测它们的性能并可靠地生产这些装置。分子建模会 成为M在实施时建立原子力学模型来模拟和理解临界工作界面的工具。^T建模可以用来M用在MEMS装置中的材料,作为例子应用,其改 进了气相色谱中固定相材料的相对性能。这种比较可以基于推导出的分析物和固定相之间的界面烚并且iiii利用分子动力学来使用表面分离模拟。分离性能与实验GC M进行比较,结果显示来自于分子级别的分离的定性比较是存在 的,并证实舒建模可以成为予I^用于特定活性的固定相的有用工具。MEMS分析器可以是小型化的气相色谱(GC),其最终目的是在3秒钟 内、灵敏度小于lppb且总封装尺寸小于200cm3的预自、分离和检测。分析物的有效捕获和分离可以利用一列可加热的吸附一解吸微元件(其导致了名称 "PHASED",即用来强化检测的分段加热阵列结构)。预'MI、分离、检测以 及流量和^Jt传感功能被结合到一个芯片中。本 分析器被设计用于如工业 化学过程控制、环,测、安全和医疗诊断的应用。MEMS分析器(即PHASED 系统)的略图显示于图5中。通道32中固定相吸附(Ads)层40的截面图绘 于图6中。基本的分析器功能所需的重要的材料是用在预^i器、分离器甚至一些类型的如CID (化学阻抗检测器)的检测器中的固定相膜。对于这一固定相来说,可能的结构失效模式包括分层和膜裂,但是需要理解以获得预定性能的关键操 作参数为分析物吸附热力学、包含率、膜容量、化学动力学和分析物渗透性。 预浓缩和GC分离性能是这些的自然结果。因为对每个单独的分析物的吸附/解吸烚进行定量的理解,对于设计和预 测分析器性能来说很重要,所以肝建模被用来模拟吸附/分离表面对于预想的分析物在干燥和潮湿的条件下的热力学响应,以预测MEMS分析器的最终响应。气相色谱中固定相功能的概念可以被戈雷方程~~方程式1所代表,式中11=理论塔板高度;D^分析物在流动相中的扩散系数;F平均流动相M; k'—呆留因子;F柱的半径;Df分析物在固定相中的扩散系数;以及4=固定相的厚度。<formula>formula see original document page 27</formula> (1)可以确定固定相和GC柱效率的理论塔板通常由被理论塔板分开的柱的长度来定义,其中柱中理论塔板的总数由保留距离和峰宽通过n4X(保留距离/ 峰宽y来定义。因为理论塔板高度描述了区分不同的GC峰的平均柱长,为了 减少柱的尺寸,理论塔板高度应当最小化。这个方面对于MEMSGC,来说 很重要,该装置具有最高效率的固定相以适应在芯片尺寸上设计的实现。在戈雷方程中,最受固定相影响的项是k'(其为保留容积与流动相^积之 比,可从色谱图的保留时间测得),因为这个比率涉及到平衡常数K, k'=KP, 其中,P是两相(固忠流动相)的容积比。平衡常数或分配函数K可以代表 分析物在固效流动相中的浓度比。K和k'可以31ii分子建模确定。如果除了 k'之外,还关注包含固定相的其他项,可以考虑固定相的厚度 (df)和固定相中的溶质扩散系数(Ds)。减小固定相厚度可以通过减小理论塔 板高度来iSS分离,但是这会有助于理解固定相是如何起作用的,因为看起来 在厚度极限处理论塔板的M是因为面效应而不是体效应。<formula>formula see original document page 27</formula> (2)其中,d是移动的基本距离;在固体中,它可以是晶格距离,并且kT/h 可以具有频率的量纲。当用于固定相和戈雷方程时,该关系式显示,为了最小化H,需要更大的基本距离。因为更大的基本距离意味着更低的密度(或更大 的路径d),这种解释暗示了极低密度的材料會巨ffl31更高的路径曲折因子增大d, 并il31戈雷方程的扩散系数部分帮助保持低H值。因此,在戈雷方程中,存在材料的吸附能力与分析物应当经历的路^t间的相互作用。M建模可以检验 吸附能力。那会导致戈雷方程的热力学项以及致力于表面性质的表面动力学的 性质。更大模型的检验也开始致力于路径长度的性质,但是由于这些类型的模 型的尺寸通常太大以至于不能被考虑,因而看起来不会包括分析物分子的 " 路径。分子模型对于这一建模共同体的一个显然的扩展是离散元素模型的使 用,其从M规模被参数化。为了对用于活性吸附表面的最好的材料进行评价、证明和分等,需要寻找 一种预测吸附烚和作为k'的初始表达的自由能的方法。为了寻找M力学和动 力学模型的结果,可以使用Acceliys的软件Discover,利用CVFF (相容化合 价力场)力场。为了研究戈雷方程的热力学部分,需要首先计算蒸发/浓縮焓,然后与相 应的文献值进行比较以验证模型。对于基准蒸发能量,目标物质由随机生成的 分析物单元组成,每个单元包括50个分析物分子。分离种类的差分可以用作 蒸发能量。可以1OTRT进4亍、,调节以估计烚值。这些项显示于图29中(其 中,DMME^二甲基甲基膦酸酯,DEEI^二乙基乙基膦酸酯),并与相应的文 献值进行比较,还与l顿GC娜测得的蒸发能量进行比较。来自模型的结果 显示,焓的计算值与相应的文献值相比始终较低,但是趋势趋向于一致,这指 出了可能有用的比较。为了产生吸附烚,目标表面物质可使用无定形物质生成,而特定的分析物 被能量最小化到该表面。分离种类的差分可以用作吸附能量。可以进行RT调 节以估计吸附烚(AH)作为k'的近似值。模型可对应多种分析物以及干燥和 潮湿两种^f牛产生。需要寻找优选的膜材料,其吸附烚0U7乂蒸气存在的最低 影响,并且显示所关注的分析物尽可能多的不同烚值。