具有改进的机械特性的使用水硬粘合剂通过挤出和粒化成型的沸石以及其制备方法与流程

文档序号:14748463发布日期:2018-06-22 06:22阅读:213来源:国知局

现有技术

贯穿本文本的剩余部分,术语“沸石”将用于微孔结晶固体,其结构基于TO4四面体的三维、规则连接,元素T通常为Si4+或者Al3+,但也可以并入其他元素例如B、P、Ge、Ga、Ti或者Fe,每个氧为两个四面体共用。补偿无机骨架的负电荷的水和阳离子(碱金属、碱土金属)的分子也存在于微孔内。可以引述的沸石的实例的非穷举的列表给出如下:X沸石、Y沸石、ZSM-12、丝光沸石、A沸石、P沸石、β沸石、ZSM-5、EMC-2、针沸石、伯格斯石、水钙沸石、片沸石、菱沸石、LTL、MCM-22、SAPO-31、AlPO-4、GaPO-4、VPI-5。

通常通过使用用于压实、挤出或造粒的方法,在使用或者不使用添加剂的情况下来应对沸石成型。添加剂的存在对于改进最终的材料在关于机械强度方面的品质是必要的。通常用于成型沸石的添加剂是氧化铝的氢氧化物形式(例如勃姆石)、二氧化硅或者粘土。许多出版物例如“ZeolitesinIndustrialSeparationandCatalysis”Wiley,70页、“Studiesinsurfacescienceandcatalysis53”Elsevier,509页、专利US7594995B2、US4579831A、US5180701A和专利申请US2013197290描述了这些类型的添加剂。这些具有常规的现有技术的粘合剂的组合物具有的缺点是,在其中所使用的添加剂是氧化铝的氢氧化物的情况下,其需要在至少400℃的温度下进行的煅烧步骤以获得所需要的机械强度。

此外,这些添加剂必须以通常高于20wt%的量添加以获得所需的机械强度,但这不利于材料的孔体积。

本发明的一个目的是提供包含用至少一种水硬粘合剂成型的至少一种沸石的新型材料,所述成型优选通过在溶剂存在下粒化或者通过挤出进行,所述材料具有改进的特性,特别是在机械强度方面,并且还耐受与沸石相容的温度升高。

本发明的另一个目的是提供用于制备根据本发明的所述材料的方法,获得的所述材料具有良好的机械强度并适于在溶剂存在下对其使用并因此适于在工业过程中经长时间对其使用。

发明概述:

本发明涉及包含用粘合剂组合物成型的至少一种沸石的材料,所述粘合剂组合物包含至少一种水硬粘合剂。

本发明还涉及用于制备根据本发明的所述材料的方法,其包括至少以下步骤:

a)用于将至少一种沸石的至少一种粉末与至少一种水硬粘合剂的至少一种粉末和至少一种溶剂混合以获得混合物的步骤,

b)用于成型由步骤a)获得的混合物的步骤。

本发明的一个优点是提供了用于获得包含用粘合剂组合物成型的至少一种沸石的材料的制备方法,所述粘合剂组合物包含至少一种水硬粘合剂,所述材料具有改进的特性,特别是关于机械强度方面,并且耐受温度升高,这意味着所述材料可以用于在水或者溶剂的存在下并且在相对高的温度下进行的过程中。

本发明的另一个优点在于,在一个优选的实施方案中,提供了用于制备所述材料的简化方法,所述材料具有增强的特性,特别是在机械强度方面,所述方法不需要在成型步骤之后的煅烧步骤,缺少煅烧步骤对所获得的材料的特性不具有影响。

本发明的另一个优点在于提供了用于制备根据本发明的所述材料的方法,其可在不考虑沸石含量的情况下进行,所述方法能够制备具有良好机械强度并因此可以用于固定床中的材料。

发明详述

根据本发明,所述材料包含用粘合剂组合物成型的至少一种沸石,所述粘合剂组合物包含至少一种水硬粘合剂。

在本发明的材料中使用的所述一种或多种沸石优选选自X沸石、Y沸石、ZSM-12、丝光沸石、A沸石、P沸石、β沸石、ZSM-5、针沸石、伯格斯石、水钙沸石、片沸石、菱沸石、LTL、MCM-22、EMC-1、SAPO-31、AlPO-4、GaPO-4和VPI-5,其单独使用或者作为混合物使用。

优选地,在本发明的材料中使用的所述一种或多种沸石选自X沸石、Y沸石、ZSM-12、丝光沸石、A沸石、P沸石、β沸石、ZSM-5、SAPO-31、AlPO-4、GaPO-4和VPI-5,其单独使用或者作为混合物使用。

