挤制多孔性基材的系统的制作方法

文档序号:4977167阅读:166来源:国知局

专利名称::挤制多孔性基材的系统的制作方法挤制多孔性基材的系统
技术领域
:本案是中国专利申请200680037343.9(PCT/US2006/028530)的分案申请。一般而言,本发明是关于一种挤制多孔性基材的挤制方法;特定而言,是关于一种挤制多孔性陶瓷基材的挤制方法。
背景技术
:许多制程会要求刚性基材以便能协助及支援各种制程。举例言之,应用于过滤的基材可过滤微粒子、分离不同物质或从空气除去细菌或微生物。可制造该等基材以在空气、废气或液体中运作,且该等基材可经加工以抵抗实质环境压力或化学压力。再例如,沉积触媒材料于基材上以便能促进化学反应。举例言之,沉积一贵金属于一适当的基材上,接着该基材将危险的废气催化转化成较无毒的气体。一般而言,具有高孔隙度(porosity)的刚性基材的操作效率较孔隙度通常视为固态材料的性质,定义为开放空间占材料的全部体积的百分比。例如,孔隙度50%的基材有一半体积为开放空间。据此,具有高孔隙度的基材,其单位体积的质量较具低孔隙度基材者为小。较低质量的基材是有利于某些应用;举例言之,若基材是用于在催化过程中,且该催化过程是于高温中运作,则具较低热质量(thermalmass)的基材将会更快的加热到操作温度。因此,使用具较高孔隙度及较低热质量的基材,可降低加热催化剂至操作温度的时间,即起燃时间(lightofftime)。渗透性(permeability)亦是基材的一种重要特性,特别是过滤及催化用基材。渗透性是与孔隙度相关,因渗透性是量测流体(例如液体或气体)流穿过基材的难易度。高渗透性的基材是有利于大部分的应用。举例言之,当后处理过滤器提供内燃机一较低背压时,内燃机可更有效率地运作;其中,使用较高渗透性基材可产生低背压。因为渗透性较孔隙度更难量测,所以孔隙度通常作为基材渗透性的替代指标。然而,这并非一精确的特性,其原因为若孔隙并未普遍地开放且连通,则高孔隙度的基材仍可能仅具有限的渗透性。例如,聚苯乙烯发泡体(Styrofoam)饮水杯是由高孔隙度材料所制成,但液体流无法渗透该饮水杯。所以,在考虑孔隙度及渗透性的重要性时,亦必须检验基材的孔隙结构。在前述聚苯乙烯发泡体饮水杯的例子中,聚苯乙烯发泡体材料具有密闭的孔隙网,意即该发泡体包含很多非连结及/或终端封闭的孔隙。因此,虽然发泡体内存有很多空隙及开放空间,但因孔隙间并未互相连结,故液体或气体将不会从发泡体的一边流向另一边。当更多的通道开始连结时,开始形成自一边通至另一边的流动路径。如此情况下,材料被称为拥有更多的开放式孔隙网。越多贯穿基材的连接通道形成,该基材的渗透性越高。当每一孔隙连结至至少一个其他通道且所有孔隙容许流体穿过该材料所形成的壁面的全部厚度时,则定义该基材具有完全开放式孔隙网。须注意,胞室(cells)及孔隙(pores)间的差异是重要的。胞室是指穿通(通常互为平行,但并非一定)蜂巢状(honeycomb)基材的通道。通常,蜂巢状基材涉及每平方英寸有多少胞室的内容。例如,每平方英寸有200个胞室的基材在其主轴方向上具有200个通道。另一方面,孔隙是指材料本身内的裂缝,如存在于分开两条平行通道或胞室所构成的壁面的材料里。在过滤或触媒工业中,并不熟知具全部或大部分开放孔隙网的基材。反而,大部分具孔隙的经挤制基材甚至为开放式孔隙及封闭式孔隙的掺混体。因此,提供具高孔隙度及内孔隙结构(其可赋予相仿的高渗透性)的基材在许多应用领域中有高度的需求。而且所形成的基材必须拥有足够的刚性结构来支持特殊应用所需的结构上及环境上的需求。例如,附于内燃机的过滤器或触媒转换器必需能够禁得起环境的振动、热需求及制造与使用上的压力。最后,为能广泛应用,还必须在足够低成本的情况下生产基材。举例言之,为改变全球的汽车污染的程度,已开发与正开发国家必须可以负担及使用过滤基材。因此,在设计基材及选择制程时,过滤器及触媒转化器基材的整体成本结构将是主要的考量。已证明挤制是生产固定截面的刚性基材的有效率且有成本效益的方法。尤其,陶瓷粉末材料的挤制是制造内燃机所用的过滤器及触媒基材中最广泛使用的制程。多年来,挤制粉末陶瓷的制程已经相当进步,因此经挤制基材可具有接近60%的孔隙度。这些经挤制多孔性基材具有好的强度特性、可变通地制造、可规模化生产、保持高品质水准,并具有成本效益。然而,粉末陶瓷材料的挤制已达到孔隙度的可实施的上限值,且进一步提升孔隙度似乎导致其具无法被接受的低强度。例如,当提高孔隙度超过60%时,已证实经挤制粉末陶瓷基材于柴油机粒子过滤器的恶劣环境中不具有可进行操作的足够强度。在其他已知的挤制制程的限制中,期望增加基材内的表面积以使催化转换更有效率。为增加表面积,己有增加经挤制陶瓷粉末基材的胞室密度的尝试,但是增加胞室密度产生引擎无法接受的背压。因此,经挤制陶瓷粉末基材在非常高的孔隙度下不具足够的强度,且当需要增加表面积时亦产生无法接受的背压。据此,陶器粉末的挤制显然有其实际应用上的限制。为获得更高的孔隙度,过滤器供应商已试图使用褶式(pleated)陶瓷纸。使用此类褶式陶瓷纸,同时具约80%的孔隙度及非常低的背压是可能的。因具有此低背压,这些过滤器已经使用于例如需要极低背压的采矿过程等应用中。不过,使用褶式陶瓷纸的过滤器的机会不多,其并未被广泛地采用。举例言之,褶式陶瓷纸在恶劣的环境里使用效果不彰。生产褶式陶瓷纸需利用生产相对弱的陶瓷纸结构的造纸过程,且与经挤制过滤器相比,似乎较不具成本效益。再者,褶式陶瓷纸的形成允许极少弹性运用的胞室形状及密度。例如,在一些过滤应用中需要具有大入口通道及小出口通道的纸褶式过滤器,但生产此种纸褶式过滤器是困难的。因此,使用褶式陶瓷纸无法满足高孔隙过滤器及触媒基材的需求。另一试图增加孔隙度并且避免褶式纸缺点的例子中,一些经由形成具有陶瓷前体(ceramicprecursors)的团料(mass)并且在一多孑L的模具(porouspattern)中仔细处理团料以成长单晶须(mono-crystallinewhiskers),以提供基材。但是,就地成长这些结晶需要小心且准确的控制固化过程,使得大量生产的过程不易,相对昂贵,且易有缺陷。再者,此困难制程仅使孔隙度增加一些百分比。最后,此制程仅成长莫来(mullite)型晶须,此将限制基材的应用性。例如,众所周知,莫来石(mullite)具有大的热膨胀系数,在很多需要大范围操作温度带及急剧温度转换过程的应用中,使用莫来型晶须是不甚理想。因此,工业上有具有高孔隙度及相关高渗透性的刚性基材的需求。较佳地,形成具高度合乎需要的开放胞室网、具生产的成本效益、且可以变通的物理、化学及反应性质制造的基材。