记载的固定相的一个实 施例显示于图30中,其显示了如DMMP (二甲基甲基膦酸酯)的高极性分析物是如何对固定相的水合条f牛具有高度敏感性的。因为GC分离通常遵循沸点(BP)的趋势,所以需要注意吸附自由能和沸点。为了这一目的,可以通过包含特鲁顿规则(在BP处S=H/RT)的熵效 应来估算吸附的自由能,从而更接近地估算平衡常数K(由此更接&t也估算k')。 需要考虑的是,由于自由能与K之间更好的理论联系,对烚的小幅修正以及能 量的i^势通常保持相同。自由能随沸点变化的趋势显示于图31-33中。图31和32显示了模型化的 趋势,其中模型化的分析物为二甲基甲基膦酸酯、二乙基乙基膦酸酯、二乙基 甲基膦酸酯、己烷和癸烷。图33显示:HOT测量烚值的趋势,i^^势显示了 沸点随观幌的吸附焓的线r維势。图31和32的比较显示,7JC合也会破坏预期 的吸附焓随BP变化的趋势。图12显示了蒸发建模与相应的文献值和从GC分析生成的实验值相比较 的基准。图13显示了在不同极性的固定相上,高度非极性对高度极性分析物 的焓的比较。图34中显示了特定结构效应的一个方面,其中硅,模型为甲硅烷醇("有 机硅麟OH")的含量做了调整,并舰吸附的自由能进行了比较。当甲硅烷 醇内含物偶合到水合表面上时,对DMMP的吸附出现显著的损失。但通常来 说,7乂合与甲硅烷醇内含物的趋势显得不一致,这显示出,为了保持可预测的 性能,硅,条件异常重要。图14显示了对于固定相的未7k合状态,吸附能量的沸点趋势。图15显示 了对于不同固定相的水合状态,吸附能量的沸点趋势。图16显示了在一个沸 点下的实验吸附烚的趋势。图17显示了在一基于有机硅酸盐的固定相中,吸 附烚随SiOH含量的变化。在被评价的固定相膜材料中,有机-硅酸盐、环氧-酚醛清漆、PDMS、用 石墨/碳纳米管(其对于发展中的新GC固定相是重要的)表示的碳表面和聚亚 芳基(衍生自低k值电介质),以及最后的四氟乙烯。所有材料显示了AH (和 AG)对于水的存在的不同的依赖程度。通常,那些具剤氐极性内含物的材料, 像石墨或聚亚芳基,显示出更低的水肝扰性。然而,那些高度i^7jC性的表面, 像石墨或聚亚芳基,显示出当7K合时具有更高的DMMP吸附,这意味着当吸 附极性分析物时固定相表面的极性属性的重要性。 一个重要的表面是四氟乙烯,其包括高的单键偶极矩(C-F),并具有非常低的水干扰性。这意味着可能 需要有一些极性体包含在固定相中,但要具有低氢键键合能力,以降低水分的 干扰。对穿过固定相表面扩散的分析物的动态模型进行分析。完成这些模型,以 确定分离和相关的保留时间是否可以通过使用^T建模被定性地确定。为了使 用固定相的表面来模拟分离,分析物首先在一单元体积中被随机定向,并且相 关的方向可最小化。这代表了初始的分析物混合物。然后分析物混合物被引入 到模拟表面的一端,其质量被表面最小化。分析物获得一个初始的强制势能以开始沿表面运动,根据混合物,模拟继续进行5ps。模拟被重复至少两次以确 保洗腳顿序,并且所有的位置都被取平均值以用于最后的比较。尽管需要从多 次模拟中确定更多的统计数据,但可以关注平均结果。从这些轨线可以看出,由于发现的分析物的分离,在这些模拟中可以获得效果表面^i:作用。图35-36分别显示了在毛细管沉积(DB-5)和芯片沉积(碳纳米管)固定 相上的实验GC结果。图35-36显示了j柳硅酮固定相的实-勉谱图以比较在 模拟中发现的相对洗脱顺序。从结果中,己烷应该最先洗脱出来,而十二烷应 该最后洗脱出来。看起来碳纳米管表面m^隹进fi^冼脱。图3742显示了动态模拟结果。剩列来说,图37显示了被模拟的三禾中固 定相,石墨、PDMS和有机硅離预期的相对平均洗胸顿序。会发现,石墨表 面最有保持力,具有最低的分析物行程。这可以得到使用碳纳米管的实验的支 持,并且当将硅酮固定相的实验GC结果同碳纳米管进行比较时(图35-36), ^f寺别明显。有机硅酸盐和PDMS被发现在性能上相似。图38中指出,三种 固定相可以根据其相对挥发度(沸点)对分子进行粗分离。这也魏过相对吸 附能量的分析所希望的。图35显示了一个八种化合物的混合物的实验GC分析,其显示了在硅酮 固定相上,100cm/100um的毛细管、400nm厚-DB5、 IO(TC的条件下的相对 保留顺序。这个信息来自于华盛顿大学的Rob Synovec。图36显示了该八种化 合物的混合物在^f柳碳纳米管(CNT)固定相GC芯片上的实验GC分离,125 °C、 50cm长的毛细管和H2/30psi。这个信息来自于华盛顿大学的Rob Synovec。 图37显示了在三种不同的固定相上的平均保留时间的结果,其显示了石墨表 面的高相对保留能力。图38显示了在不同的固定相上保留m分析物的沸点。如同在模拟轨线结果(图3941)中所认识到的,分子模型需要在一个足够小的规模上运行以揭示实际的分离动力学。图39显示了 PDMS上的分离模 拟。在分离后,己烷被最先洗脱出来(在图39中下图的最右边)。DEEP膦酸 酯和十二烷是最慢被洗脱出来的。图40显示了同样的混合物在有机硅酸盐上 的洗脱。通常,混合物的洗脱与PDMS类似。然而,图41显示了在石墨表面 (以模拟碳纳米管表面)上的洗脱模拟。看起来这一混合物沿着石墨表面的运 动非常少;然而,清楚地看出,十二烷落在后面且洗脱非常慢。当寻找分析物 的洗S鄉巨离时,会在模拟过程的移动物质中发生一些分离和复位。这似乎意味 着给定一个足够长的路径,分析物分离就必然会发生。在PDMS上的洗腳顷序(来自图39 )与在DB5发现Jl的实验洗胸顿序(来 自图35)进行比较,所述DB5可能是轻麟醚化的PDMS硅酮并且接近PDMS 结构。