Au/ZnO三维反蛋白石异质结构光催化剂及其原位制备方法和应用与流程

文档序号:11623965阅读:369来源:国知局
Au/ZnO三维反蛋白石异质结构光催化剂及其原位制备方法和应用与流程

本发明涉及复合纳米材料光催化剂制备及环境污染物治理领域,具体涉及一种高性能的三维有序大孔-介孔au/zno异质-反蛋白石结构光子晶体的制备及其在光催化领域的应用。



背景技术:

当前,工业化的发展为社会创造着巨大的物质财富的同时,也造成了严重的环境污染。特别是近几十年来,环境内分泌干扰物质(environmentalendocrinedisruptors,eeds)的广泛生产和使用(各行各业的化学品,包括杀虫剂、阻燃剂、杀菌剂、农药、消毒剂、清洁剂和塑料等等,其中塑料工业中使用尤甚),已致使其进入自然水体中,严重危害了动物和人体的生殖系统和遗传(早熟、男性女性不妊、男性精子数量质量下降、男性生殖器异变、睾丸变小、母乳减少、生育男孩的能力下降、先天畸形、后代学习能力下降与多动症、子宫癌、乳癌等生殖系统的各种异常,而且eeds进入人体产生的后遗症会祸延第二代甚至第三代)。

eeds是指可以模拟人体荷尔蒙(激素)并可扰乱内分泌的物质。它主要包括双酚a(bpa)、雌二醇(e2)、烷基酚、邻苯二甲酸盐、多溴联苯醚(pbdes)、六溴十二烷(hbcd)、多氯联苯(pcb)和四溴双酚a(tbbpa)[4-6]。其中双酚a由于其独特的性质,而被用作各种有机化工原料。例如因双酚a添加到塑料中可以使其耐用、轻巧、抗冲击、无色透明和防止酸性物质(水果、蔬菜等)从内部侵蚀金属,而被广泛应用于奶瓶、饮料与食品的包装袋以及其他数百种日常生活用品之中。仅2010年全球bpa生产量达600万吨,其中我国产量高达60万吨,而且我国还有进口30万吨。bpa是我国需求量增长较快的化学品之一,因而bpa的产量也呈现快速的年增长态势。现在,bpa在我国各地区水体中已广泛存在。而最早将bpa禁止或限制使用的法律标准是2010年实施的欧盟《restrictionofhazardoussubstances,rohs》。我国则是从2011年起,禁止生产、进口和销售聚碳酸酯和其他含bpa的婴幼儿奶瓶。

正因bpa在环境中已广泛存在和对生物严重的毒副作用,去除环境中bpa的研究受到了各国的高度关注。一方面是控制bpa向水体中的释放,另一方面是对水体中已存在的bpa进行技术去除。经调研,bpa的去除主要有物理吸附、微生物法以及化学氧化法。物理吸附法虽然简便,但是存在吸附-脱附平衡,致使水体中依然有bpa残留,而且吸附容量受ph和温度等因素影响大。微生物法通过微生物富集-降解bpa,然而此法需时长、降解率低。化学氧化法包括电化学氧化(设备复杂)、化学试剂氧化(试剂流失、造成二次污染)和光化学氧化。其中光催化氧化技术由于太阳光驱动、绿色和反应条件温和显示了巨大的应用潜力。但是,目前用于bpa降解的光催化剂大都为紫外光响应的半导体,如zno、tio2等。虽然也有部分可见光响应光催化剂,如ag3po4、pd/g-c3n4等,但是其光催化效率低,特别是矿化率较低,这就意味着bpa并没有被完全氧化为co2和h2o,而是生成了其他有机物分子(造成二次污染)。那么如何设计光催化剂以提高其太阳光利用率和bpa矿化率呢?