发明内容简言之,本发明提供一种可经由利用挤制程序以生产高多孔性基材的可挤制混合物。尤其,本发明容许纤维(例如有机、无机、玻璃、陶瓷或金属纤维)混入一团料中,当挤制及固化时,该团料可形成一高多孔性基材。取决于特别的混合物,本发明赋予孔隙度约60%至约90%的基材,并也具其他孔隙度的制程优点。可挤制混合物可使用非常多样纤维及添加剂,且适合于多种操作环境及应用。根据基材的需求,选择长宽比(aspectratio)大于1的纤维且与黏结剂、孔隙成形剂、挤制辅助剂及流体混合以形成均质可挤制团料。该均质团料是挤制成生胚基材(greensubstrate)。优先将较易挥发的材料从生胚基材中除去,此使得纤维互相连结及接触。当固化制程持续进行,形成纤维与纤维间的连结以生产具有实质上开放式孔隙网的结构。所得多孔性基材可用于许多应用方面,例如,作为过滤器或触媒基质(catalysthost)的基材或触媒转换器。在一个更为特定的方案中,选用具长宽比为约3至约1000的陶瓷纤维,虽然通常使用的范围是为3至500。长宽比是纤维长度除以纤维直径的比率。陶瓷纤维与黏结剂、孔隙成形剂及流体混合以形成均质团料。使用剪切混合制程(shearmixingprocess)以使纤维更完全平均地分散于团料中。陶瓷材料可占约8%至约40%的团料体积,此得到具有约92%至约60%孔隙度的基材。挤制该均质团料以形成一生胚基材。将黏结剂材料从生胚基材中除去,这将使纤维重叠与接触。当固化制程持续进行时,形成纤维与纤维间的连结以产生刚性开放式胞室网。如本文所述,"固化"是定义为包含两个重要制程步骤1)黏结剂移除及2)连结形成。黏结剂移除制程是移除自由水(freewater)及大部分添加剂,并可使纤维互相接触。所得多孔性基材可用于很多应用中,例如,作为过滤器的基材或触媒转换器。在另一个具体实例中,可制造多孔性基材而无需使用孔隙成形剂。此一方案中,陶瓷材料可占约40%至约60%或更多的团料体积,此得到具有约60%至约40%孔隙度的基材。因为没有使用孔隙成形剂,可简化挤制程序且更具成本效益。此外,所得结构是实质上高度合乎要求的开放式孔隙网。所揭露的纤维挤制系统是有利于生产一基材,其具有高孔隙度、及具有可提供相关高渗透性的开放式孔隙网、以及具有可根据应用需要的足够强度。纤维挤制系统也可以足够成本效益生产基材,以广泛的应用所得过滤器及触媒转换器。此挤制系统是易于进行大规模生产,且容许变通的化学性质及构造以支持许多应用。本发明代表着纤维材料于可挤制混合物中的创新使用。在一规模及具成本效益的生产中,此纤维性可挤制混合物可挤制出具非常高孔隙度的基材。透过在可重复及耐用挤制过程中使用纤维,本发明可规模性的生产广泛用于全世界的过滤器与触媒的基材。下文将使本发明上述与其他技术特征能更明显易懂,且可透过后附的申请专利范围中特别指出的手段及组合了解本发明的技术特征。附图是构成本说明书的一部分并包含本发明示范性的具体实施方案,其具有各种形式。当然,于某些例子中,会夸大或放大方式解释本发明各种方面,以协助了解本发明。图1是一种根据本发明的挤制多孔性基材的系统的方框图2是一种根据本发明的纤维性可挤制混合物的例示;图3A和图3B是一种根据本发明的开放式胞室网的例示;图4是根据本发明及习知技术的开放式胞室网的电子显微镜图5是一种根据本发明的利用多孔性基材的过滤团料的例示;图6是可用于本发明的纤维陶瓷混合物的流变图7是一种根据本发明的挤制多孔性基材的系统的方框图8是一种根据本发明的固化多孔性基材的系统的方框图9是一种根据本发明的多孔性基材的纤维处理系统的方框图IO是一种根据本发明挤制梯度多孔性基材的示意图11是一种根据本发明挤制梯度多孔性基材的示意图;以及图12是一种根据本发明挤制梯度多孔性基材的示意图。图中主要元件符号说明如下:10系统12纤维14纤维处理16添加剂18流体21混合成可挤制流变性23挤制形成生胚基材25固化移除水、移除黏结剂及形成纤维与纤维间连结30大部分纤维连结成一开放式孔隙网的多孔性基材50可挤制材料52可挤制混合物54均质团料的放大部分56、57、58纤维61黏结剂63孔隙成形剂100、120基材部份102黏结剂移除后103、104纤维105孔隙成形剂107开放空间110固化制程后112连结114、116开放空间122黏结剂移除后124固化程序后150电子显微镜照片组152开放式孔隙网154照片175基材176团块178入口179通道232、234轴236区域250系统252定义基材需求253从表1选择纤维254为长宽比分布处理纤维255从表2选择黏结剂256视需要从表3选择孔隙成形剂257从表4选择流体258为表面修饰处理纤维262混合成均质团料264根据表5调整流变性268挤制成生胚基材270移除黏结剂及形成纤维与纤维间连结275方法277从生胚基材中移除自由水279烧除有机添加剂281使纤维交迭排列285形成纤维与纤维间连结286纤维间液态烧结288纤维间以烧结辅助剂液态烧结291纤维间固态烧结300制程305块状纤维307水309分散剂311浆料314激烈地混合316压滤318干燥321调整湿气含量323干式混合325湿式混合327黏结剂、孔隙成形剂329水332剪切混合335均质团料340斩取纤维350制程351第一材料353第二材料355层状柱状物357包装375制程379柱状物、管377内管、管381材料400方法術可挤制混合物403第一材料404第二材料406过滤器407区域、第一部分408区域、第二部分实施方式于此将详细说明本发明的实施方案。然而,应了解本发明可具有多种类型的实施方式,所以于此揭露的具体的详细内容非用于限制本发明,而是作为教导本领域技术人员如何运用本发明于实际上任何详细系统、结构或手段的代表性基础。参考图l,是说明一种用于挤制多孔性基材的系统。通常,系统10使用一挤制制程以挤制一可形成最终高度多孔性基材产品的生胚基材。系统10有助地生产一基材,其具有高孔隙度,及具有可提供相关高渗透性的实质上开放式孔隙网,以及具有根据应用所需的足够强度。系统10亦可以足够的成本效益来制造基材,以广泛地应用所得过滤器及触媒转换器。系统10易于进行大规模地生产,且容许变通的化学性质及构造以支援多方面的应用。