这种比较在图42中,其显示了模拟和实验的相对洗脱顺序几乎相同, 只是DMMP和DEMP柳顷序不同。通常,这足以显示分子模型可以给出近似 的保留顺序;但是正如ffl31在三个实施例(图3941)中心所发现的分析物的 中心物质所认识到的,应当实现更好的分离以合理期望一个对实际分离的好的 预测。由于模型被按比例放大到更大的表面、更高的路径长度和更慢的模拟速 度以更好地反映表面与分析物的交互作用和速度上更高的真实性,因而模拟中 实际的顺序被希望得到改进。这些模型显示在分子水平上,分离从基本7jC平开始。因此保留值开始于来 自吸附的M力,并且继续与表面的动态^S作用。通常,4OT不同的混合物, 分离的量和保留值的范围取决于混合物的内含物。图39显示了在PDMS上己烷、壬烷、癸烷、十二烷、DMMP、 DEMP和 DEEP混合物的分离动态模拟之前(顶部)和之后(底部)的快照,其显示了 分离过程。图40显示了与图36相同的混合物之前(顶部)和之后(底部)的 快照,4柳有机硅麟固定相层。图41显示了与图36相同的混合物之前(顶 部)和之后(底部)的快照,使用石墨固定相层。图42显示了实验的洗脱顿 序(图35)与好模型l,(图39)的对照。这些模拟的另一方面是,在用于预测相对洗脱顺序之外,模拟还指出哪种 固定相更倾向于残留在开端处,以及在没有被烘焙出去的情况下,哪种会淤塞 柱。这是一个需要通过不同的PHASED测试进行观察的现象,并需要在下一次测试之前ffiil—次烘焙/清洁循环进行校正。对于有机硅,来说,DEEP或 DMMP被发现是可能作为残留物留下来的材料,但是这取决于最初的分析物 混合物。对于PDMS来说,DMMP被发现埋藏在一分子凹陷中。这些关于柱 淤塞的^/于是分子模拟有用性的另外一个好处。图39-41中,残留物很明显, 但是图43显示了在不同的有机硅酸盐上的残留物的实例,其中膦酸酯(实心 匆变)被发现稳定地存在于有机硅酸盐表面的凹陷中。图43显示了在模拟的 开端处由于表面额外的稳定性而留下的材料的实例,作为可能的残留物的证 据,为DEEP (左)和DMMP (右)。固定相为有机硅酸盐。为了探究水合与SiOH含量对于含硅的固定相的影响,比较了 DMMP、 十二烷和己烷在有机硅酸盐固定相上的分离。结果反映在图4445中,其显示 了将DMMP从烷烃中分离出来的质量受到水和SiOH的影响,正如在这里记 载的吸附数据(图30-31)所预期的一样,但对于从单独的热力学计算所预期 的扩展来说并不是必然的。当对模拟进行比较时,两种效果比较明显。有大量的DMMP残留物留在 起点处(最左边的实线圈),而己烷被首先洗脱出来(最右边的点划线圈)。当 将原始的硅鹏结构(顶部)与水合的(中部)及外加甲硅烷醇的情况(底部) 进行比较时,分析物上最大的影响是对于DMMP的,当表面被水合时,会发 生更大的DMMP的全面移动(图45中部)。这种情况下, 一半DMMP移动到 十二烷之前,而在其他两种情况下,大部分DMMP是落在十二烷之后的。有 趣的是,与吸附热力学趋势(图31)相比,动态趋势与沸点期望值(己烷B^342; DMMPBP=454K,十二烷BIM89)更为一致,其中,当将己烷能S1势与图 45的动态趋势进行比较时,己烷被希望洗脱出来并且特别值得关注。图44显示了开始时的构形,其揭示了 OH对使用*分析物的四个^^ 分离己烷和十二烷混合物的硅酸盐固定相的影响。该图的上面部分显示了具有 最小SK3H含量的硅酸盐。中间部分显示的与上面部分相同,但具有7jC合表面。 下面部分显示的与上面部分相同,但具有增加了 SiOH的表面含量。图45显示了结束时的构形,其揭示了 OH对分离DMMP、己烷和十二烷 混合物的硅酸盐固定相的影响,用实线圈指示DMMP的位置,虚线圈指示十 二烷的位置,点划线斷旨示癸烷的位置。图45的上面部分显示了具有最小SiOH 含量的硅酸盐;中间部分显示的与上面部分相同,但具有水合表面;下面部分显示的与上面部分相同,是具有增加了SKDH的表面含量。对于模拟趋势来说,实质上在所有的情况下,己烷都是被预期最先洗脱出来的(所有己烷都在流动前端的最右边);然而,热力学能量暗示己烷的优先 是根据水合状态和甲硅烷醇含量而变化的。在实验的情形中,已知己烷也是比 用于模拟的其他分析物提前很多被洗脱出来的。动态模拟还提出, ^、于斜牛, DMMP在峰宽且分散的情况下洗脱,而不是像不那么分散且更加集中的己烷 分组所提出的那样是紧凑的峰。这些分组的质量证明了分子动力学在理解峰分 离和分离度方面潜在的用处。与之相比,热力学趋向单独地即可辨别分离的质 量,而不用通过实验观察的转换,如戈雷方程。对于实质上纯粹的模拟,最有 用的是预测分离中实验的区别,而无需强加额外的数学构造。如果考虑至恸态模拟试图接近更多的分析物流和分散分离的动力学劍牛, 而不是热力学能量所反映的静态平衡条件,应预见到两种不同的分子建模分析 的区别。因为应当考虑动态条件以对分离进行精确计量,所以可以预期动态模 拟会产生比简单的热力学更好的交互作用的快照。此外,因为使用先前的动力 学,可以预期模拟的分离可预测性会随着规模的增大和朝向更逼真的模拟方向 的模拟的动力学速度的降低而增大。然而,动力学中存在有足够接近的趋势, 以帮助理解固定相的公式化。M建模研究证实了应模拟与工作的MEMS-GC相关的表面问题。分子 模型显示了焓和自由能趋势是如何作为固定相性能之间区别的信号的。另外, 固定相上相对保留时间的动态模型显示了分子是如何与比表面之间相互作用而 使分离发生的。