这让本申请的发明人想到了由于其特有的光子晶体效应和独特的物理光学性质而被《science》评选为十大热点领域之一的光子晶体。三维反蛋白石结构光子晶体不仅具有光子晶体效应(提高太阳光利用率)和三维有序大孔-介孔结构效应,而且这种光子晶体催化剂不像纳米颗粒粉末存在固液相难分离的问题。光子晶体结构催化剂已经在申请人及他人的研究工作中被证实是一种有效分解有机染料的光催化剂。然而已报道的光子晶体结构光催化剂多为紫外光响应光催化剂,并多用在有色有机染料的降解。对于紫外-可见光(太阳光)响应的光子晶体光催化剂以及用于去除环境内分泌干扰物质的研究还未见报道。因此,开发能用于环境内分泌干扰物质降解的宽光谱响应、高效的光子晶体结构型光催化剂仍是挑战。



技术实现要素:

本发明旨在提供一种新型、宽光谱响应、高效的用于光催化降解环境内分泌干扰物质的au/zno三维反蛋白石异质结构光催化剂及其制备方法,所要解决的技术问题是现有光催化剂bpa光催化降解效率低,以及现有光子晶体光催化剂光谱响应范围窄、载流子分离效率不理想、制备工艺复杂、成本高的问题。

本发明为实现发明目的,采用如下技术方案:

本发明的au/zno三维反蛋白石异质结构光催化剂(记为au/zno-io),其特点在于:所述光催化剂是由原位生长法制备的au/zno三维反蛋白石异质结构,au纳米颗粒均匀镶嵌在zno三维有序fcc孔结构内外两侧。在au/zno-io中,au与zno的质量比为0.05%~3%。

本发明au/zno-io的原位制备方法,是按如下步骤进行:

a、将表面羧基修饰的ps球单一的分散于水中,获得质量百分数为0.05-2%的ps乳浊液;将3~3.5g硝酸锌和一定质量的氯铂酸溶于20ml由水和乙醇按体积比3:2构成的混合液中,获得au/zno前驱液;其中氯铂酸的用量根据目标产物中au与zno的质量比计算获得;

b、将清洗干净、n2吹干的载玻片或导电玻璃片竖直插入在装有ps乳浊液的塑料烧杯中,并利用透明胶带固定;然后置于温度45℃、湿度80%~90%的烘箱中处理20h,获得蛋白石结构ps球模板;

c、将所述蛋白石结构ps球模板置于90℃无风条件下热处理20-60min,经自然冷却后,慢慢放入au/zno前驱液中,静置90-120s后,慢慢将其取出,平放于水平台面上,室温下自然晾干,获得填充有au/zno前驱液的蛋白石结构ps球模板;

d、将所述填充有au/zno前驱液的蛋白石结构ps球模板平放于马弗炉中,在400℃~500℃条件下煅烧4h,然后自然冷却至室温,即获得目标产物au/zno三维反蛋白石异质结构光催化剂au/zno-io。

步骤d中煅烧的升温速率优选为1℃/min。

上述的制备方法:步骤a中ps球的质量分数大于2%,会导致ps球无序堆积以至于不能自组装形成完整的蛋白石结构;步骤a中烘箱的湿度需控制在80%以上,否则当ps球质量分数在0.5-2%时,ps膜容易开裂;步骤b中适当的热处理有利于增强ps球之间的连接,以提高ps膜整体的机械强度;步骤c中乙醇的添加有利于au/zno前驱液浸润ps球、减小au/zno前驱液的粘度,以此完成au/zno前驱液的完整填充;步骤d中,煅烧温度需控制在400℃及以上,若低于450℃,得不到结晶度很好的au纳米颗粒,若高于500℃,则反蛋白石结构会有塌陷以及au纳米颗粒会长大。

本发明进一步公开了au/zno-io光催化剂的应用,其特点在于:所述的光催化剂用于水体中无色、难降解有机污染物特别是环境内分泌干扰素的光催化降解治理。

与已有技术相比,本发明的有益效果体现在:

1、本发明公开了au/zno-io光催化剂的一步原位制备方法,具有活性稳定性高、制备工艺简单、反应条件可控的优点,同时所用原料廉价易得,有效的降低了成本;本发明所得催化剂相比于氧化物型和两步法制备的au/zno反蛋白石结构催化剂,其对bpa的降解率及矿化率都有了显著的提高;