系统10可提供高度变通性的挤制制程,故可符合大范围的特殊应用。于系统10的使用中,基材设计者首先确定基材的要求。这些要求可能包含,例如尺寸、流体渗透性、所需孔隙度、孔隙尺寸、机械强度及震动特性、热稳定性、及化学反应性限度。基于这些及其他要求,设计者选用材料用以形成可挤制混合物。重要地,系统IO可使用纤维12于经挤制基材的形成中。举例言之,该纤维可能是陶瓷纤维、有机物纤维、无机物纤维、聚合纤维、氧化物纤维、玻璃质纤维(vitreousfibers)、玻璃纤维、非晶形纤维、结晶纤维、非氧化物纤维、碳化物纤维、金属纤维、其他无机物纤维结构、或前述的组合。然而,虽然可使用其他纤维,为易于说明将以陶瓷纤维的使用进行说明。另外,虽然基材其它用途亦为教示可考量的范围内,以下说明也将以过滤基材或触媒基材进行说明。设计者基于应用上的特殊需求选择特定型态的纤维;举例言之,陶瓷纤维可选自莫来(mullite)纤维、硅酸铝纤维、或其他一般常用的陶瓷纤维材料。这些纤维通常要加工14裁切成可用的长度,其中可包含在混合纤维与添加剂前的斩取(chopping)制程。于挤制制程中的各种混合及形成步骤也将进一步裁切纤维。根据特定需求,可添加添加剂16。添加剂16可包含黏结剂、分散剂、孔隙成形剂、塑化剂、制程辅助剂及强化材料。再者,流体18(通常为水)是与添加剂16及纤维12组合。将纤维、添加剂及流体相混合达到可挤制流变性(rheology)21。该混合可包含干式混合、湿式混合及剪切混合。混合纤维、添加剂及流体直到产生均质团料,使纤维平均地分布及排列于团料中。之后,挤制纤维性均质团料以形成生胚基材23。该生胚基材具有足够强度以于后续剩余制程中保持完整。接着固化25生胚基材。如本文中所使用,"固化"是定义为包含两个重要制程步骤l)黏结剂移除及2)连结形成。黏结剂移除制程是移除自由水及大部分的添加剂、及使纤维与纤维相接触。通常使用燃烧黏结剂的热制程以移除黏结剂,但应理解的是,视所用的特定黏结剂亦可使用其他移除制程。举例言之,有些黏结剂可以蒸发或升华制程予以移除。有些黏结剂及/或其他有机成分于降解为汽相之前可熔融。当固化制程持续进行,将形成纤维与纤维间的连结。此连结将全面增加结构刚性且使基材具令人满意的孔隙度及渗透性。因此,经固化基材30是大部分纤维连结至开放式孔隙网30的高多孔性基材。接着,该基材可作为供许多应用所用的基材,包含作为应用于过滤及触媒转换的基材。有利地,系统10提供合乎需求的挤制制程以生产具有孔隙度高达约90%的基材。现参考图2,是说明一种可挤制材料50。可挤制材料50是可于挤出机进行挤制,例如活塞挤出机或螺杆挤出机。可挤制混合物52是依特定应用所需求的包含纤维、塑化剂及其他添加剂的均质团料。图2是说明均质团料的放大部分54。为助于说明,可观察到放大部分54并未依据尺寸比例描绘。可挤制混合物52包含纤维,例如纤维56、57及58。该些纤维是经选择以生产具有所需热特性、化学特性、机械特性及过滤特性的高孔隙度的刚性成品基材。应了解,实质上纤维状的本体被认为是不可加以挤制的,因其本身不具塑性。然而,已经发现经由适当选择塑化剂及制程控制,含有纤维的可挤制混合物52是可加以挤制的。基于此,挤制的成本、规模及具变通性等优点可延伸到包括使用该纤维材料所得的好处。一般认为纤维是具有长宽比大于1的相对小尺寸的材料。所谓长宽比是纤维长度除以纤维直径的比例。于此,纤维"直径"是为简化而假设纤维的截面呈圆形,此假设是适用于各纤维,不管其真实的截面形状为何。举例言之,长宽比为10的纤维,其长度为直径的10倍。虽然可利用的直径范围为约1微米至约25微米,但纤维直径可为6微米。将可了解,可成功使用具有不同直径及长宽比的纤维于系统10中。参考后述附图可提供更详细的说明,存在多种纤维长宽比可供选择。应了解,纤维形状与一般陶瓷粉末于形状上呈鲜明的对比,各陶瓷颗粒的长宽比大约为1。虽然图2是以陶瓷纤维作为说明,但用于可挤制混合物52的纤维亦可为金属材质(有时也称为薄直径金属线)。陶瓷纤维可为非晶形态、玻化态、结晶态、多晶态、单晶态或玻璃-陶瓷态。于可挤制混合物52的制造中,相对低体积的陶瓷纤维是用以生产多孔性基材。举例言之,可挤制混合物52可仅具有约10至40体积%的陶瓷纤维材料。因此,固化之后,所得多孔性基材将具有约90%至约60%的孔隙度。应了解,亦可选用其他用量的陶瓷纤维材料以生产其他孔隙度。为生产可挤制混合物,纤维通常与塑化剂组合。于此,纤维与其他经选择有机添加剂或无机物添加剂组合。添加剂提供挤出物的三种重要特性第一,添加剂使得可挤制混合物具有适用于挤制的流变性;第二,添加剂提供经挤制基材(通常称为生胚基材)足够强度,以保持其形状及纤维位置直到于固化制程期间添加剂被移除;以及第三,经选用添加物可于固化制程中烧除,以促进纤维排列成重叠架构及不会减弱所形成的刚性结构。一般而言,添加剂包含黏结剂,例如黏结剂61。黏结剂61是作为媒介物以保持纤维于位置上且提供生胚基材强度。纤维及黏结剂可用于生产具相对高孔隙度的多孔性基材。然而,为更进一步提高孔隙度,可添加额外的孔隙成形剂,例如孔隙成形剂63。添加孔隙成形剂以提高最后经固化基材中的开放式空间。孔隙成形剂可呈球状、长条状、纤维状或不规则形状。选用孔隙成形剂不只为了其可以增加开放式空间及其热分解行为的能力,也是为了协助纤维的排向。于此,孔隙成形剂协助将纤维排列成重叠图案,以促进于后述固化步骤期间纤维间的适当连结。此外,孔隙成形剂亦于纤维排列于较佳方向中扮演其角色,此影响经挤制基材的热膨胀及沿不同轴向的强度。如以上简短地述明,可挤制混合物52可使用选自许多方案的可用纤维中的一种或多种纤维。进一步而言,所选用的纤维可与选自各种黏结剂的一种或多种的黏结剂组合。再者,可添加选自各种孔隙成形剂的一种或多种的孔隙成形剂。可挤制混合物可使用水或其他流体作为其塑化剂且可添加其他添加剂。形成化学性质中的变通性使可挤制混合物52有利地用于各种不同的应用中。举例言之,依据所需环境上、温度上、化学上、物理上或其他需求选用混合物组合。此外,因可挤制混合物52是供挤制,故可变通地且经济地形成最后经挤制产品。图2中虽未说明,但可挤制混合物52是经由螺杆挤出机或活塞挤出机挤制以形成生胚基材,之后固化形成最终多孔性基材产品。本发明是代表纤维材料于供挤制的塑性批料(plasticbatch)或混合物中的创新使用。此纤维性经挤制混合物可以规模化生产且以具生产效益的方式挤制具高孔隙度的基材。