给定适当的比例,可以从分离的统计 推导出峰的离散度。对固定相-分析物交互作用的热力学和动力学进行探究,使用简单的分子 建模技术以理解对GC性能的基本的肝影响。将最佳的表面功能化与基底固 定相进行匹配的问题,通过分子建模以提供錢表面活性的信息来解决。例如, M材料关注点的描述所认识到的,水合和极性问题对于固定相的设计应当是 重要的。似乎某些材料会,lj更大的影响。另外,因为分子模型并不限于那些 可以商购的基础材料,所以可用来进行研究的不仅是已存在的材料,还可以是 没有限制的新材料。这里描述的建模〗樣的是用于筛网材料以获取吸附趋势的方法,不仅可用 于GC-MEMS装置,还可用于其4鹏用中对表面性质的鉴定。例如,IC生产中污染物迁移的问题是主要的关注点,特别是当表面依赖过程如ALD变得流行起来。并且,正如对于多功能和多材料^g所设想的,许多材料设计问题是4顿^ 建模来提出的。例如,对于MEMS-GC可以提出的其^k^来的材料问 题是层的粘性和封装的可靠性。出于解释的目的,在这里描述了可以禾IJ用那些材料的MGA或GC的实例。 一台流体成分传感器、分析器或色谱仪具有浓縮器、分离器、不同的检测器和 泵。浓缩器具有一列分段加热器,其在流体流通道中相对于彼此在不同的时间 打开。它可能涉及至U—分段加热器阵列结构,特别地涉及到作为传感器、分析 器或色谱仪的结构应用用于流体组分的鉴定和定量。具有这样的加热器构造的 装置被认为是或被称为"PHASED"装置。术语"PHASED"也可以被认为是 "用来强化检测的分段加热器阵列结构(Phased Heater Array Structure for Enhanced Detection)"的首字母縮写。术语"流体"是一个一般性的术语,包 括了各种,的气体和液体。本M流体分析器模块结构相对于其他结构的优她括,在、M变化的环 境下自动操作而不是手动对变4kS行补偿的能力(也就^t每个单独的检测器 变化的灵敏度进行补偿的能力),以及不需要移动部分并导致吸入侧没有可测 量的波纹(《1%)而进行操作的育巨力。该體可能为传感器系敏mM分析器,由一列选择性的、灵敏的、快速 的和低功率的分段加热器元件连同紧凑的、快速的、低功率的、环境压力的、 最小泵送质量的光谱分析装置组成,以获得流体组分的存在、鉴定和定量。该 装置非常小巧、能量高效并且可携带,包括其自己的电源。该M流体分析器具有一个或以上的浓缩器和两个或以上的分离器。该分 析器具有一个、两个或多个泵。该分析器具有一个有多个通道的预浓缩器。沿 着分析器的流体路径安置有多个检测器。此外,流体路径中安置有一个或以上 的孔口和微型阀。该浓缩器具有一列分段加热器元件,其提供了热脉冲以产生 解吸的分析物的浓度脉冲,该浓度脉冲沿着流体路径移动以提供增大的分析物浓度。该分析器可构造为多流体或气体色谱仪。M流体分析器可以组合分段加热器阵列、浓縮器、分离器和不同的入口。该微型流体分析器可以成为最大排放目标为几个十亿分率(ppb)的臭氧检测的低成本解决方案。该分析器t,检测主体或基体样本气体中的痕量化合物的混合物,或者主,体中的痕量化合物的混合物。该流体分析器包括与关联的微控制器或处理器的连接。传感器的应用包括对航空器空间内空气污染物的检测和分析,污染物除了传统的CO" H20禾口CO之外,还例如醛、丁酸、甲苯、己烷以及类似物。其他感测包括感测受条件限制的室内空间内的气体如C02、 H^、醛、碳氢化合物和醇的7K平,以及感测室外空间和工业如化学、精炼、产品纯化、食品、造纸、金属、玻璃、医学和 制药工业的过程流。而且,感测在环境保证和保护中具有重要的地位。感测通 过在化学物质浓度升髙并变得有害之前进行早期检测,为设施的内部和外部提 供防御性安全。该传 具有高灵,。该传^^供亚ppm级或亚ppb级的检测,这 比相关现有技术好100到10,000倍以上,例如,传统的气相色谱仅提供1到 10ppm范围的灵敏度。该传繊是除了别的以外,更低功率、更决、更加紧凑、 更加灵敏和普及型的气相色谱。它结构完整,并且在对压力流体样品在一个非 常大的压差范围内进行检测和分析的应用中泄漏风险低或没有风险。该传麟的泵被设置为将样品气体通舰滤器吸入,这样的方式同时提供 了快速的样品采集和通过该分段加热器传感器的可调流动。当泵通过该传感器 吸入样品气体时,气体会膨胀并因此增大了体积和线速度。控制电路被设计以 补偿这一被上的变化,以保持加热器"波动"与传繊中变化的气体速度同 步。为了弥补当样品气体被强制通过加热器通道时其体积的变化,它的电子设 备需要调整流动控制和/或加热器"波动"速度,以保持内部的气流速度与电 动加热器"波动"同步。该传感器具有灵敏度、速度、可携带性和低功率,这使得该传 特别适 用于出于安全考虑的、沿着传M分配管路系统针对天然气或丙烷气体的以及 在化学加工厂中针对其他气体的周期性泄漏检査。在泄漏感测应用中,该传自使用一些或全部样品气体组分(和它们的峰的比例)作为校准标记(洗脱时间表明了气体组分的性质)禾n/或泄漏源标识。如果仅存在一种峰,例如甲烷(皿山地空气中的含量约为1至lj2ppm),还不 足以指示那种组分的源头是来自于沼气、天然气或管道气或者其他流体。该传SH可作为可携带式装置使用或安装于固定地点。与可比较的相关技 术的传感器相比,它比可携带式火焰离子化检测器更紧凑,不需要庞大的储氢箱,它比热丝或金属氧化物可燃气体传SI速度更快也更灵敏,比传统的和/或 可携带式气相色谱速度更快、更紧凑和更加节能。图5揭示了 气体装置(MGA) 15的一个解释性实例的某些细节。