有两个流化反应段与集成气/固分离系统的新反应器的制作方法

文档序号:11677475阅读:312来源:国知局
有两个流化反应段与集成气/固分离系统的新反应器的制造方法与工艺

本申请是申请号为200610169083.2申请的分案申请,申请号为200610169083.2申请的申请日是2006年12月20日。

本发明涉及一种新型的气-固流化床反应器,该反应器有集成的气-固分离系统,即完全是成套反应系统的一部分。成套反应系统应该理解是不同反应段(zone)系列,在本发明的情况下,它们包括至少一个以稠密或快速流化床方式运行的段,后接以转移流化床方式运行的第二段,为了简化起见将这种床称之转移床(littransporté)。在英语术语学中常常把以转移方式运行的段称之“提升管(riser)”。

使用传统的催化裂解催化剂,人们一般观察到,稠密(dense)流化作用是约1-30cm/s。快速方式的流化作用是从约30cm/s到1m/s。

在催化裂解设备的提升管内产生夹带床流化作用,在该设备内气体速度典型地是在提升管底部2-7m/s,而在其顶部达到10-30m/s。

在这里,对于其尺寸通常是50-80微米的催化裂解颗粒作为实例给出了流化速度。本技术领域的技术人员知道,这些不同方式之间的边界不是固定的,而是取决于固体颗粒的特性和流化气体的性质。

在催化裂解设备、某些流化床锅炉、丙烯腈合成、fischer-tropsch合成反应中,在制备聚乙烯的烯烃聚合反应器中,以及在能将甲醇转化成烯烃的方法中,遇到具有多种流化方式的流体床反应器。

这个名单并非是穷举性的,本发明应用于采用气固流化反应器的任何方法,该反应器具有至少两个反应段,在前面定义意义上的以稠密或快速流化方式运行的第一反应段,接着是以转移方式运行的第二段。术语第一和第二是在流体流动方向的意义上采用的。

本发明还涉及气固分离装置,这种装置位于以转移床方式运行的第二反应段出口,所述的气固分离装置能够严格地控制气体在以转移床方式运行的反应段中和在分离系统本身中的停留时间。

本发明描述的连接优点是以稠密或快速床方式运行的第一段,接着以转移床方式运行的第二段,接着气固分离装置,是可能使不同段之间的停留时间渐变(gradation),在进行大多数反应的第一个反应段(以稠密或快速床方式运行)得到最长的停留时间,接着在以转移方式操作的第二反应段中的停留时间较短。还可能的是,往第二反应段中注入第二反应物时,在所述的段中进行快速反应,或者根据期望的应用,往所述的传输段中注入冷或热的流体时,改变物流的温度。

在整个说明书中,停留时间定义为有关反应段的体积与气体流量的比,而接触时间定义为有关反应段中催化相的体积与气体流量的比。接触时间能够更精确地定义进行催化反应的特征时间。



背景技术:

关于用于fcc设备的流化床反应器的现有技术数量庞大,本文限于分析有关描述在提升管出口有气固分离装置的文件。

文件us4978440描述了使用“提升管”类反应器的催化裂解方法,该反应器在提升管下游的稠密相上面注入冷却流体。使用一套直接与提升管相连的旋风分离器实现气固分离。这种气固分离装置完全不同于本发明所述的装置。

us5112576描述了在提升管出口有催化分离系统的催化裂解设备,它由位于释放室内的内旋风分离器,后接对于所述室而言的外分离系统组成。这种分离装置完全不同于本发明所述的装置。

us4789458描述了一种催化裂解方法,其中汽提段和再生段有非常特定的温度。在提升管出口的气固分离装置是直接与“提升管”相连的旋风分离器类。

在引用的文件中没有一个文件描述反应段的结构,其中提升管(它可确认为本发明以转移方式运行的第二反应段)在以稠密或快速方式运行的第一反应段之前。在引用的文件中没有一个文件描述在提升管出口处的气固分离系统,因此它构成本发明的一部分。然而,本技术领域的技术人员知道,位于提升管出口处的气固分离系统能够限制来自初级裂解产物的降解反应,因此对选择性起着重要作用。本发明的气固分离系统能够确保气体在所述分离器中的停留时间为0.5-3秒。因此,在催化裂解范围内,它对控制不期望的热降解反应,加之为联产一定量的丙烯而极为严格的裂解有直接的影响。