通过允许纤维用于重复性及耐用挤制制程,本发明可大量生产广泛用于全世界的过滤器及触媒基材。参考图3A,是例示多孔性基材的放大经固化区域。说明于黏结剂移除后102及固化制程后110的基材部份100。黏结剂移除后102,一开始如纤维103及104的纤维与黏结剂材料保持于位置上,并且当黏结剂材料被燃除,纤维暴露出来以呈重叠但宽松的结构。此外,孔隙成形剂105可位于产生额外开放区域及排列或布置纤维的位置。因为纤维仅包含相对小体积的可挤制混合物,很多开放空间107存在于纤维之间。当黏结剂及孔隙成形剂被燃除,纤维可进行些微调整以进一步互相接触。选用黏结剂及孔隙成形剂可在经控制手段中加以烧除,以免于烧除中破坏纤维排列或瓦解基材。通常,选用在纤维之间形成连结之前可降解或烧掉的黏结剂及孔隙成形剂。当固化制程持续进行,重叠及接触的纤维开始形成连结。应了解,可以数种方式形成连结。举例言之,可加热纤维以于纤维交会或节点处形成液体辅助烧结连结(liquidassistedsinteredbond)。液态烧结可能起因于选用的特定纤维或加入混合物或覆盖于纤维上的额外添加剂。在其他方案中,或许需要形成固态烧结连结(solidstatesinteredbond)。在此情况下,交会连结形成一连结重叠纤维的晶粒结构。在生胚状态(greenstate)中,纤维彼此间仍未形成物理连结,但由于纤维彼此缠结故仍可展现某些程度的生胚强度(greenstrength)。所选的特定连结型态是与基本材料、所需强度、及操作化学性质及操作环境的选择有关。在某些情况下,是因存在于混合物中使纤维在连接网中保持在一起的无机黏结剂的存在而产生连结,且不会在固化制程中被烧除。有利地,连结(例如连结112)的形成是帮助形成具纤维的实质上的刚性结构。连结也可形成具极高孔隙度的开放式孔隙网。举例言之,开放空间116是自然地由纤维间的空间产生。当孔隙成形剂105降解或烧尽时,即形成开放空间114。如此,纤维连结形成制程可产生无或事实上无终端的通道的开放式孔隙网。举例说明,开放式孔隙网提供高渗透性、高过滤效率且以有高表面积以添加触媒。应了解,连结的形成与所需连结的类型(例如固态或液态辅助/液态烧结)及固化制程中的添加剂有关。举例言之,可调整添加剂,特定纤维选择、加热时间、加热程度及反应环境以产生特别的连结型态。现参考图3B,例示另一多孔性基材的放大经固化区域。是说明黏结剂移除后122及固化程序后124的基材部分120。基材部分120与图3A所示的基材部分100相似,故不再详细描述。由于未使用特定孔隙成形剂而形成基材120,故整个开放式孔隙网124是由具黏结剂的纤维的位置而形成。因此,可不使用任何特定孔隙成形剂来形成适度高孔隙度的基材,由此降低制造此适度多孔性基材的成本及复杂度。已发现具有约40%至约60%孔隙度的基材可经由此方法而形成。参考图4,是例示一电子显微镜照片组150。首先照片组150说明利用具纤维性可挤剂混合物制造所需的开放式孔隙网152。可发现,纤维在交会纤维结点处形成连结,且孔隙成形剂及黏结剂已被烧尽,留下多孔的开放式孔隙网。在明显的对比中,照片154说明利用已知制程制作的典型封闭式胞室网。部分封闭式孔隙网具有相对高的孔隙度,然至少有些孔隙度是来自封闭式通道。封闭式通道对渗透性没有贡献。于此,开放式孔隙网及封闭式孔隙网具有相同的孔隙度,而开放式孔隙网将具有较令人满意的渗透特性。因此到此所描述的可挤制混合物及制程通常用于生产高度有利的多孔性基材。在一实施方案中,可挤制多孔性基材成过滤器团料基材175,如图5所示。使用活塞挤出机或螺杆挤出机挤制基材团料175。挤出机可于室温、稍高的温度或在经控制温度区下操作。此外,挤出机的部分元件可加热至不同温度以影响挤制混合物的慢特性、剪切历史及胶化特性。再者,挤制模具亦可按尺寸制作以于加热及烧结程序期间调整预期的基材收縮。有利地,可挤制混合物是具有足够塑化剂及其他添加剂的纤维性可挤制混合物,以得挤制纤维材料。固化经挤制生胚态状团料(greenstateblock)以移除自由水、烧除添加剂及形成纤维间的连结结构。所得团料175具有高度令人满意的孔隙度特性及优良渗透性与高度合用的表面积。同时,端视选用的特殊纤维及添加剂,也可形成利于深处过滤的团料175。团料176具有纵向延伸穿过该团料的通道179。团料的入口178可留下作为流体穿透(flow-through)过程的开口,或每一其他开口可经栓塞以产生壁面流效应(wallfloweffect)。虽然显示团料175具有六角形通道,但应了解,亦可使用其他的样式及尺寸。举例言之,可形成具有平均尺寸的方形、矩形、或三角形样式的通道;具有较大入口通道的方形/矩形、或八角形/方形通道样式;或其他对称或不对称的通道样式。可经由调整模具的设计以调整通道及胞室的精确形状及尺寸。例如,可以于模具中利用放电加工(ElectronicDischargeMachining,EDM)制作钉(pins),以生产具有曲线棱角的方形通道。尽管具稍高的背压,但仍预期此圆角可增加最终产品的强度。再者,可修饰模具设计以挤制具不同厚度壁面及相较剩余壁面而言具不同厚度的壳层(skin)的蜂巢状基材。同样地,在一些应用中,外壳可应用于经挤制基材中以定义最终尺寸、形状、轮廓及强度。当使用流体穿透装置(flow-throughdevice),团料176的高孔隙度赋予大表面积以应用于触媒材料。如此,可制造高效率的触媒转换器,其中该转换器具有低热质量。具有此低热质量,所得触媒转换器具有好的起燃特性(lightoffcharacteristics)且可有效使用触媒材料。当用于壁面流(wallflow)或壁面过滤(wallfiltering)实施方案,基材壁面的高渗透性赋予相对低的背压,且同时促进深处过滤时。深处过滤可有效地移除微粒及促进更有效的再生作用。在壁面流设计中,使流穿过基材的液体穿过基材壁面,因此可与形成壁面的纤维更直接的接触。这些纤维提供高表面积以供可能发生的反应,例如触媒存在时。因为可挤制混合物可由广泛多样的纤维、添加剂、及流体所形成,可调整可挤制混合物的化学性质以形成具有特别性质的团料。举例言之,若希望最终团料为引擎微粒过滤器,可选择即使在未受控制的再生作用的极限温度中亦可安全操作的纤维。其他例子中,若将团料用于过滤微粒状的废气,是选择在预期操作温度范围中不会与废气反应的纤维及连结。