用其成型所述沸石的粘合剂组合物的所述一种或多种水硬粘合剂有利地选自本领域技术人员熟知的水硬粘合剂。优选地,所述一种或多种水硬粘合剂选自波特兰水泥、高铝水泥,例如“CimentFondu”、Ternal、SECAR51、SECAR71、SECAR80,硫铝酸盐水泥、石膏、含有磷酸键的水泥,例如磷酸镁水泥,高炉炉渣水泥和矿物相,所述矿物相选自A-水泥石(Ca3SiO5)、B-水泥石(Ca2SiO4)、铁铝酸四钙(l'alumino-ferrite)(或者钙铁铝石:其具有半单元式Ca2(Al,Fe3+)2O5)、铝酸三钙(Ca3Al2O6)和铝酸钙,例如铝酸一钙(CaAl2O4)、六铝酸钙(CaAl12O18),其单独使用或者作为混合物使用。

更优选地,水硬粘合剂选自波特兰水泥和高铝水泥。

所述一种或多种水硬粘合剂可以用于成型根据本发明的所述材料并为其提供良好的机械强度。

包含至少一种水硬粘合剂的所述粘合剂组合物还可以任选地包含至少一种二氧化硅源。

在其中所述粘合剂组合物还包含至少一种二氧化硅源的情况下,所述二氧化硅源有利地选自沉淀二氧化硅和由副产物如粉煤灰,例如硅-氧化铝或者硅-钙颗粒以及硅粉获得的二氧化硅。

优选地,二氧化硅源的尺寸低于10μm,优选低于5μm,更优选低于1μm。

优选地,二氧化硅源呈无定形或者结晶的形式。

包含至少一种水硬粘合剂的所述粘合剂组合物还可以任选地包含至少一种有机辅助剂。

在其中所述粘合剂组合物还包含至少一种有机辅助剂的情况下,所述有机辅助剂有利地选自纤维素衍生物、聚乙二醇、单羧基脂族酸、烷基化的芳族化合物、磺酸盐、脂肪酸、聚乙烯吡咯烷酮、聚乙烯醇、甲基纤维素、聚丙烯酸酯、聚甲基丙烯酸酯、聚异丁烯、聚四氢呋喃、淀粉、多糖型聚合物(例如黄原胶)、硬葡聚糖、羟乙基化的纤维素型衍生物、羧甲基纤维素、木质素磺酸盐和半乳甘露聚糖衍生物,其单独使用或者作为混合物使用。

所述辅助剂还可以选自本领域技术人员已知的任何添加剂。

优选地,所述材料具有以下组成:

·1wt%至99wt%、优选5wt%至99wt%、更优选7wt%至99wt%并且甚至更优选10wt%至95wt%的至少一种沸石,

·1wt%至99wt%、优选1wt%至90wt%、更优选1wt%至50wt%并且甚至更优选1wt%至20wt%的至少一种水硬粘合剂,

·0wt%至20wt%、优选0wt%至15wt%、更优选0wt%至10wt%并且甚至更优选0wt%至5wt%的至少一种二氧化硅源,

·0wt%至20wt%、优选0wt%至15wt%、更优选0wt%至10wt%并且甚至更优选0wt%至7wt%的至少一种有机辅助剂,以重量计的百分比相对于所述材料的总重量表示并且所述材料的每种化合物的含量的总和等于100%。

根据本发明的所述材料有利地呈挤出物、珠粒或者丸粒的形式。

根据本发明的所述材料具有改进的机械特性,特别是在机械强度方面,其与所涉及的沸石含量无关,并且所述材料耐受高温,这意味着所述材料可以用于在水或者溶剂的存在下并且在相对高的温度下的过程中,虽然这受沸石温度表现的限制。

因此本发明的所述材料可以用于催化、气体储存和分离应用。

特别地,根据本发明的所述材料具有至少大于0.4daN/mm、优选至少大于0.9daN/mm并更优选至少大于1daN/mm的由颗粒压碎强度测试(后文称为GCS)测量的机械强度。即使在高至500℃的热处理之后(当相关的沸石耐受这样的温度时)并且对于包含相对于所述材料的总质量高至95wt%的沸石的材料组成,这些机械强度特性也得以维持。