更一般地,本发明与现有技术反应器的段别在于不仅完全控制了在反应器中的总停留时间,而且还完全控制了在反应器不同段中的分配,即第一反应段、第二反应段和气固分离系统。

附图说明

图1表示有本发明固气分离系统的反应器的侧视图;

图2表示本发明反应器的俯视图,该图能够更好地说明气固分离系统的结构。



技术实现要素:

本发明是一种气固反应器,按照气固悬浮液的流动顺序,该反应器包含至少一个催化剂调节段、至少一个以稠密或快速床方式运行的第一反应段、至少一个以携带床(lit)方式运行并直接与第一反应段出口端相连的第二反应段,第二反应段本身直接与初级气固分离器相连。因此本发明的反应器在不同反应段之间停留时间如此分配,以致反应物在第一反应段内的停留时间是4-10秒、在第二反应段内的停留时间是0.5-5秒、在初级分离器内的停留时间是0.5-3秒。

初级分离器内的停留时间一般是25%以下的反应器内总停留时间,优选地是10%以下的反应器内总停留时间。

因此,本发明的气固反应器包括三个不同的段:

●以稠密流化方式运行的催化剂调节段,该段能够使该气固悬浮液达到空隙率(fractiondevide)为0.45-0.85,优选地0.5-0.6;

●以稠密或快速流化方式运行的第一反应段,它供给烃馏分,任选地与水蒸汽混合的烃馏分;

●第二反应段沿着反应流体流动的方向直接接在第一反应段后,它以转移流化方式运行。除了来自第一反应段的流出物外,这个第二反应段在某些情况下还供给第二种含烃物料。

第二反应段直接与第一反应段相连,这意味着在第一反应段出口端与第二反应段入口端之间没有任何其他的段。然而,这两个段之间的通道可以是渐进的(progressif),往往利用圆锥形过渡段实现其通道。

第二反应段通过其出口端与初级气固分离系统直接相连,该系统是本发明整体的一部分。

本文下面将详细描述该初级气固分离系统。

本发明集成具有一个调节段、两个流化反应段和气固分离系统的气固反应器,其特征还在于第二转移反应段中的接触时间是0.01-0.5秒,优选地0.05-0.3秒。

同时,反应物在这个第二反应段内的停留时间一般是0.5-5秒。

一般而言,第一反应段运行的体积分数是0.55-09,表面气体速度(vitessessuperficiellesgaz)是0.3-5m/s。

气固悬浮液在初级分离器入口的速度一般是5-50m/s,优选地15-30m/s。

气体在初级分离器中的停留时间一般是0.5-3秒。

把待处理的原料或初级原料加到位于第一反应段上游的催化剂调节段中。于是给该反应器供给烃原料,该原料可以按照比例1-100重量%,优选地2-25重量%与水蒸汽进行混合。

给第二反应段供给二次烃原料,该原料的分子量小于或等于供给第一反应段的初级原料的分子量。

本发明有两个流化反应段的气固反应器的第一种应用在于生产丙烯,初级原料大部分由沸腾烃构成,即在560℃至少90%烃构成,如汽油、煤油、柴油或减压蒸馏物或这些馏分的混合物,二次原料由c4和c5低聚物构成。

本发明有两个流化反应段的气固反应器的第二种应用在于使用甲醇生产c2/c3/c4烯烃。

本发明有两个流化反应段的气固反应器的第三种应用在于将含有的固体生物量(biomasse)转化成液体烃馏分。

本发明流化床反应器的第四种应用在于使含有焦炭(coke)的固体颗粒再生,所述的再生是在空气或氧气中通过燃烧实现的。

当然,列举的应用没有限制本发明的应用领域,它涉及任何实施的流化态反应,其中控制反应器中的总停留时间是一个十分重要的因素。

更确切地,本发明的反应器特别适合于控制总停留时间及其在不同反应器段中的分配,即以稠密或快速流化方式运行的第一反应段、以转移流化方式运行的第二反应段和气固分离系统本身。

本发明描述了一种新的流化床反应器,该反应器包括至少一个催化剂调节段、至少一个以稠密或快速流化方式运行的第一反应段、后接至少一个以转移流化方式运行的第二反应段,并集成了与第二反应段上端直接相连的气固分离系统。