虽然以过滤器及触媒转换器为例说明高孔隙度基材的优点,但应了解高多孔性基材可使用在许多应用中。可由广泛多样的基质材料形成如图2所示的纤维性可挤制混合物。一般是基于最终基材必须操作下的化学性质条件、机械性条件及环境条件选择适当的材料。据此,设计多孔性基材的第一步是去获悉基材的最终应用。基于这些要求,可选用特定纤维、黏结剂、孔隙成形剂、流体及其他材料。亦应了解,对所选材料的加工可能影响最终基材产品。由于纤维是最终基材产品中的主要结构材料,纤维材料的选用对赋予最终基材于所需应用中的操作乃为关键处。是以,根据所需连结的要求选择纤维,及选择特定类型的连结制程。连结制程可为液态烧结、固态烧结或需连结剂的连结,例如玻璃成形剂、玻璃、黏土、陶瓷、陶瓷前体或溶胶(colloidalsols)。连结剂可为纤维结构其中之一的一部份、纤维上的覆盖物或添加剂其中的一成分。亦应了解,可选用一种以上形式的纤维。亦应了解,有些纤维于固化及连结程序中毁灭。选择纤维成分时,最终操作温度为一重要考量,以可维持纤维的热安定性。其他实施方案中,选用在所预期的废气、液体或固态微粒物质的存在下保持化学惰性及不反应性的纤维。也可基于成本选用纤维,有些纤维由于本身的小尺寸而存在健康上的考量,故避免使用。基于机械环境,根据形成强刚性结构及保持所要求的机械完整性选用纤维。应了解,适当纤维或一组纤维的选择可能涉及性能及应用的取舍。表1列示几种可用以形成纤维可挤制混合物的纤维类型。一般而言,纤维可为氧化或非氧化陶瓷、玻璃、有机物、无机物、或其可为金属。对于陶瓷材料而言,纤维可具有不同状态,如非晶形态、玻态、多晶态或单晶态。虽然表l揭示许多可用的纤维,但亦应了解,亦可使用其他种类的纤维。之后基于选用纤维的种类及其他所需特性而选用黏结剂及孔隙成形剂。于一例子中,选用促进所选纤维间特定方案之液态连结的黏结剂。更特定言之,黏结剂具有在连结温度下会反应以促进液态连结流向交会纤维的节点的成分。再者,因连结剂塑化所选用纤维的能力及保持其生胚状态强度而选择连结剂。于一方案中,根据所用的挤制类型及挤制的要求温度选用黏结剂。举例言之,有些黏结剂在过度加热时会形成一胶状团料,所以只能用于低温挤制制程。于其他方案中,可根据其对剪切混合特性的作用选用黏结剂。于此,于混合程序期间,黏结剂可促进纤维剪切成为所需的长宽比。也可基于其降解或烧除特性选用黏结剂。黏结剂必须可将纤维保持于一位置上且于烧除期间不会瓦解形成的纤维结构。举例言之,若黏结剂烧除太快或太猛烈,溢出的气体可能会瓦解形成的结构。此外,可基于烧除后剩余的黏结剂量选用黏结剂,有些应用对于这些剩余物具有高度敏感性。对于形成相对适中孔隙度而言,可不需要孔隙成形剂。例如,自然排列及黏结剂内纤维的填集可协助赋予约40%至约60%的孔隙度。据此,未使用孔隙成形剂的挤制制程可产生具适当孔隙度的基材。某些情况下,与已知制程相比较,移除孔隙成形剂可制造更经济的多孔性基材。然而,当要求孔隙度超过约60%时,固化后可使用孔隙成形剂以于基材中提供额外气体空间。此外,可根据降解或烧除特性及可根据形状或尺寸,选用孔隙成形剂。孔隙尺寸对于如捕捉特别类型物质或提高特别高渗透性而言可能是重要的。可调整孔隙的形状以协助如纤维适当排列;举例言之,相对长的孔隙形状可使纤维排列为更整齐的图案,而不规则或球形可使纤维排列成更随机的图形。制造商所提供的纤维可为经斩取纤维以直接用于制程中,或提供呈块状型式的纤维,其于使用前通常需先加工处理。无论任何一种,制程应该考量纤维如何加工成最后所需的长宽比分布。通常,于与其他添加剂混合之前,先斩取纤维,之后于混合、剪切及挤制步骤中进一步斩取。然而,经由设定流变以使挤制混合物可于合理挤制压力下挤压及当置于挤制模具面的压力下于挤制混合物中不会产生膨胀流,亦可使用未经斩取纤维进行挤制。应了解,可在全部的制程的各处完成具适合长宽比分布的纤维的斩取。一旦纤维经选用且斩取至可用长度,其是与黏结剂及孔隙成形剂混合。该混合可先以干形式进行以开始混合制程,或以湿混合制程进行。添加流体(通常为水)至混合物中。为获得所需的均质分布的程度,利用单一或多阶段剪切混合该混合物。剪切混合或分散混合提供令人非常满意的均质混合制程于混合物中以均匀地分散纤维,及进一步剪切纤维至所需的长宽比。表2列示几种可供选择的黏结剂。应了解,可使用单一黏结剂或多种黏结剂。黏结剂通常划分为有机类及无机类。有机物黏结剂通常于固化期间低温下烧除,无机物黏结剂通常于较高温度下成为最终结构的一部分。应了解,虽然表2列出了几种黏结剂选择,但亦可使用其他一些黏结剂。表3列示可用的孔隙成形剂。孔隙成形剂通常可为有机物或无机物,其中相较于无机物,有机物可于较低温度下被烧除。虽然表3列出几种孔隙成形剂,应了解,也可使用其他孔隙成形剂。表4列示可使用的不同流体。应了解,虽然水是最为经济且常用的流体,有些应用可使用其他流体。虽然表4提供几种可用的流体,应了解,根据特定应用及制程要求,可选用其他的流体。一般而言,可调整混合物成具有适用于有利挤制的流变性。通常,适当的流变性起因于适当选用及混合纤维、黏结剂、分散剂、塑化剂、孔隙成形剂、及流体。需要高度混合以充分地提供纤维塑性。一旦选用适当纤维、黏结剂、及孔隙成形剂,通常调整流体的量以符合适当流变性。可经由例如两个测试其中之一表示适当流变性第一个测试是主观且非正式的试验,是于熟练挤制作业员的手指间,移动及形成混合物的珠粒。在作业员可辨认混合物于手指间适当滑动之时,即代表该混合物是于适当的挤制条件下。第二个较客观的试验是关于测量混合物的物理特性。通常,利用围限(confined)(即高压)环状流变计测量剪切强度与压实压力(compactionpressure)之抗衡。根据内聚(cohesion)强度与压力相关性的比较,进行量测及描绘。经由量测不同流体混合物及不同程度的混合物,得到指出流变点的流变图。举例言之,图6例示纤维陶瓷混合物的流变图。轴232代表内聚强度,轴234代表相关压力。可挤制区域236代表高度可能发生纤维挤制的区域。因此,以落在区域236内的任何测量定性的混合物是可能成功地加以挤制。当然,应了解,流变图受制于许多变数,所以可预期于区域236位置的某些变数。再者,用以量测流变性及塑性的几个其他直接及间接的测试确实存在;及应了解,可利用该些测试中任何几种检查混合物是否具有供挤制为所需产品最终形状的正确流变性。一旦获得适当的流变性,混合物经由挤出机加以挤制。押出机可为活塞挤出机、单螺杆挤出机、或双螺杆挤出机。挤制制程可为高度自动化或需要人工操作。