2、本发明首次将au/zno-io光催化剂应用于光催化去除环境内分泌干扰素领域,发现了其能高效稳定地降解、矿化环境内分泌干扰物质的代表性物质——bpa;经测试,对起始浓度为5ppm的bpa水溶液,在模拟太阳光照射下,au/zno-io在100min的催化剂接触时间下对bpa稳定降解率高达86%、矿化率达72%。并且由于au/zno-io是膜光催化剂,因此可以避免传统粉末光催化剂在反应后的分离难题。

附图说明

图1是实施例1所制备au/zno-io的ps球模板(图1(a))、au/zno-io(图1(b))、au/zno-p的ps球模板(图1(c))、au/zno-p(图1(d))的sem图(插图为其对应的实物照片);

图2为实施例1所得au/zno-io的tem图;

图3为实施例1所得au/zno-io和au/zno-p的xrd图;

图4为实施例2所得zno-io/au的tem图;

图5为实施例3所得zno的sem图;

图6为实施例1、2和3所得au/zno-io、au/zno-p、zno-io/au和zno光催化剂降解bpa的活性图;

图7为实施例1、2和3所得au/zno-io、au/zno-p、zno-io/au和zno光催化剂降解bpa的矿化率图。

具体实施方式

下面结合具体实施例对本发明进一步说明,具体实施例的描述本质上仅仅是范例,以下实施例基于本发明技术方案进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

实施例1

本实施例按如下步骤制备au/zno-io:

a、将表面羧基修饰的ps球(ps球粒径为180nm)单一的分散于水中,获得质量百分数为1.5%的ps乳浊液;将3.5g硝酸锌和0.04g的氯铂酸溶于20ml由水和乙醇按体积比3:2构成的混合液中,获得au/zno前驱液;

b、将清洗干净、n2吹干的载玻片竖直插入在装有20mlps乳浊液的50ml塑料烧杯中,并利用透明胶带固定;然后置于温度45℃、湿度80%~90%的烘箱中处理20h,获得蛋白石结构ps球模板;

c、将蛋白石结构ps球模板置于90℃无风条件下热处理30min,经自然冷却后,慢慢放入au/zno前驱液中,静置120s后,慢慢将其取出,平放于水平台面上,室温下自然晾干,获得填充有au/zno前驱液的蛋白石结构ps球模板;

d、将填充有au/zno前驱液的蛋白石结构ps球模板平放于马弗炉中,在450℃条件下煅烧4h,起始温度为室温、升温速率为1℃/min;然后自然冷却至室温,即获得目标产物au/zno三维反蛋白石异质结构光催化剂,记为au/zno-io。

为了和三维有序孔结构au/zno-io做对比,本实施例还制备了无序多孔状的au/zno复合结构(au/zno-p),其制备方法与au/zno-io基本相同,区别仅在于将步骤a中的ps乳浊液换成由不同粒径的ps球(520nm、340nm、280nm和180nm)混合而成。

图1为本实施例所制备的au/zno-io的ps球模板(图1(a))、au/zno-io(图1(b))、au/zno-p的ps球模板(图1(c))、au/zno-p(图1(d))的sem图(插图为其对应的实物照片)。从图1(a)中可以看出制备au/zno-io的ps球模板由大小均一的180nm的ps球有序排列组装成蛋白石结构,从其插图照片的明亮色彩可以证实其为光子晶体,否则的话,不会有光亮的色彩。从图1(b)及其插图中可以看到成功制备了三维有序au/zno反蛋白石结构。从图1(c)可以清楚看到用以制备au/zno-p的ps球模板由不同粒径的ps球无序的组装而成,因此其没有明亮的颜色,而是ps球本来的颜色——白色。得到的au/zno-p则为无序多孔结构。

图2为本实施例所得au/zno-io的tem图,可以看到au纳米小颗粒均匀的分布于zno骨架上,不论是孔腔内外还是上下。这里有一点需要说明的是,au/zno-io的tem图没有其sem图中显示的结构那么规整,是因为在tem测试时没法对块体物质进行测试,制样过程中需要将大块的au/zno-io样品超声震碎,以至于破坏了au/zno-io的三维有序反蛋白石结构。