其 规格和结构的细节是解释性的,但与类似的MGA's不同。MGA的不同结构被 实施以实现对本发明进4,军释的目的。样品流25从管道或管19进入入口 34。 颗粒过滤器43用来/ASA装置15的流fl^克25中除去灰尘和其^^粒。这种 除去是为了保护装置,过滤不会斷氏装置精确分析流体25组成的能力。脏流 体(带有悬浮固体或液体非挥发性颗粒)会损害正常的传感器功能。流体25 的一部分45流经一微分热导检测器(TCD)、或化学检测器(CRD)、或可测 量光离子化电流的光离子化传^检测器(PID)或其他装置127的第一支腿, 而流体25的一部分47流经管49到达泵51 。通过方 —个与入口 45直接相连 的"T"型管,可以实现取样的最小延时,因为相对更高的流47有助于縮短过 滤器的净化时间。泵51使流体47从颗粒过滤器43的出口流经管49并从泵51 离开。泵53使流体流45ffi31管57流经传感器。对于图46中的系统15,可以 有另外的或更少的泵以及不同的管或 设备排列或构型。来自检测器127和 128的娄娥被送至啦制器130,该控制器依次将数据传递给鹏制器和/或处理 器29以进行处理。结果信息被送到位置31。图46为传感器装置15的一部分的简图,代表图5中浓縮器124或分离器 126的一部分。传SI體包括基底12和控制器130。控制器130可以合并或 不合并到基底12。基底12上安置有多个薄膜加热元件20、 22、 24和26。虽 然只示出四个加热器元件,但是可以提谢壬何数量的加热器元件,例如2至U100 之间,但是典型地在20-100范围内。加热器元件20、 22、 24和26可以用任何 合适的电导体、稳定金属或合金膜,如银铁合金~~通常指的是具有组成为8% 的镍和20%铁的坡莫合金;铀、硅化铂和多晶緣制造。加热器元件20、 22、 24和26被提供到一薄的、低热集中、低平面热传导的支持件30上,如图47 所示。支持件或膜30由Si凡或其^S当的或类似的材料制成。加热器元件由 Pt或其fe3g当的或类似的材料制成。基底12具有明确定义的单M分段加热器机构41,其具有一用于接收样 品流体流45的Mit32,如图47所示。该通道ffl5i^择性地蚀刻位于支J射牛30 下面的硅通道胶片基底12而制成。该M包括入口 34和排气口 36。传ii^體在通道31内还包括多个妊元件,因此,它们暴露于流动的 样品流45。每个妊元件邻近,也就是说尽可能最ifii也接角树应的加热器元件 设置。例如,在图47中,^S元件40、 42、 44和46被提供到支持件30在通 道32中的下表面上,并分另卿近加热器元件20、 22、 24和26。还可能有其它 的具有另外的交互膜元件的通道,其在本解释性实例中未示出。交互元件可以 从任何数量的通常用于液相或气相色谱的膜形成,例如是硅胶、聚甲基硅鄉、 聚二甲基硅氧烷、聚乙二醇、多孔二氧化硅、Nanoglass,活性炭、和其他聚 合物质。进一步地,上述^S物质可以被合适的掺杂物改性以获得不同程度的 极性和/或疏冰性,从而获得目标分析物的最佳吸附和/或分离。
图6显示了单通道分段加热器机构41的截面端视图。单鹏分段加热器 机构41的端视图合并了支持件30和基底12以及它们之间的项。图6显示了 具有暴露的1微米膜的分段加热器机构。还显示了开放空间392。支持件30被 附加在顶部结构65上。锚67将支持件30保持在相对于M 32的位置。更少 的锚67尖端^/人支剤牛30至i腐构41其他部分的热传导损失最小化。存在具 有少量锚尖端的加热器膜,用于来自加热器元件的小的热传导。
为了ax的被检观忾体更小的能量耗散和更有效率的加热,分段加热器阵
列的加热器元件在双面都涂布有吸附剂材料,即在顶部侧和底部侧进行涂布。 加热器元件具有小的宽度以降低能量耗散。
^S膜元件M使携带有预定吸附剂材料的材料流经过加热器机构41的 通道32而形成。这提供了贯穿整个通道的交互层。如果需要分离^S元件40、 42、 44、 46,涂层被旋涂到附加在底部胶片12上的基底30上面,然后,要么 通过标准的光刻掩蔽和图案形成方法,要么通过使用加热器元件20、 22、 24 和26向该图层提供^S变化,来选择性地"生长"。
加热器阵列内部M的表面,除去那些通过有意设计用吸附剂材料涂布的 表面,被涂布有非吸附性的绝热层。吸附^^层或膜的厚度可被减小,从而减 少吸附和解吸所需的时间。如图6,非吸附性的、绝热材料的涂层69可被应用 于单通道加热器41中的通道32的内壁上,除了设计的被吸附剂涂布的表面, 例如妊元件。该材料应当具有大体上比用于通道壁上的材料低的热传导。后 者可以是硅。涂层69的替换材料包括S化或其它金属氧化物。涂层69可以减 小用于支持件30中的加热器元件的功率。加热器元件膜和吸附器膜尺寸(宽度、长度和厚度)的最小化或减小,同时保持合理的移动相個定相容积比,可 以产生显著的功率降低。最小化的或减小的吸附器膜厚度可以减少吸附-解吸所 需的时间,并对于给定的分析器结构可以节约每次流体分析所需的能量。
加热器元件20、 22、 24和26在顶部侧和底部侧都进行了 GC膜涂布,因 而加热器元件表面的宽度和功率损耗得到了改进。这些加热器元件的制造包括 两个涂布步骤,在保护第二胶片内部的第一图层和溶解第一胶片之后,第二步 骤需要胶片对胶片的粘合与涂布。