以具有所需基材团料的截面形状的模具挤制混合物。选用的模具可充分地形成生胚基材。如此,提供一安定生胚基材,可于固化程序期间操作且同时维持其形状及纤维排列。之后,干燥及固化生胚基材。于室内条件、经控制的温度及湿度条件(如在经控制的烤箱中)、微波烤箱、射频烤箱(RFovens)以及对流烤箱中进行干燥。固化通常需要移除自由水以干燥生胚基材。重要地,于经控制的手段中干燥生胚基材,以避免破裂或其他结构缺陷。之后提高温度以便烧除添加剂,例如黏结剂及孔隙成形剂。控制温度以确保以经控制手段烧除添加剂。应了解,烧除添加物可能需要透过各种控时循环及各种加热程度的温度循环。一旦烧除添加剂后,加热基材至所需温度以于纤维交会处或节点形成结构连结。根据所需的连结种类及纤维化学性质选择所需的温度。举例言之,相较于固态连结,液态辅助烧结连结通常是于较低温度下形成。应了解,根据所产生的特定连结种类,可调整连结温度的时间长短。全部热循环可于相同炉中、不同炉中、分批或连续制程中及空气或经控制大气条件下进行。于形成纤维连结之后,慢慢地冷却基材至室温。应了解,固化程序可于单一烤箱或多个烤箱/炉中完成,且可在生产烤箱/炉(如隧道窑(tunnelkilns))中自动化进行。参考图7,说明一种用于挤制多孔性基材的系统。系统250是一种制造多孔性基材的高变通性的方法。为设计基材,基材要求是如方块252所定义。举例言之,基材的最终用途通常决定基材的要求,可包含尺寸限制、温度限制、强度限制、及化学反应限制。再者,基材的成本及量产可决定及强制某些选择。举例言之,高生产率可能需要于挤制模具中具相对高的温度,故选用可在高温中操作而不会硬化或胶化的黏结剂。于使用高温黏结剂的挤制中,需要维持模具及圆筒在一相对较高的温度下,例如摄氏60至180度。于此情况下,黏结剂可能会熔融,而减少或排除额外流体的需求。在其他方案中,可设计过滤器以捕捉微粒物质,故选用即便于高温下亦不会与微粒物质产生反应的纤维。应了解,通过广泛的可能混合物及制程,可考虑大范围的应用领域。熟悉此技艺的人士将了解涉及纤维、黏结剂、孔隙成形剂、流体及制程步骤的选择的变换。的确,系统250的重要优点之一是其在混合物组成的选择与制程的调整上的变通性。一旦决定基材的要求,如方块253所示自表1中选择纤维。纤维可为单一种类或两种或更多种种类的组成。亦应了解,有些选用的纤维于固化程序期间被烧毁。再者,可添加添加剂至纤维中,例如纤维上的涂料,以引进其他材料至混合物中。举例言之,可使用分散剂于纤维中以促进纤维的分离及排列,或可涂覆连结辅助剂于纤维上。于使用连结辅助剂的情况下,当纤维达到固化温度时,连结辅助剂协助液态连结的形成及流动。获得大于80%孔隙度之典型组成<table>tableseeoriginaldocumentpage23</column></row><table>接着,如方块255所示由表2中选择纤维黏结剂。选用黏结剂以促进生胚状态强度及控制其烧除。再者,选用黏结剂以于混合物中产生足够的塑性。如有需要,如方块256所示由表3中选择孔隙成形剂。在某些情况下,经由仅使用纤维及黏结剂便可获得足够孔隙度。孔隙度不仅是藉由纤维的自然填集特性来达到,亦可于去连结及固化阶段期间释放的黏结剂、溶剂及其他挥发性成分所占空间来达到。为达到高孔隙度,可添加额外孔隙成形剂。根据其经控制的烧除能力选用孔隙成形剂,且其亦可协助塑化混合物。如方块257所示由表4中选择流体,通常为水。可添加其他液体材料,如协助纤维的分离及配向的分散剂及改善混合物流动行为的塑化剂及挤制辅助剂。分散剂可用于调整纤维上的表面电荷。于此,可控制纤维的电荷以形成互相排斥的个别纤维。这更促进纤维的均质及随机分布。可获得大于80%孔隙度的典型混合物组成是如下表所列。应了解,可根据欲达成的孔隙度、特定应用及制程条件以调整混合物。如方块254所示,加工于方块252中选定的纤维以具有适当的长宽比分布。较佳的长宽比是介于约3至约500的范围及可具有一种或一种以上的分布类型。应了解,亦可选用其他范围,如约1000的长宽比。于一方案中,长宽比的分布可随机地分布于所需范围内,于其他方案中,可选择较不连续类型的长宽比值。已发现长宽比是定义纤维填集特性的一重要因素。因此,选择长宽比及其分布以达成特定强度及孔隙度要求。再者,应了解,亦可于制程中的各阶段加工纤维至较佳的长宽比分布。举例言之,纤维可以第三组加工元件斩取并获得预定的长宽比分布。在其他方案中,提供呈块状形式的纤维,并予以处理成具有适当长宽比以为挤制制程中的预备步骤。应了解,混合、剪切混合或分散混合及挤制制程250各方面亦可提供纤维的剪切及斩取。因此,初期引入混合物中的纤维的长宽比将与最后经固化基材中的长宽比不同。因此,当选择引入制程的适当长宽比分布254时,亦应考虑混合、剪切混合及挤制的斩取及剪切影响。如方块262所示,将纤维、黏结剂、孔隙成形剂、及流体是与经加工且具有适当长宽比分布的纤维混合以形成均质团料。混合制程可包含干式混合方面、湿式混合方面及剪切混合方面。已发现剪切或分散混合于团料中生产令人满意的高度均质分布的纤维。由于混合物中相对低浓度的陶瓷材料,所以该分布特别地重要。当正在混合均质混合物时,可调整混合物的流变性,如方块264所示。当混合混合物时,其流变性持续改变。可主观地测试流变性,或可经测量以符合图6所例示的合意的区域。落在所需区域的混合物展现适当挤制的高可能性。然后,如方块268所示,将混合物挤制成生胚基材。于螺杆挤出机的情况下,混合亦可于挤出机本身的内部进行,而非于各别的混合机中进行。在此情况下,必须小心地处理及控制混合物的剪切历史。生胚基材具足够的生胚强度以保持其于固化程序期间的形状及纤维排列。然后,如方块270所示,固化生胚基材。固化制程包含移除任何剩余水分、经控制烧除大部份添加剂,及形成纤维间连结。烧除制程期间,纤维保持其纠结且交叉关系,当固化制程进行时,于交叉点或节点处形成连结。应了解,连结可因液态或固态连结制程而产生。当然,可获悉部分连结可能是由于黏结剂中、孔隙成形剂、纤维上涂料、或纤维本身中提供的添加剂的反应而形成。连结形成之后,基材慢慢冷却至室温o参考图8,例示一种固化多孔性纤维基材的方法。方法275具有含纤维陶瓷的生胚基材。固化制程首先慢慢移除基材中的剩余的水,如方块277所示。通常,可在烤箱中的相对低温下移除水分。移除剩余的水分后,烧除有机添加剂,如方块279所示。