术语“第一反应段”和“第二反应段”应该按照反应流体流动方向理解,其方向是垂直向上的。

把这些固体颗粒通过至少一条供给管道加到在反应段前的调节段中,所述的固体颗粒可能部分来自再生段或热交换段。

本技术领域的技术人员应该从通常的意义上理解术语“再生”,即使在反应阶段过程中沉积的焦炭燃烧,恢复其催化剂活性。一般而言,已用催化剂的再生段以流化床方式操作。

同样地,热交换段可以是任何类型的,但在本发明的范围内,它优选地是以流化床方式的。

在本文下面,简要地谈到第一反应段,已知它以稠密或快速流化方式运行,和第二反应段,已知该段以转移流化方式运行。

第二反应段直接与第一反应段相连,这意味着第一反应段出口端与第二反应段入口端之间没有任何其他的段,除了任选通常为圆锥形的连接段。

由图1和2将更好地理解本说明书下文。

图1表明本发明反应器的详细结构,其中通过新的或再生的颗粒供给管道(2)和来自交换器(35)的再循环颗粒供给管道(3)将这些颗粒加到以稠密方式运行的催化剂调节段(1)中。

在调节段(1)的下部,这些新颗粒与再循环颗粒一般使用流化构件(5)进行流化混合。

在调节段(1)的下部流体流动的特征在于空隙率是0.45-0.85,优选地0.5-0.6。

流体流动的空隙率定义为颗粒未占用体积与颗粒未占用体积和占用体积之和的比。

使用管道(2)上的阀(6)控制新颗粒流动,使用管道(3)上的阀(4)控制再循环颗粒流动。

使用加料器(7)把反应流体(8)加到在稠密或快速阶段的反应段(9)底部,以便让所述的流体在稠密或快速第一反应段(9)的整个截面上达到良好的分配。

可以加入气态、液态或气固混合相的反应流体(8)。当加入液态反应流体时,使用喷雾器(7)将其转变成细滴,以便有利于与固体颗粒接触时蒸发(vaporisation)。

来自喷雾器(7)的液滴尺寸是这样的,以致其值接近于固体颗粒尺寸,优选地小于固体颗粒的尺寸。

实质上(essentiellement)在调节段(1)后,在第一反应段(9)、(10)、(11)中进行气固反应。

第一反应段本身可以分成许多以稠密或快速流化方式运行的段。构成第一反应段的这些不同反应段,其特征在于体积分数是0.55-0.9,表面气体速度是0.3-5m/s。

对于一般为40-100微米尺寸(沙得直径(diamètredesauter))的固体颗粒,气体速度的值是给定的。本发明可以应用于粒度比40-100微米或大或小的颗粒,这时调整气体速度值,以保持所期望的流化方式。

优选地,本发明应用于其平均尺寸(沙得直径)25μm至1mm,优选地50-500μm,颗粒密度(lamassevolumiquedegrain)500-5000kg/m3的颗粒。

原料和固体颗粒(9)实施接触的段后面接着一个圆锥形逐渐增大的段(10),它本身接着一个上段(11),其体积足以达到化学反应所需要的停留时间和接触时间。

这组段(9)、(10)和(11)构成第一反应段。

在第一反应段(11)的上部中,有可能使用分配器(13)加入辅助流体(fluideauxiliaire)(12),所述的分配器例如像图1所示在壁上的喷嘴或环(钻有适当尺寸孔的环),或钻有适当尺寸孔的管,或本技术领域的技术人员已知的其他任何系统。

这种辅助流(12)可以是在反应段中用于阻断反应进行的冷却流体。它还可以是其反应性比加到第一反应段(9)、(10)和(11)下部中的一种或多种反应物高得多的反应物。