术语“单粒压碎强度”是指由颗粒压碎强度测试(GCS)确定的本发明材料的机械强度。其涉及由以下步骤组成的标准测试(ASTM标准D4179-01):使呈毫米比例的物体(例如珠粒、丸粒或者挤出物)的形式的材料经受产生破裂的压缩力。因此该测试是对材料的抗张强度的测量。对一定数量的单独进行分析的固体形式、通常对10至200的数量的固体形式重复进行分析。所测量的横向破裂力的均值构成了平均GCS,其在颗粒物的情况下以力的单位(N)表示,并且在挤出物的情况下以每单位长度的力的单位(daN/mm,或者每毫米长度挤出物的分牛顿)表示。

本发明还涉及用于制备根据本发明的所述材料的方法,其包括至少以下步骤:

a)用于将至少一种沸石的至少一种粉末与至少一种水硬粘合剂的至少一种粉末和至少一种溶剂混合以获得混合物的步骤,

b)用于成型由步骤a)获得的混合物的步骤。

步骤a):

根据本发明,所述步骤a)由以下步骤组成:将至少一种沸石的至少一种粉末与至少一种水硬粘合剂的至少一种粉末和至少一种溶剂混合以获得混合物。

优选地,在步骤a)的过程中还混合至少一种二氧化硅源和任选的至少一种有机辅助剂。

优选地,可以以粉末或者在所述溶剂中的溶液的形式混合至少所述二氧化硅源和任选的所述有机辅助剂。

所述溶剂有利地选自水、乙醇、醇和胺。优选地,所述溶剂是水。

在本发明的文本中,完全可以设想制备多种不同沸石的粉末和/或不同的粉末状的二氧化硅源和/或不同的水硬粘合剂粉末的混合物。

其中将至少一种沸石、至少一种水硬粘合剂、任选的至少一种二氧化硅源和任选的至少一种有机辅助剂的粉末(在其中将这些以粉末的形式混合的情况下)与至少一种溶剂混合的顺序是无关紧要的。

可以有利地将所述粉末和所述溶剂全部一次性混合。

也可以有利的将粉末和溶剂交替加入。

优选地,在引入溶剂之前首先将所述至少一种沸石、至少一种水硬粘合剂、任选的至少一种二氧化硅源和任选的至少一种有机辅助剂的粉末(在其中将这些以粉末的形式混合的情况下)以干燥状态预混合。

然后有利地使所述预混合的粉末与所述溶剂接触。在另一个实施方案中,当使所述溶剂与至少一种沸石和至少一种水硬粘合剂的粉末接触时,可一开始将至少所述二氧化硅源和至少所述有机辅助剂溶解或者悬浮在所述溶剂中。与所述溶剂的接触导致产生混合物,然后将其混合。

优选地,通过分批或者连续混合进行所述混合步骤a)。

在其中以分批模式进行所述步骤a)的情况下,有利地在例如优选配备有Z型臂或者配备有凸轮的混合器中,或者在任何其他类型的混合器,例如行星式混合器中进行所述步骤a)。所述混合步骤a)可以用于获得粉末状成分的均匀混合物。

优选地,经5至60min、优选10至50min的时间段进行所述步骤a)。混合的臂的旋转速率有利地为10至75rpm,优选25至50rpm。

优选地,将

·1wt%至99wt%、优选5wt%至99wt%、更优选7wt%至99wt%并且甚至更优选10wt%至95wt%的至少一种沸石的至少一种粉末,

·1wt%至99wt%、优选1wt%至90wt%、更优选1wt%至50wt%并且甚至更优选1wt%至20wt%的至少一种水硬粘合剂的至少一种粉末,

·任选0wt%至20wt%、优选0wt%至15wt%、更优选0wt%至10wt%并且甚至更优选0wt%至5wt%的至少一种二氧化硅源(其优选呈粉末的形式),

·任选0wt%至20wt%、优选0wt%至15wt%、更优选0wt%至10wt%并且甚至更优选0wt%至7wt%的至少一种有机辅助剂(其优选呈粉末的形式),

引入步骤a)中,以重量计的百分比相对于化合物的总量、并优选相对于引入所述步骤a)中的粉末的总量表示,并且每种化合物的、优选引入所述步骤a)的每种粉末的量的总和等于100%。

步骤b):

根据本发明,所述步骤b)由成型由混合步骤a)获得的混合物组成。

优选地,有利地通过挤出或者粒化来成型由混合步骤a)获得的混合物。

在其中通过挤出来进行对由混合步骤a)获得的混合物的成型的情况下,有利地在单螺杆或者双螺杆式活塞挤出机中进行所述步骤b)。

在该情况下,可以任选地将有机辅助剂添加至混合步骤a)。所述有机辅助剂的存在促进了通过挤出进行的成型。所述有机辅助剂已在上文描述,并且将其以上文说明的比例引入步骤a)中。