在经控制方式中烧除该等添加剂以促进适当的纤维排列,及确保溢出的气体及残留物不会影响纤维结构。当烧除添加剂后,纤维保持其交叠排列,且可进一步在交叉点或节点处接触,如方块281所示。使用黏结剂使纤维成交叠排列,且通过使用孔隙成形剂可形成特定图样。于某些情况下,可使用可与纤维结合的无机添加剂,其于连结形成制程中被烧毁或成为最终基材结构的一部分。固化制程继续进行以形成纤维与纤维间的连结,如方块285所示。形成连接所需的具体时程及温度是视所用纤维的种类、所用连结辅助剂或连结剂种类、及所需连结种类而定。在一方案中,连结可为形成于纤维间的液态烧结连结,如方块286所示。存在系统中的玻璃成形剂、玻璃、陶瓷前驱物或无机助熔剂可促进此等连结。于其他方案中,使用烧结辅助剂或烧结剂可形成液态烧结连结,如方块288所示。可提供烧结辅助剂作为纤维上的涂料或添加剂、或自黏结剂、自孔隙成形剂或自纤维本身的化学性质提供烧结辅助剂。同时,可以纤维间的固态烧结形成纤维与纤维间连结,如方块291所示。于此情况下,交会纤维显现出晶粒成长及质量转移,以于节点处形成化学键及全面的刚性结构。于液态烧结的情况,连结材料团料积聚在纤维的交会节点并形成刚性结构。应了解,固化制程可于一或多个烤箱中进行,亦可能于工业隧道式炉或窑式炉内进行。现参考图9,其例示一种制备纤维的方法。制程300显示取得块状纤维,如方块305所示。块状纤维通常具有团混杂排列的极长纤维。必须处理此大块纤维以充分的分散及剪切纤维得于混合制程中使用。据此,块状纤维与水307及可能的分散剂309混合以形成浆料311。分散剂309可为例如pH调节剂或电荷调节剂,以促进纤维间互相排斥。应了解,可使用有几种不同种类的分散剂。在一方案中,引入浆料之前,块状纤维先以分散剂加以涂敷。于其他方案中,是简易地将分散剂加入浆料混合物311中。激烈地混合浆料混合物,如方块314所示。此激烈地混合可斩取及分散块状纤维至可用的长宽比分布。如上文所述,因为混合及挤制制程会进一步斩取纤维,故最初所用纤维的长宽比与最终基材中的分布将完全不同。再将纤维斩取为适当长宽比分布之后,使用压滤机316或于其他设备中对过滤器挤压,以移除大部分的水份。应了解,可使用其他水份移除制程,例如冷冻干燥。压滤机可能使用压力、真空或其他手段以移除水分。于一方案中,进一步干燥经斩取纤维至完全干燥状态,如方块318所示。之后,将经干燥纤维用于干式混合制程323中,其中经干燥纤维与其他黏结剂及干式孔隙成形剂混合,如方块327所示。最初干燥混合促进均质团料的产生。在其他方案中,将经过滤纤维的水含量调整到适当的含水量,如方块321所示。尤其,足够的水份保留于经斩取纤维饼中,帮助湿式混合,如方块325所示。已发现通过保留一些浆料水分于纤维中,可达到纤维额外的分散及分布。于湿式混合阶段,亦可添加黏结剂及孔隙成形剂,且可添加水份329以获得适当流变性。亦可剪切混合该团料,如方块332所示。使用螺杆挤出机、双螺杆挤出机或剪切混合(例如西格马叶片型混合器(sigmablade-typemixer))将混合物穿过意大利面状的模具(spaghettish叩eddies)以完成剪切混合。亦可于西格马混合器(sigmamixer)、高剪切混合器及螺杆挤出机内进行剪切混合。剪切制程可令人满意地产生更均质团料335,其具有所需的供挤制作用的塑性及可挤制流变性。均质团料335具有均匀的纤维分布,其中纤维是呈重叠基质。据此,当均质团料挤制成为基材团料及加以固化,纤维可连结成为刚性结构。此外,刚性结构形成具高孔隙度、高渗透性及高表面积的开放式孔隙网。现参考图10,是例示一种制造梯度基材团料的方法。制程350是设计为可制造及挤制具有梯度特性的基材团料。举例言之,可生产于团料中心具有第一材料及团料外围具有不同材料的基材。在一更具体的实施例中,团料中心使用具有较低热膨胀系数的材料(预期会发生特定高热度),而外围面积使用具有相对高热膨胀系数的材料(预期会发生低热度)。于此,对整体团料而言,可保持更为一致的膨胀特性。于其他实施例中,团料中选定的区域可具有较高密度陶瓷材料以提供加强的结构撑体(structuralsupport)。这些结构撑体构件是集中排列或轴向排列于团料中。因此,根据孔隙度、孔隙尺寸或依据应用要求的化学性质的所需梯度,选用特定材料。再者,梯度可能必须使用两种以上的材料。在一方案中,经由提供柱状体的第一材料351所制造的梯度结构。第二材料353的薄片是包覆柱状物351,如图解355所示。于此,层B353变成绕着内部的柱状物351的同心管。然后将层状柱状物355置于活塞挤出机中、抽气及经模具挤制。挤制制程期间,材料将于材料A及材料B间的界面处混合,有助于无缝的界面。此界面使得两种不同材料间的纤维重叠及连结,从而加强整体结构。一旦材料经挤制、固化及包装后,其制造具有梯度基材的过滤器或触媒转换器包装357。尤其,材料A形成在基材的中心,而材料B361形成在外围部份。应了解,可使用超过两种的材料且可梯度地调整孔隙尺寸、孔隙度及化学特性。参考图ll,是描述制造一梯度基材的其他制程375。于制程375中,提供一约为活塞挤制管尺寸大小的第一柱状物379。在一方案中,外部柱状物379是用于活塞挤出机的实际管。提供一具直径较外管379小的内管377。该些管以同心方式排列,使内管377呈同心地置入管379的内部。第一可挤制混合物材料的颗粒状物383置于管377的内部,第二可挤制混合物材料的颗粒状物381置于管377与管379间的环状区。小心地移开内管,使得材料381以同心方式围绕材料A。之后,该经安排材料是置于挤制活塞里,空气抽真空,并经模具挤制。一旦经挤制、经固化及经包装后,制造出如图10所示的梯度基材。应了解,可形成超过两个的同心环,及可制造各种梯度种类。现参考图12,例示制造梯度基材的另一种方法。方法400是具有交叠二种可挤制材料的盘状物的可挤制混合物402的圆柱。可挤制混合物402具有邻接第二材料404的第一材料403。在一方案中,材料A是相对多孔性,材料B是孔隙度较低。挤制期间,材料流经挤制模具,引起A部分及B部份的纤维相混合而呈重叠排列。据此,A及B部分各自互相连接成为纤维基材团料。在固化及包装后时,形成过滤器406。过滤器406具有相对高孔隙度的第一部分407及较低孔隙度的第二部分408。于此,流穿过滤器406的气体先经由具较大孔隙尺寸的高孔隙度区域加以过滤,然后经由具较小孔隙尺寸的低孔隙度区域加以过滤。是以,较大微粒被阻挡在区域407,较小微粒被阻挡在区域408。应了解,可根据应用所需,可调整材料盘状物的尺寸及数目。该纤维挤制系统在实施过程中提供极大的变通性。举例言之,可选用广泛的纤维及添加剂以形成混合物。存在几种混合及挤制选项,及关于固化方法、时间及温度的选项。基于已公开的教示,挤制