图3为au/zno-io和au/zno-p的xrd图,从图中可看出au/zno-io和au/zno-p的确是由zno和au两种物质构成,没有其它物质或者杂质出现。而且zno和au分别为六方相zno(jcpdsno.36-1451)和立方相au(jcpdsno.04-0784)

实施例2

为了和原位法制备au/zno-io作为对比,采用两步法制备zno-io/au:采用和制备au/zno-io一样的合成步骤制备zno-io(不同之处在于前驱液中不要加入氯金酸),之后再在zno-io上负载au纳米颗粒。zno-io上负载au纳米颗粒过程如下:首先将zno-io放入磁控溅射腔底部阳极托盘上(所用磁控溅射仪为england,emitechk550x),抽真空,在氩气气氛下溅射30s,即得zno-io/au。

图4为zno-io/au的tem图,从中可以看到au纳米小颗粒并没有均匀的负载在zno的骨架上,而是按照图中箭头方向负载在部分zno的骨架上,而虚线框范围之内的zno上并没有au小颗粒附着。这是因为磁控溅射由上而下,而zno-io的孔分布符合fcc堆积,即孔道交错分布,致使au只能分布在上表面的zno骨架上,下表面和内部则很少有au附着。这也是和一步法制备au/zno-io的最大不同之处。

实施例3

为了和au/zno做对比,制备zno采用过程与实施例1相同,不同之处在于载玻片上没有ps球、前驱液中没有氯金酸。

图5为zno的sem图,从图中可以看到zno为几十纳米到几百纳米不等的纳米颗粒。

性能测试

为测试上述实施例1所得光催化剂au/zno-io对环境内分泌干扰物质代表性物质bpa的降解效果,同时与现有常用的au/zno-p、zno-io/au和zno的降解效果进行对比,设计测试方法如下:取一长32mm、宽12.5mm、高45mm的自制石英反应器,先将一个长5mm的磁子放入其中,再将附着有光催化剂au/zno-io、au/zno-p、zno-io/au或者zno的载玻片(长75mm、宽26mm、厚1mm;其中光催化剂覆盖载玻片的长度为30mm)插入石英反应器,并用夹子悬挂固定。之后将10ml5ppm的bpa水溶液加入到反应器中。最后将反应器置于磁力搅拌器上,保持转速600rpm。反应器正前方20cm处放置氙灯光源反光镜(北京中教金源科技有限公司,cel-hxf300),将模拟太阳光水平射向反应器。在无光照下搅拌半小时以达到吸附-脱附平衡,之后开灯光照100min,期间每隔20min取一次样进行分析检测的同时遮住光源,bpa残留浓度通过紫外-可见分光光度计检测后,样品放回反应器继续光照。因为采用的是膜光催化剂,就避免了传统的粉末光催化剂的分离难题。最后bpa的矿化率通过toc总有机碳分析仪进行测定。其中,降解率=bpa浓度的减小量/bpa初始浓度;矿化率=(bpa初始有机碳toc值-反应后bpa残留有机碳toc值)/bpa初始有机碳toc值。

图6和7分别为实施例1、2和3所得au/zno-io、au/zno-p、zno-io/au和zno光催化剂降解bpa的活性图和bpa的矿化率图。从图6可以看出,在模拟太阳光照100min后,au/zno-io、au/zno-p、zno-io/au和zno光催化剂对bpa的降解率分别达到了86%、65%、64%和31%。从图7可以看出,在模拟太阳光照100min后,au/zno-io、au/zno-p、zno-io/au和zno光催化剂对bpa的矿化率分别达到了72.5%、38.9%、38.1%和8.9%。由此可见,通过原位一步法制备的au/zno-io显示了良好的对bpa的光催化降解效果。

从上述结果可知,本发明au/zno-io纳米复合材料制备方法简单、可控,光催化降解效果好,催化剂易于回收,适合产业化。

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1