第一反应段一般是以圆锥形的过渡段(14)结束,该过渡段将气体速度增加到5m/s以上,从而将全部颗粒转移到以转移床方式运行的第二反应段(15)、(16)。

以转移床方式运行的第二反应段(15)、(16)体积比第一反应段(9)、(10)和(11)相对低些。

该气固悬浮液在这个第二反应段中的速度相当高时,气体在所述段中的停留时间是短的,进行的化学反应一般是可忽略不计的,除非可能发生动力学非常快的反应。

典型地,反应物在第二反应段中的接触时间是在整个反应器中总停留时间的25%以下,优选地20%以下。

因此,仅非常快的反应或许可能以显著方式(demanièresignificative)持续进行。

在第一反应段(9)、(10)和(11)中,反应物与催化剂的最佳接触时间一般是0.5-15秒,优选地1-5秒。

反应物在第一反应段中的停留时间一般是2-25秒,优选地4-10秒。

在第二反应段中的接触时间一般是0.01-0.5秒,优选地0.05-0.3秒。

反应物在第二反应段中的停留时间典型地是0.5-5秒。

第二反应段(16)的上部与集成的气固分离系统连通,它包括一组分离室(17)和汽提室(18)(chambredestripage),所述的室交替地排列在第二反应段(15)、(16)周围的室内(enchapelles)。所述的集成气固分离系统构成初次分离。

根据本发明的优选具体实施方案中,分离室的数量等于汽提室的数量。

通过在第二反应段(16)侧壁中的开口(19)实现第二反应段(16)与各个分离室(17)之间的连通,所述的段(16)有封闭的上截面,以便强制气固悬浮液通过侧开口(19)进入所述的分离室。

导向装置(déflecteur)(21)构成分离室(17)的内壁,它基本上与圆形上壁(20)平行。

因此,由圆形的上壁(20)和导向装置(21)限定了分离室(17)的上段。

因此,气固悬浮液绕着导向装置(21)进行旋转,在离心力的作用下,它能够将其气固悬浮液分离成固体颗粒和带有少量固体颗粒的气体,所述的固体颗粒排到分离室(17)下部,而所述的气体通过由图2可见的开口(24)排到与分离室相邻的汽提室(18)。

从分离室(17)下部回收的固体颗粒然后通过开口(23)送到汽提段(30)。

在分离室(17)上部通道后的大部分除尘气体通过位于导向装置(21)下面位置的开口(24)加到与分离室(17)相邻的汽提室(18)中,所述的开口(24)是在所述分离室(17)的垂直壁(25)上钻的孔。

汽提室(18)通过其下部(31)与汽提段(30)连通。

带有少量固体颗粒的气体通过位于汽提室(18)上部的管道(26)送到在图1上用一组平行排列的旋风分离器(27)表示的二次气固分离系统。

采用二次分离系统分离的固体颗粒通过返回管(38)再加到位于汽提段(30)的反应器中。

来自二次气固分离系统的除尘气体通过管道(39)排出。

如果需要,这个二次分离系统可用三次分离系统完成,三次分离系统可以是第二级旋风分离器、一组多个旋风分离器或静电除尘器。

一般而言,取决于所要求的规格,可以在初级气固分离系统的下游放置本技术领域的技术人员已知的与本发明反应器相适应的任何除尘系统,初级气固分离系统是纳入本发明流化床反应器的一部分。

由于初级气固分离器的气体中的固体颗粒平均浓度比以转移方式运行的第二反应段的气体中的低5-500倍,所以在所述初级分离器中,更不必说在其下游,进行副反应的危险性是非常低的。

此外,在初级分离器中的停留时间一般是0.1-10秒,优选地0.5-3秒。

由分离室(17)到达汽提段(30)的固体颗粒一般以逆流方式与惰性流体进行接触,以便置换吸附在固体颗粒表面上的烃,并用通过开口(24)离开分离室(17)的气体回收烃。

用于汽提固体颗粒的惰性气体可以是水蒸汽、氮气或对固体颗粒呈惰性的分子量相对低的任何其他气体,以便降低烃分压。

使用分布系统(28)使汽提气体与固体颗粒接触,该分布系统优选地造成固体颗粒稠密流化,得到的流化床水平面范围(unniveaudelit)优选地位于开口(23)水平面和开口(31)水平面之间。

目的在于改善固体颗粒与汽提气体之间的接触时,有可能在汽提段(30)中安排机械接触系统(29)。

在本技术领域的技术人员熟知的接触系统中,可以非限制性地列举结构化填料或散装填料、以隔板为基的系统、倾斜或非倾斜波纹板。这样一些系统有利于固体颗粒向下流动,同时保持气泡向上流动。

本发明不涉及任何特别类型的接触系统。

可以借助管道(32)或(34)在汽提段(30)取出反应器中固体颗粒,将至少部分固体颗粒或者送到再生段(图1未绘出),或者直接再循环到在调节段(1)的流化反应器入口,或者加到热交换段(35),然后再加到调节段(1)。