在其中连续地进行所述制备过程的情况下,可以通过在同一设备中挤出使所述混合步骤a)与成型步骤b)相结合。根据该实施方法,可以通过从例如连续的双螺杆混合器的末端直接挤出,或者通过将一个或多个分批混合器连接至挤出机,来进行对也被称为“经混揉的糊料”的混合物的挤出。赋予挤出物其形状的模具的几何结构可以选自本领域技术人员熟知的模具。因此它们可例如为圆柱形、多叶片形、带纹道的或者有沟槽的形状。

在其中通过挤出来成型由步骤a)获得的混合物的情况下,对在混合步骤a)中添加的溶剂的量进行调整,所述调整的方式在与所使用的变体无关的情况下使得由该步骤获得不流动但也不过于干燥的混合物或者糊料,从而使得其能够在本领域技术人员熟知的并且取决于所使用的挤出设备的适当压力条件下被挤出。

优选地,用于通过挤出来成型的所述步骤b)在大于1MPa、优选3MPa至10MPa的挤出压力下运行。

在其中通过粒化来进行对由步骤a)获得的混合物的成型的情况下,对混合步骤a)中使用的溶剂的量进行调整以使得粒化模具能被容易地填充并且使其能够在本领域技术人员熟知的并且取决于所使用的粒化设备的适当压力条件下进行粒化。优选地,用于通过粒化来成型的所述步骤b)在大于1kN、优选2kN至20kN的压缩力下运行。成型丸粒的粒化模具的几何结构可以选自本领域技术人员熟知的模具。因此,例如,它们可以为圆柱形形状。丸粒的尺寸(直径和长度)适应于适合将在其中使用它们的方法的要求。优选地,丸粒具有0.3至10mm的直径和优选为0.25至10的直径与高度的比例。

用于制备本发明的所述材料的方法还可以任选地包括用于熟化由步骤b)获得的成型材料的步骤c)。有利地在0℃至300℃、优选20℃至200℃并更优选20℃至150℃的温度下经1分钟至72小时、优选30分钟至72小时、并更优选1小时至48小时并还要更优选1小时至24小时的时间段进行所述熟化步骤。

优选地,在空气中、优选在具有20%至100%、优选70%至100%的相对湿度的潮湿空气中进行所述熟化步骤。该步骤可以用于使材料适当地水合,其对于水硬粘合剂完全固化而言是必要的。

根据一个优选的实施方案,由成型步骤b)获得的并且已任选经历熟化步骤c)的成型材料不经历最终的煅烧步骤。在这种情况下,由成型步骤b)和任选的熟化步骤c)获得的成型材料的特性、特别是关于机械强度的特性未经改性并且仍然非常高。

根据另一个优选的实施方案,由成型步骤b)和任选的熟化步骤c)获得的成型材料还可以经历在50℃至500℃、优选100℃至300℃的温度下经1至6h、优选1至4h的时间段的煅烧步骤d)。该煅烧步骤对于消除用来促进材料成型的有机辅助剂而言是特别有用的。所述煅烧步骤d)的温度优选为50℃至在本发明的材料中使用的沸石或者沸石中最易碎者的劣化温度,优选为150℃至350℃,持续1至6h、优选2至4h的时间段。

有利地在包含例如氧气的气体物流中进行所述任选的煅烧步骤d);在一个优选的实例中,在干燥的空气中或者以不同的湿度水平煅烧挤出物,或者甚至在包含惰性气体(优选氮气)和氧气的气体混合物的存在下对其进行热处理。所使用的气态混合物优选包含至少5体积%或者甚至更优选至少10体积%的氧气。

在其中根据本发明获得的材料用作在高温下运行的过程中的催化剂载体的情况下,有利地进行所述煅烧步骤。在该情况下,有利地在所使用的材料在所述过程期间将暴露在的温度下处理所使用的材料。

在用于制备本发明的材料的方法的最后,获得的材料呈挤出物或者丸粒的形式。

然而,不无可能的是,然后可例如将获得的所述材料引入可以圆化其表面的设备,例如盘式造球机中,或者引入可用于滚圆它们的任何其他设备中。

根据本发明的所述制备方法可以用于获得根据本发明的材料,所述材料具有大于0.4daN/mm、优选大于0.9daN/mm并更优选大于1daN/mm的由颗粒压碎强度测量的机械强度值,其与所使用的沸石无关。