该 气体分析器具有加热器元件40、 42、……、44、 46, M重复的、 顺序的旋涂(或其他沉积方法)步骤制造,因而预排列的浓縮器和分离器元件 的样式被不同的吸附器材料A、 B、 C、……(在GC文献中被认为是固定相) 涂布,因此不仅可以选择浓縮器/分离器元件的比例,还有哪一个用A、 B、 C 来涂布,进而被选择(和在什么解吸温度)用于浓縮过程并电子进样到分离器 中,其中,为使用A的元件选择的元件纟鹏坡度率不同于B、 C元件;进一步 地,在从"A"元件的组分离出气体之后,增加了对于这一系统的通用性;另 一组气体从"B"元件的组中分离出来,等等。浓縮器与分离器加热元件的比 例由连接到控制器130的比例控制机构490设定或改变。
控制器130电连接到加热器元件20、 22、 24、 26的每一个以及检测器50, 如图46所示。控制器130在一时间相位序列中激发加热器元件20、 22、 24和 26 (参见图48下部),因此每一个对应的^S元件40、 42、 44和46变热并将 选择的组^M吸到上流的样品流体45中,当由一个或多个的上流交互元件产 生的上流浓度脉冲,腿交互元件时。可4顿任何数量的妊元件以获得浓度脉 冲中组仏体所需的浓度。结果浓度脉冲被提供到检测器50、 128以进行检测 和分析。检测器50、 127或128 (图5和46)为热导检测器、放电离子化检测 器、CRD、 PID、 MDD、或任何其它类型的典型地用于气相或液相色谱的检测 器。
图48显示了解释性的相对加热器鹏图,还有在每个加热器元件上产生 的相应的浓度脉冲。如上面所指出的,控制器130在一时间相,列中使用电 压信号71激发加热器元件20、 22、 24和26。用于加 元件20、 22、 24和 26的解释性的时间相位加热器相对温度分别:M:温度轮廓图或线60、 62、 64 禾口 66来显示。在显示的实例中,控制器130 (图46)首先激发第一加热器元件20以提 高欺^,如图48的线60所示。由于第一加热器元件20与第一^S元件40 (图47)热偶合在一起,第一^S元件解吸选择的组,入流动的样品流体45 中,以在检测器128或50处产生第一浓度脉冲70 (图48),如果没有其他加 热器元件要被脉冲激发的话。流动的样品流体45携带着第一浓度脉冲70向下 游到第二加热器元件22 ,如箭头72所示。
控制器130接下来縱第二加热器元件22以提高^^鹏,如线62所示, 在元件20的能4E冲停止时或之前开始。由于第二加热器元件22与第二^S 元件42热偶合在一起,第二^5元件解nm择的组分也i4A流动的样品流体45 中,以产生第二浓度脉冲。控制器130、纖第二加热器元件22,使得第二浓度 脉冲大体上与第一浓度脉冲70重叠,以产生更高的浓度脉冲74,如图48所示。 流动的样品流体45携带着更大的浓度脉冲74向下游至嗨三加热器元件24,如 箭头76所示。
控制器130然后激发第三加热器元件24以提高其纟显度,如图48的线64 所示。由于第三加热器元件24与第三^5元件44热偶合在一起,第三交互元 件44解卩鹏择的组^SA流动的样品流体中,以产生第三浓度脉冲。控制器130 激发第三加热器元件24,使得第三浓度脉冲大体上与由第一和第二加热器元件 所提供的更大的浓度脉冲74重叠,以产生还要更大的浓度脉冲78。流动的样 品流体45携带着该更大的浓度脉冲78向下游到"第N"加热器元件26,如 箭头80所示。
控制器130然后激发"第N"加热器元件26以提高欺驢,如线66所示。 由于"第N"加热器元件26与"第N" ^H元件46热偶合在一起,"第N" ^S元件46解吸选择的组^A流动的样品流体45中,以产生"第N"浓度 脉冲。控制器130 、TO "第N"加热器元件26,使得"第N"浓度脉冲大体 上与由之前的N-l个交互元件所提供的更大的浓度脉冲78重叠。流动的样品 流体携带着"第N"浓度脉冲82去分离器126或检测器50或128,如下所述。
如上面所指出的,加热器元件20、 22、 24和26具有共同的长度。因此, 控制器130可以通过向每个加热器元fm供相等的电压、电流或功率脉冲来获 得加热器元件均等的温度。电压、电流或功率脉冲可以具有任何预定的形状, 包括三角形、方形、钟形或任何其它形状。近似为方形的电流、功率或电压脉冲71被用来获得图48所示的 U^轮廓图60、 62、 64和66。温度轮廓图看起 来像并且记录了解吸种类的生成相对于电压脉冲有一个小的延时。
为了简化加 元件的控制,每一个后续加热器元件的长度保持不变,以 在加热器元件之间产生相同的总加热器电阻,从而允许4顿相等的电压、电流 或功率脉冲以产生相似的温度轮廓图。可选地,加热器元件具有不同的长度, 且控制器向加热器元#^{共不同的电压、电流或功率脉冲振幅,以产生相似的 驗分布图。
图4943包括苯醚化二氧化硅一NG的吸附能量。苯醚化nanoglass (与甲
基情况相同的化学计量)上能量最小化的模型。情况包括未7jC合、水合、全部 SiO侧和含SiOH侧(OH/Si=l/10)。吸收^ 包括乙烷、己烷、辛烷、癸烷、 十五烷、二氧化碳、水和乙醇。
需要注意的观察是未7jl合表面上的能M势和能量分离看起来更为一致, 因此仍显示出水敏感度。未水合SiOH侧显示了比未水合SiO侧更好的化合物 能量分离。未水合苯醚化表面应当具有比未水合甲基化NG的例子更高的能量 分离。C02与乙醇之间的能量分离比甲基化nonoglass例子的更少。比较SiOH 与SK3恻,SiO侧具有更好的总趋^^与甲割七(标准)NG的例子相一致。 未7jC合案例比水合案例在能量趋势方面更趋一致。在未zK合时,SiOH侧比SiO 恻具有稍好的选择性(能量分离)。CC^与乙醇之间的能量分离比Me-NG案例 的更少。对于未7K合的例子,苯醚化可以提供更好的能量分离。