一部分固体颗粒加到再生段时,可以通过阀(6)控制颗粒流,阀(6)能够将在汽提段(30)中床保持在确定的水平面。

流化交换器(35)装有可以有不同形状的交换束(36),这些形状与所述交换器内的颗粒流化相适应。

交换器(35)内的流化速度一般是5cm/s-1m/s,优选地5cm/s-0.5m/s。

如果固体颗粒应该进行再加热,则提供热量的流体(37)在交换束(36)内循环,如果固体颗粒应该进行冷却,则除去热量的流体(37)在交换束(36)内循环。

本发明是与以流化床方式运行的任何热交换系统相容的。一般而言,使用的热交换流体(37)是水蒸汽。

借助配置固体流量控制阀(4)的管道(3)把固体再加到反应器的调节段(1)中。

本发明的反应器可以应用于含烃原料在严格条件下的催化裂解,生产出轻烃和高附加值的烃(如汽油、lpg和丙烯)。

这样一种催化裂解进展以术语石油化学fcc为人们所知。

在这样一些高度严格的催化裂解设备中,物料可以是原油常压蒸馏馏分,或是由一次加氢裂解处理、加氢处理或低聚合处理得到的馏分。

使用的催化剂一般是含有大量usy或rey沸石的二氧化硅-氧化铝。

该催化剂还可以含有一定量的zsm-5沸石,该沸石或者以颗粒直接与其他沸石混合,或者以单颗颗粒形式加入。

该催化剂磨碎成细颗粒,其平均直径(沙得直径)一般是40-150μm。如在通常的催化裂解设备中一样,它应该至少部分连续地进行再生。

一些颗粒的粒子密度一般是1000-1800kg/m3,优选地1300-1700kg/m3

在温度450-700℃,优选地在520-600℃下进行这些裂解反应。压力一般是1-15绝对巴,优选地1.1-3绝对巴(1巴=0.1mpa)。

可以随物料一起注入水蒸汽,它的含量是以物料计5-50重量%,从而降低烃分压,有利于烯烃的选择性。

为了达到丙烯的高产率,在以转移流动方式操作的第二反应段的上游,注入二次烃物料可能是有意义的,这种物料例如是来自c4-c5类轻烯烃低聚合方法的轻汽油或汽油馏分。

特别地,可能将本发明的反应器与处理常压蒸馏残留物或真空馏出物的常见fcc设备联用,术语“联用”表示例如来自通常fcc的汽油作为初级原料加到本发明反应器的第一反应段,而c4/c5低聚物馏分作为二次原料加到以转移床方式运行的第二反应段中。

更一般地,初级原料可能由大部分(至少90%)在560℃沸腾的烃构成,例如汽油、煤油、柴油或真空馏出物或这些馏分的混合物。

这样一种结构能使丙烯产率最大化,同时限制产生干气体。

本发明反应器的第二种应用涉及将含有氧原子的轻烃(如甲醇)转化成轻烯烃(乙烯、丙烯和丁烯)。

这样一种反应使用的催化剂一般含有sapo34、zsm-5类或丝光沸石类的沸石,或这些不同成分的混合物。

通常在温度400-650℃、压力1-15绝对巴(1巴=105帕),优选地1-5绝对巴下,在通过注入水蒸汽达到低的烃分压下进行这些反应,该水蒸汽可以是甲醇流量的10-100重量%。

如在催化裂解设备中一样,该催化剂应该连续地进行再生。

进入再生的催化剂流量与新物料流量的比一般是2-100,优选地4-50。

循环到该反应器的催化剂的流量与再生催化剂的流量的比一般是0.5-10,优选地1-5。

本发明反应器的第三种可能应用涉及生物量转化成液体流出物。任选地与反应液体混合或用气流输送的生物量作为固体加到该反应器,从而形成加到反应段中的假(pseudo)流体相。