技术领域
中技术人员将了解可使用许多种变化。蜂巢状基材是使用本发明所揭露的技术而可供制造的一般设计,但其他形状、尺寸、轮廓及设计亦能加以挤制以供各种应用。对于某些应用来说,例如过滤装置(柴油微粒过滤器(dieselparticulatefilter,DPF)、油/空气过滤器、热气过滤器、空气过滤器、水过滤器等等)或触媒装置(例如三方触媒转换器,选择性触媒催化还原(selectivecatalyticreduction,SCR)触媒,脱臭氧器,防臭剂,生物反应器,化学反应气,氧化催化剂等等)的用途,经挤制基材中的通道可能需要加以栓塞。使用与经挤制基材相似的组合物材料以封堵基材。可于生胚状态中或经烧结基材上完成栓塞。大部分栓塞组合物需要热处理以固化及连结到经挤制基材。虽然已揭露本发明特佳及供选择的具体实施方案,对所属
技术领域
中普通技术人员而言,上述利用本发明所完成的技术的许多各种修饰及延伸是显而易见的。所有这些修饰及延伸是在本发明的真正精神及范围内,如所述申请专利范围所讨论。权利要求1.一种可挤制混合物,包含一实质上由长条状纤维所构成的陶瓷材料;一黏结剂材料;一流体;以及其中该长条状纤维、该黏结剂材料及该流体是一挤制成蜂巢状结构的均质团料。2如权利要求1所述的可挤制混合物,其中该陶瓷材料体积小于该均质团料体积的约20%。3如权利要求1所述的可挤制混合物,其中该可挤制混合物进一步包含无机黏土、纳米黏土、胶状物、玻璃或非纤维陶瓷先驱物(precursors)。4如权利要求1所述的可挤制混合物,其中该陶瓷材料体积小于该均质团料体积的约40%。5如权利要求1所述的可挤制混合物,的约15%至约30%的范围。6如权利要求1所述的可挤制混合物,约5且小于约200的长宽比。7如权利要求1所述的可挤制混合物,10至约1000的范围的长宽比。8如权利要求1所述的可挤制混合物,9如权利要求1所述的可挤制混合物,定义群组的陶瓷纤维。10一种可挤制混合物,包含具有长宽比大于1的纤维;一黏结剂材料;一流体;以及其中该陶瓷材料体积在该均质团料体积其中实质上所有该长条状纤维具有大于其中实质上所有该长条状纤维具有在约其中该陶瓷材料包含陶瓷先驱物。其中该长条状纤维是选自图6表1中所其中该纤维、该黏结剂材料及该流体是一具有蜂巢状结构的均质团料。11.如权利要求IO所述的可挤制混合物,其中该纤维具有一在约3至约1000的范围的模式的长宽比分布。12.如权利要求10所述的可挤制混合物,其中该纤维具有一在约3至约1000的范围的双模式的长宽比多型态分布。13.如权利要求10所述的可挤制混合物,其中该纤维是陶瓷纤维。14.如权利要求10所述的可挤制混合物,其中该纤维实质上是一种选自以下群组的纤维类型有机纤维、聚合纤维、无机纤维、金属纤维、玻璃纤维、玻璃-陶瓷纤维、氧化物陶瓷、非氧化物陶瓷、非晶形、多晶形、及金属合金。15.如权利要求10所述的可挤制混合物,其中该纤维是一复数种纤维类型的混合物,该纤维类型是选自以下群组有机纤维、聚合纤维、无机纤维、金属纤维、玻璃纤维、玻璃-陶瓷纤维、氧化物陶瓷、非氧化物陶瓷、非晶形、多晶形、及金属合金。16.如权利要求10所述的可挤制混合物,其中该纤维是经涂覆。17.如权利要求10所述的可挤制混合物,其中该纤维体积为该可挤制混合物体积的约15%至约30%。18.如权利要求10所述的可挤制混合物,其中该纤维体积为该可挤制混合物体积的约8%至约40%。19.如权利要求10所述的可挤制混合物,其中该均质团料具有在x轴为压力相关性且y轴为内聚力强度的图中由以下点所界定的区域内的一流变性组0kPa/Pa,130kPa;0kPa/Pa,220kPa;975kPa/Pa,275kPa;1500kPa/Pa,200kPa;1500kPa/Pa,60kPa;以及475kPa/Pa,25kPa。20.如权利要求IO所述的可挤制混合物,其中该纤维是金属纤维。21.如权利要求10所述的可挤制混合物,其中该纤维是选自图6表1中所定义群组的陶瓷纤维。22.如权利要求10所述的可挤制混合物,其进一步包含孔隙成形剂,且其中该无机纤维、该黏结剂材料、该孔隙成形剂及该流体是在该均质团料中。23.如权利要求22所述的可挤制混合物,其中该孔隙成形剂是选自图6表3中所定义的群组。24.—种可挤制混合物,包含一均质且可挤制的团料,该团料包含一陶瓷纤维材料、一无机黏结剂以及一流体,该均质团料是挤制成一蜂巢状结构;其中该陶瓷纤维材料体积是小于该团料体积的约40%。25.如权利要求24所述的可挤制混合物,其中该陶瓷纤维材料体积是小于该团料体积的约20%。26.如权利要求24所述的可挤制混合物,其中该陶瓷纤维材料是一多晶体纤维、一单晶须(mono-crystallinewhisker)或一非晶形纤维。全文摘要一种可经由使用挤制程序以生产高多孔性基材的可挤制混合物。特定而言,本发明可将纤维(例如有机、无机、玻璃、陶瓷或金属纤维)混入一团料中,当挤制及固化时,该团料可形成一高多孔性基材。视特定混合物而定,本发明提供具约60%至90%孔隙度的基材以及还同时提供其他孔隙度的优点。可挤制混合物可使用广泛不同的纤维及添加剂,且适用于广泛不同的操作环境及应用。根据基材的要求,选用具有长宽比大于1的纤维,并且与黏结剂、孔隙成形剂、挤制辅助剂及流体混合以形成一均质(homogeneous)可挤制团料。挤压该均质团料以形成生胚基材(greensubstrate)。挥发性较高的材料优先自生胚基材中予以移除,使纤维互相连结及接触。当固化持续进行时,形成纤维与纤维间连结以制造具有实质上开放式孔隙网的结构。所得多孔性基材可用于许多应用方面,例如过滤器或触媒基质(catalysthost)的基材或触媒转换器。文档编号B01D46/24GK101575202SQ20091013416公开日2009年11月11日申请日期2006年7月21日优先权日2005年11月16日发明者B·朱伯瑞,B·杜塔,R·G·拉舍纳奥尔,S·C·皮莱,W·M·卡蒂申请人:美商绩优图科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1