特定的化合物被标记为SiOH对SiO。不考虑水合状态,SiO侧的趋势更 为一致。然而,由于水合表面,C10出现了反常的行为,其不能与水发生前置 平衡。
图58中的一个异常点可能是由于无预平衡水合。特定化合物标记于图59-61中。图62和63提供了数据总结。未7jC合的例子比水合的例子在肖疆趋势方 面更为一致。纟i0见数据,分离没有显得如此确定,但似乎应归因于7jC合效应。
图64-91涉及到CWA's的吸附育遣。模 源于SiOH侧上的Nanoglass 模型。N肌oglass表面被取代以^饿nanoglass上二全氟丁基甲硅烷基基团的作 用、nanoglass上三氟丙基甲基甲硅烷基基团的作用、nanoglass上二氟丙醇甲基 甲硅烷基基团的作用、以及nanoglass上HON "TA" =二甲基甲硅烷基的作用。
观察指出TA基团不如标准nanoglass,在减小水变异性的影响上。似乎侧链的氟化作用有助于水变异性。在新表面中,三氟丙基甲基基团显示出最小的 水的影响,尽管二全氟丁基基团看起来也非常一致。存在侧链(二氟丙醇基团 似乎不如三氟丙基基团)的疏水性平衡。可以考虑二氧化硅表面的目标处理。 可商购的是三氟丙基甲基环三硅氧烷、三氟丙基甲基二氯甲硅烷、十七氟四氢
癸基甲基二氯甲硅烷、十三氟四氢辛基甲基二氯甲硅烷、Nanoglass,和"TA"。 绘图使用未7jC合对7JC合。相对于图64-66,需要一条斜率=1,与0,0点相交的 直线以显示没有水的影响。TA显示出的趋势最差。相对于图67-71,有对于不 同的吸附器的未7jC合对水合状态的绘图。这里,需要一条斜率=1,与0,0点相 交的直线。需要注意能量对MW。
图92-102涉及到四氟乙烯(TFE)上的CWA。观察可包括这一认为是碳 氟化合物表面的极端情况。在7K合与未水合的情况下,有相似的对CWA的趋 势。预平衡的水盼瞎况具有与未7K合相似的能量范围。非平衡的水的情况仍有 类似的能M势,但是能量范围看起来转移到更大的吸附。然而,大的区别出 现在水合状态之间。在这一方面,碳氟化合物取代的nanoglass仍然看起来更 好一些。
图103-110关于Avetrel和SU8固定相。模型包括两种新的模型化的聚合 物固定相。Avatrel基于聚降冰片烯聚合物。它通常被功能化用于粘接。SU8是 标准的固定相并基于酚醛清漆环氧。对于这些模型,环脂族环氧(二环氧环己
基甲基己二酸酯)的版本用^a行模拟。
一些观察注意到下列项。令人惊讶的是,环脂族Avatrel聚合物的高能量 吸附能力和分析物的低能量分离。4顿环脂族环氧的SU8/Novdac模拟也是令 人惊讶的,在于水干扰性看起来几乎消失,并看起来有望具有好的对材料组的 分离。SU8显示了三个不同的分离区域 < 10kcal/mole小分子; 10-20kcal/mde非极性分子;〉 20极性分子。这些结果与其他结果一起表明, 如果具有高疏水性(GX3P、 CNT/石墨、Avatrel),就会具有高吸附能力的固定 相。如果具有极性内含物,就会发生分离(SU8、 NG-SiOH侦ij、 Teflon)。如果 移除了潜在的氢键键合氢,水干扰性就会变小(NG-SiO侧、GX3P、 CNT/石 墨、Teflon、 Trifluoroprop-NG)。
固定相的需要包括为了高吸附能力量级的高jtzK性、为了低水干扰性的氢
键能力氢的低含量、以及为了分离的极性内含物。总的来说,SU8具有迄今为止性质上的最佳平衡。模型运行于环氧-取代的Avatrd,这会增加用于分离的 足够的极性,并且寻找极性内含物相对于吸附量级的禾又衡。
未7jC合对7K合的能量比较指出,对于CWA在未7K合状态下好的大量级吸 附能量、"非预平衡"与未水合的例子车ttS佳的相符,可制成好的收集相。
酚醛清漆环氧在7jC合状态下具有非常好的保留趋势,这是这种材料最好的 方面。它在其两种不同的7K合状态之间具有很小的差别。
育fet的量级与其他固定相相似。该两种聚合物同样具有高疏7K性和环脂族
内含物。
图111-127涉及到DB1和比较。 一种新的模型固定相与具有CWA系列和 某种戯化合物的DB1 (PDMS)有关。
观察指出,DB1吸附能量范围比NGE差了一点,与处理过的NGE大概 相同。聚降冰片烯似乎仍然具有最好的绝对吸附能量,接着是SU8和石墨。通 常,对于吸附能力:聚降冰片烯〉SU8 石墨 NGE〉DB1 二甲魏代-NGE 四氟乙烯 三氟丙M(代-NGE。
水分和HCN的例夕卜似乎对吸附能量改变不大。比较未水合与水合(假定 水的预平衡)的能量保留值,应注意到DB1、 SU8、四氟乙烯和三氟丙蟇取代 -NGE以及石墨好于聚降冰片烯、NGE和二甲基取代NGE。
更多的疏7K材料仍然具有总体上最好的性能。对于硅S^七合物来说,最疏 水的(例如DB1)是那些具有更小水效应的。敵K性预期的递增)I,是NGE 〈三氟丙M(代NGE〈DB1。然而,没有一个清楚的介电常数的趋势。例如, NGE和SU8应当具有比PDMS (DB1)更高的介电常数,而聚降冰片烯应当 具剤氐介电常数。