使用如砂之类的惰性固体时,这些裂解反应可能是放热反应,如果使用fcc用过催化剂类的固体,则这些裂解反应是催化反应。

希望液体流出物产生最多时,这些反应一般在450-900℃,优选地450-650℃下进行。

生产最多烯烃时,温度优选地是650-900℃,操作压力是1-10巴,一般用水流或水蒸汽稀释生物量物料,水流或水蒸汽可以达到直到100重量%加入生物量。

在该方法中使用的固体相一般应该经过再生,烧掉在生物量转化过程中沉积的焦炭。

本发明反应器的第四种可能应用在于在催化裂解设备中使用的含焦颗粒的再生,或在热方法中已用作传热流体但也有焦炭沉积的颗粒的再生。

一般而言,焦炭含量是以颗粒重量计0.5-5重量%,优选地0.5-1重量%。

再生所必需温度一般是550-990℃,优选地600-800℃,空气与焦炭的比一般是8-20,优选地10-15。

纯粹作为说明列举了这些应用,而它们不限制本发明的应用领域,本发明延伸到需要严格控制在反应器中,特别在与之相关的气固分离系统中的停留时间的任何气固反应。

具体实施方式

本发明的实施例

通过阅读下面两个实施例将会更好地理解本发明反应器的优点,该实施例涉及为生产烯烃而高度严格催化裂解类的应用。

1)第一个实施例是通常的流化床反应器与本发明的流化床反应器的对比实施例。

在通常流化床工艺学中(表1中的lf)与在使用两个反应段的本发明反应器中,在采用非常严格的条件下进行vgo(石油真空馏出物)催化裂解进行了比较,所述两个反应段的第一反应段以稠密流化方式运行,而第二反应段以转移流化床方式运行(表1中计为nc)。

主要操作条件、几何尺寸和产率结构汇集于下表1中。

通常的流化床反应器由稠密相与其上的稀释相构成。稠密相以快速流化方式运行,其直径是4.42m,表面流体速度是0.75m/s。为了限制夹带,位于稠密相之上的稀释相具有较大的横截面5.42m,表面流体速度因此较低,即0.5m/s。

在这个稀释段中输送颗粒因此相对少些,只是细颗粒被夹带到在下游的分离段。

因为只是一部分颗粒被夹带,所以这个稀释段不以转移方式操作的。由这种实施导致在稠密流化床或稠密相之上的稀释相中的停留时间比在稠密相中的停留时间长(20秒对4.2秒),这样有利于反应产物的热降解作用。

本发明流化床反应器(nc)的不同之处在于第一反应段的表面速度较高,即1.5m/s(通常反应器中的速度是0.75m/s),而第二反应段以表面速度10m/s以转移方式操作。

因此,进入第二反应段中所有颗粒都被输送。

第一反应段的直径比通常流化床反应器的直径小(3.13m对4.4m)。但是,由于等效高度稍大,在通常的流化床反应器中与在本发明的流化床反应器中的接触时间相近。

第二反应段的直径则低得多(1.17m对5.42m)。

由此得出在第二反应段中的停留时间减少很多,从通常反应器的20秒减少到本发明反应器的1秒以下。

这些几何形状、流化速度和停留时间上的差异表现在表1说明的选择性显著提高。

主要得出:

●热降解产生较少的干气;

●焦炭少;

●汽油和c3-c4轻质馏分(lpg)多。

表1

2)第二个实施例说明为了轻烃裂解生产最多的丙烯而使用本发明的反应器。

本实施例采用本发明的反应器,它使用连续的两个反应段,第一反应段以快速流化方式操作,第二段以转移流化方式操作。

主要物料是来自通常fcc反应段的裂解汽油。

第二种物料加到以转移方式操作的第二反应段入口。这第二种物料是一种反应性高得多的汽油,它主要由c4-c5馏分低聚合所得到的烯烃组成。

这种低聚合汽油需要催化裂解的接触时间短得多。因此,往第二反应段注入第二种物料是特别有利的,这样限制了如果这种第二种原料注入到第一稠密反应段中时不可避免地发生的过度裂解反应和氢转移反应。

如本发明所描述的快速分离器在0.5秒内能将气体流出物与再加到本发明反应器汽提段中的固体颗粒快速分离。

因此,本发明的反应器能够处理两种反应性非常不同的物料,同时制约生成产物的降解反应。由此得到最大量的产物,例如c3和c4,即注入物料的45重量%以上。

这个第二实施例说明了采用本发明反应器使用第一种fcc汽油原料和第二种低聚合汽油原料生产烯烃的可能性,这两种原料分别送到第一反应段和第二反应段,以便优化烯烃的转化率。

原料1:裂解汽油

原料2:低聚合汽油

来自反应器的产物

表2

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1