在本发明的制备方法的最后获得的材料可以用于在催化、分离、纯化、捕获、储存等方面中的应用。

使所述材料在反应器中与待处理的气态进料接触,所述反应器可以是固定床反应器或者径向反应器,或者甚至为流化床反应器。

在催化和分离的领域中的应用的情况下,对GCS而言的预期值为大于0.9daN/mm,优选大于1.0daN/mm。

以下实施例对本发明进行举例说明,而不限制其范围。

实施例

为了举例说明本发明,描述了若干制备实施方法,其基于对沸石的使用,特别是对使用在“Verifiedsynthesesofzeoliticmaterials”,第二修订版,2001中描述的制备方法制备的具有2.5的Si/Al比的Y沸石的使用。

实施例1(对比例)

使用来自MTS的带有用于压力和位移的仪表并具有由模具和冲头构成的系统的压缩机,将Y沸石粉末粒化以制备压实的丸粒。为这些测试选择的器件的直径为4mm。用粉末状的Y沸石供给模具并且将7kN的力施加至系统。

获得的压实的丸粒具有以下特征:SBET=800m2/g,GCS=0.7daN/mm。

通过X射线衍射进行的对压实丸粒的分析表明了由该成型方法造成的结晶度的轻微损失,所述成型方法还导致比表面积(其对于粉末状的沸石而言为850m2/g)的降低。当接触溶剂时丸粒轻易被摧毁(使用水和使用乙醇进行测试)。

实施例2(根据本发明通过挤出来成型的Y沸石):

包含67%的Y沸石的固体的制备:将Y沸石(67wt%)、二氧化硅(5.8%)、波特兰水泥(由Dyckerhoff生产的Blacklabel)(22.4%)和甲基纤维素(K15M)(4.8%)粉末引入Brabender型混合器中并在混合器中将其预混合。以重量计的百分比相对于所引入的粉末的总量表示。将水逐滴加入直至获得糊料,并然后继续混合20分钟。然后使用2mm直径的圆柱形模具经由MTS型活塞挤出机挤出获得的糊料。

在水泥固化期间(48小时)在环境条件下储存挤出物。

获得的挤出物具有2.0daN/mm的GCS值和575m2/g的SBET。

实施例3(根据本发明通过挤出来成型的Y沸石:后处理的效果):

包含67%的Y沸石的固体的制备:制备与实施例2相似,除了通过挤出来成型的材料在之后在包含100wt%的水的潮湿空气中在20℃的温度下经历熟化步骤48h。

在该情况下,机械强度得到更进一步的改善,GCS为2.7daN/mm。

实施例4(根据本发明通过挤出来成型的Y沸石):

包含80.9%的Y沸石的固体的制备:制备与实施例2相同,除了各种组分的以重量计的比例为:11.4%的波特兰水泥(由Dyckerhoff生产的Blacklabel)、2.9%的二氧化硅和4.8%的甲基纤维素,以及通过挤出来成型的材料在之后在包含100wt%的水的潮湿空气中在20℃的温度下经历熟化步骤48h。

获得的挤出物具有1.9daN/mm的GCS值和685m2/g的SBET。

实施例5(根据本发明通过粒化来成型的Y沸石):

将Y沸石(90wt%)、波特兰水泥(由Dyckerhoff生产的Blacklabel)(5%)和甲基纤维素(K15M)(5%)的粉末引入来自Brabender的混合器中并在混合器中将其与粉末的总重量的10%的水预混合15分钟。使用来自MTS的带有用于压力和位移的仪表并具有由模具和冲头构成的系统的压缩机,将获得的混合物粒化以制备压实的丸粒。为这些测试选择的器件的直径为4mm。将7kN的力施加至系统。然后使通过粒化成型的材料在包含100wt%的水的潮湿空气中在20℃的温度下经历熟化步骤4天。获得的压实的丸粒具有以下特征:SBET=760m2/g,GCS=1daN/mm。

与溶剂的接触不会摧毁丸粒(使用水和乙醇进行测试)。

实施例6(根据本发明通过挤出来成型的Y沸石):

包含95%的Y沸石的固体的制备:制备与实施例2相同,除了各种组分的以重量计的比例为:4%的波特兰水泥(由Dyckerhoff生产的Blacklabel)和1%的甲基纤维素,以及成型的材料在之后在包含100wt%的水的潮湿空气中在20℃的温度下经历熟化步骤48h。

获得的挤出物具有1daN/mm的GCS值和800m2/g的SBET。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1