下面指出了此处有关的一些术语。 一些可能的固定相丰才料包括DB-1 (100% PDMS)、 DB-5 (含有5%苯基的PDMS)、 F-100 (VINAR7,聚硅氧院与二甲 基硅氧烷和甲硅烷亚芳基单体的共聚物)、NGE (Nanoglass-E ,纳米孔有机 硅離)、0V1 (PDMS)、 OV225 (氰基丙基甲基苯甲基硅氧烷)、OV275 (二 氰基丙烯基硅氧浣)、PCUT (聚碳酸酯氨基甲酸乙酯)、PDMS (聚二甲基硅 氧烷)、PECH (聚表氯醇)、PEVA (含有40%醋酸盐的聚乙烯^0-乙烯醋酸酯)、 RTX-1 (来自Restek,的100% PDMS)、 RTX-200 (含有三氟丙基添加剂的 PDMS)、 RTX-2330 (含有10%苯基-氰基丙基的90%双氰基丙基)、SE-54(DB-5)、 SOG (旋涂玻璃)禾口SXFA (硅氧烷氟乙醇)。
一些关注的首字母縮写的汇总包括CID (化学阻抗^t测器)、DEEP (二乙 基乙基膦酸酯)、DMMP (二甲基甲基膦酸酯)、FID (火焰离子化检测器)、GC
(气相色谱仪(法))、IDHL (对健康和生命的即时危险)、MEMS (微型-电积 -机械结构或系统)、MDD (微型放电检测器)、MDL (最小检出限)、MS (质 谱仪)、PC (预MI)、 PHASED (用来强化检测的分段加热器阵列结构)、SAW
(表面-声波)、TCD (热导检测器)、TLS (总对数灵驗)和TME (总最大 误差)。
一些关注的符号包括H (对于GC分离的理论塔板高度,单位为cm或u m)、 AH (蒸发瓛军吸焓,单位为kJ/mol或kcaJ/mol; l0ge(k,)= AH/RT+AS/R-ln(P))、 k'(容量或保留因子,无量纲)、K (分配或平衡系数,K=k'^)、 L (GC分离柱的长度,单位为cm或m)、 AS(蒸发或解吸熵,单位为kJ/(K.mol) 或kcal/(K.mo1))、 t。(柱中零保留值的洗脱时间,单位为s或ms)、、(具有保 留的洗脱时间,单位为s或ms)、 Tb (沸点^it,单位为K或。C)、 v (速度, 单位为cm/s或m/s)、 w (GC峰在半高的宽度,单位为s或ms)、 P (GC柱 的(气相)/(固定彻容积比)、和e (相对介电常数)。
在本详细描述中, 一些物质会有假设的或先知的性质,尽管是以另一种方 式或时态陈述的。
尽管本发明已经使用至少一个解释性实施例进行描述,但许多变化和修改 对于阅读了本详细说明的本领域技术人员来说是显而易见的。因此本发明的附 加的权利要求考虑到现有技术,应作尽可能宽的解释,包括所有这些变化和修改。
权利要求
1、一种用于向流体分析器提供固定相的方法,包括选择材料;和其中,该材料包括高吸附性;和低吸水性。
2、 权利要求l的方法,其中,该材料进一步包括高度非极性的性质;禾口 20CTC以上的而t温性。
3、 权利要求2的方法,其中,该材料包括有机低k值电介质。
4、 权利要求2的方法,其中,该材料包括纳米管。
5、 权利要求2的方法,其中,该材料包括涂布有金属的二氧化^/氧化铝 吸附剂。
6、 权利要求2的方法,其中,该材料为包括低k值的无机和有机混合物的复合物。
7、 权利要求1的方法,其中,该材料包括具有增韧剂的多孔电介质,该 增韧齐舰用中性离去基团。
8、 权利要求1的方法,其中,该材料包括具有封端剂的多孔吸附旋涂玻 璃,该封端齐,来提供旋涂玻璃中的jf冰性。
9、 权利要求l的方法,其中,该材料包括^7jC聚合物。
10、 权利要求9的方法,其中,该聚合物包括 聚降冰片烯;聚四氟乙烯; 氟化聚烯烃;和减 酚醛清漆树脂。
11、 禾又利要求l的方法,进一步包括用于选择材料的^f建模。
12、 一种用于选择固定相的系统,包括 提供一种作为固定相候选的材料; 为该材料设定多 L性水平;为该材料设定水干扰性水平;以及 为该材料设定吸附水平。
13、 权利要求12的系统,进一步包括确定足够的多 L性、7K干扰性和/或 吸附水平。
14、 权利要求13的系统,其中,如果该多 L性、水干扰性和吸附水平被 确定为足够,那么该材料被该固定相接受。
15、 权利要求13的系统,其中,如果该材料的多孔性水平未达到可接受 的水平,那么该材料被处理以改善其多 L性水平。
16、 权利要求13的系统,其中,如果该材料的水干扰性水平未达到可接 受的水平,那么该材料被处理以改善其水干扰性水平。
17、 权利要求13的系统,其中,如果该材料的吸附水平未达到可接受的 水平,那么就选择替代材料。
18、 丰又利要求13的系统,其中固定相包括一组性质;以及 该组性质包括与分析物的湿度无关的吸附烚; 相对于分析物的高渗透率; 相对于干扰流体的低吸附焓;禾口/或 相对于极性分析物的高物理吸附值。
19、 权利要求18的系统,其中,该组性质进一步包括 随肝量或沸点增加的吸附能量; 无暴露于分析物的甲硅烷醇; 可执行标准沉积技术; 粘接到光致抗蚀剂项目;可光致图案;和/或 可4OT标准技术进行蚀刻或形成图案。
20、 一种用于选择的系统,包括 M建禾莫分析物吸附固定相; 定性比较M规模的交互作用;以及 选择固定相。
全文摘要
选择用于微型流体分析器的固定相,使用特定的标准以确定用在如微型流体分析器中的合适的材料。寻求材料对分析物或样品的高吸附性、低吸水性和高极性或渗透性。选中的材料可以与使用中性离去基团的增韧剂进行组合。选中的材料可以具有封端剂以促进疏水性。选中的材料可以是疏水性聚合物。对固定相的选择可包括分子建模。
文档编号B01J20/00GK101272851SQ200680014113
公开日2008年9月24日 申请日期2006年2月28日 优先权日2005年2月28日
发明者N·E·伊瓦莫托, R·R·罗思, T·A·拉莫斯, U·邦内 申请人:霍尼韦尔国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1