季铵盐接枝改性醋酸纤维素反渗透膜的制备方法与流程

文档序号:11219967阅读:1069来源:国知局
季铵盐接枝改性醋酸纤维素反渗透膜的制备方法与流程

本发明属于反渗透膜功能化改性领域,特别是涉及一种季铵盐接枝改性醋酸纤维素反渗透膜的制备方法。



背景技术:

醋酸纤维素反渗透膜作为膜法水处理技术的重要组成部分,以其优异的技术优势和独特的性能优势备受关注。醋酸纤维素反渗透膜拥有反渗透所有的技术特点,如脱盐率高、水通量大、通量衰减系数小、产水率高、几乎可以截留除水以外的所有物质分子等;而且醋酸纤维素独特的化学结构另其具有加工性好、易成膜、亲水性优异以及耐氯性好等优点。醋酸纤维素反渗透膜自20世纪60年代问世以来,经多次改进和工艺优化,以日本东洋纺为代表的一些国外企业凭借其醋酸纤维素反渗透膜产品在装填密度、分离效率、耐药性以及使用寿命等方面的巨大优势,占据了世界市场的巨大份额。

我国的醋酸纤维素反渗透膜研究工作起步较晚,同时由于国外的专利垄断和技术封锁,研发和生产具有自主知识产权的高性能醋酸纤维素反渗透膜仍面临着诸多问题。其中,由水体中微生物对分子主链β-脱水葡萄糖单元的侵蚀和降解而导致的醋酸纤维素反渗透膜失去本征应用属性和寿命缩短的问题,是制约其工业化生产和应用受限的主要原因之一。因此设计和开发具有抗菌功能的醋酸纤维素反渗透膜成为该领域的研究重点。

近年来,科研人员通过在铸膜液中添加抗菌粒子或通过化学反应在膜材料中引入抗菌基团以此提高醋酸纤维素膜产品的抗菌活性。cn102653597a公开了一种醋酸纤维素膜表面交联壳聚糖亲水性膜的制备方法,该方法是将酸活化的醋酸纤维素膜与壳聚糖偶合交联,制成具有一定抗菌活性的醋酸纤维素亲水性膜材料,但是这种方法会使得膜表面形成一层壳聚糖聚合物层,这易导致膜孔道堵塞进而影响其使用性能和效率。cn101053782a公开了一种抗菌醋酸纤维素纳滤膜及其制备方法,该方法将等离子修饰的无机抗菌纳米粒子均匀分散到铸膜液中,再通过浸渍沉淀相分离制膜技术制得抗菌醋酸纤维素纳滤膜,然而,通过共混引入的抗菌粒子会随着膜产品的运行而不断流失,长期使用会使膜的抗菌效果逐步降低甚至失效,并且膜结构也会随着抗菌粒子的流失而出现缺陷,甚至遭到破坏而失效。cn105461814a公开了一种醋酸纤维素衍生物及其制备方法和用途,该方法经过多步均相化学反应过程在醋酸纤维素分子结构中通过醚键键合上三氯生衍生物抗菌剂,但是该过程操作繁琐、所用化学试剂较多,不利于工业化生产。因此,亟需要开工艺简单、稳定性高的抗菌醋酸纤维素反渗透膜。



技术实现要素:

为了解决上述技术问题,本发明提供一种季铵盐接枝改性醋酸纤维素反渗透膜的制备方法,该制备方法制得的反渗透膜表面接枝有季铵盐抗菌基团,接枝牢度高,抗菌性能佳。

为此,本发明的技术方案如下:

一种季铵盐接枝改性醋酸纤维素反渗透膜的制备方法,包括如下步骤:

1)将醋酸纤维素反渗透膜浸没在浓度为0.005~0.03mol/l的naoh水溶液中进行皂化反应,反应时间15~60min,反应温度20~30℃;得到多羟基醋酸纤维素反渗透膜;naoh水溶液的浓度为优选0.01~0.02mol/l;

2)将所述多羟基醋酸纤维素反渗透膜浸没在3-氯-2-羟丙基三甲基氯化铵水溶液中,在25~40℃条件下充分浸泡;

其中,所述3-氯-2-羟丙基三甲基氯化铵水溶液的浓度为10.0g/l~15.0g/l;优选为为12.0~13.0g/l;

3)在震荡条件下,将浓度为1.0~2.0mol/l的naoh水溶液滴加入上述3-氯-2-羟丙基三甲基氯化铵水溶液中,在25~40℃条件下进行醚化反应,优选醚化温度为30~35℃,保证反应时反应溶液的ph值为8~11;

当停止滴加naoh水溶液时,反应溶液的ph值不变,即停止滴加naoh水溶液,保持恒温,继续反应至反应完成,得到改性后的醋酸纤维素反渗透膜;

4)将所述改性后的醋酸纤维素反渗透膜取出,用去离子水多次洗涤,至洗涤后的去离子水ph值呈中性,即得到所述季铵盐接枝改性醋酸纤维素反渗透膜。

进一步,步骤2)中1g多羟基醋酸纤维素反渗透膜浸泡在400~500ml的3-氯-2-羟丙基三甲基氯化铵水溶液中。

本发明提供的方法可以适用于商业化产品的醋酸纤维素反渗透膜,也可以用于经浸没沉淀相转化法制备得到的醋酸纤维素反渗透膜,以下提供一种步骤1)中所述醋酸纤维素反渗透膜的制备方法,包括如下步骤:

a)配制如下含量的铸膜液:

三醋酸纤维素11~15wt%;

混合溶剂75~80wt%;

非溶剂6~11wt%;

其中,所述混合溶剂为1,4-二氧六环和丙酮的混合物,且1,4-二氧六环和丙酮的质量比为2.0~3.0:1;

所述非溶剂为甲醇和顺丁烯二酸的混合物,且甲醇与顺丁烯二酸的质量比为3:2~6.2;

配制顺序为:先将混合溶剂搅拌均匀,再将三醋酸纤维素溶解在其中,最后加入非溶剂混合均匀,静置脱泡,即得所述铸膜液;

b)在环境温度为20~30℃、湿度为30~50%的条件下,利用刮刀将所述铸膜液刮制成平板膜,静置30~70s,在0~30℃水浴中固化,得到初生平板膜;

c)将所述初生平板膜在70~90℃水中处理5~15min,取出,利用蒸馏水清洗干净,得到所述醋酸纤维素反渗透膜。

步骤1)其目的是:在保证反渗透膜的主体组分的基础上,通过对膜表面的部分酯基进行皂化处理,得到更多的具有反应活性的羟基位点,在步骤1)所述反应条件范围内,成功获得了不同羟基含量的膜产品;

步骤2)其目的是:为了促进后一步3-氯-2-羟丙基三甲基氯化铵和反渗透膜表面羟基的醚化反应更加充分,提高最终膜产品的接枝率,通过对醚化反应速率和固液非均相反应有效接触效率等进行综合考量,在步骤2)所述的操作条件范围内,将步骤1)所得多羟基醋酸纤维素反渗透膜充分浸泡在3-氯-2-羟丙基三甲基氯化铵水溶液中,通过物理吸附作用在膜表面富集更多的3-氯-2-羟丙基三甲基氯化铵分子,通过“局部浓度效应”为后一步的醚化反应提供正向促进作用;

步骤3)其目的是:利用卤代烷基团(氯代烷、溴代烷等)在缚酸剂(一般为碱性化合物)存在的条件下,可与羟基等质子性基团发生反应,形成牢靠的化学键,在步骤3)所述的反应条件范围内,3-氯-2-羟丙基三甲基氯化铵与反渗透膜表面的活性羟基发生接枝反应并生成醚键,从而在反渗透膜表面键合上具有抗菌活性的季铵盐基,赋予膜产品一定的抗菌性能;

步骤4)其目的是:将步骤3)所得膜表面吸附的未反应的3-氯-2-羟丙基三甲基氯化铵充分洗涤,骤4)的操作条件下,成功完成了膜产品的纯化处理。

附图说明

图1为本发明提供的季铵盐接枝改性醋酸纤维素反渗透膜的制备方法的反应原理图;

图2a为对比例制得的醋酸纤维素反渗透膜的全反射傅里叶红外光谱图(atr-ftir);

图2b为实施例9所得季铵盐接枝改性醋酸纤维素反渗透膜的全反射傅里叶红外光谱图(atr-ftir);

图3a为对比例所得醋酸纤维素反渗透膜的x射线光电子能谱仪(xps)谱图;

图3b为实施例7所得季铵盐接枝改性醋酸纤维素反渗透膜的x射线光电子能谱仪(xps)谱图;

图4a给出了对比例所得醋酸纤维素反渗透膜对大肠杆菌的抗菌活性照片(18h);

图4b给出了实施例7所得季铵盐接枝改性醋酸纤维素反渗透膜对大肠杆菌的抗菌活性照片(18h);

图5a给出了对比例所得醋酸纤维素反渗透膜对金黄色葡萄球菌的抗菌活性照片(18h);

图5b给出了实施例7所得季铵盐接枝改性醋酸纤维素反渗透膜对金黄色葡萄球菌的抗菌活性照片(18h)。

具体实施方式

以下结合附图和实施例对本发明的技术方案进行详细描述。

注:(1)实施例1~9中所用的醋酸纤维素反渗透膜是利用如下步骤制得的:

a)称取25.89g1,4-二氧六环和10.38g丙酮加入到装有机械搅拌的100ml三口烧瓶中混合均匀,然后将6.00g三醋酸纤维素溶解其中,最后加入1.66g甲醇和2.22g顺丁烯二酸并继续搅拌混合均匀;静置24h脱泡,得到铸膜液;

b)在环境温度为25℃、湿度为40%的刮膜室中,利用250μm刮刀将所述铸膜液刮制成平板膜,静置挥发40s后,浸没在0℃的水凝固浴中固化成型,得到初生平板膜;

c)将所述平板膜在80℃的水中热处理10min,取出,用蒸馏水清洗干净,得到醋酸纤维素反渗透膜。

实施例1~9中反应条件的变化参数为:a、b、c,性能变化参数为d、e、f,具体见表1。

制备步骤如下:

一种季铵盐接枝改性醋酸纤维素反渗透膜的制备方法,包括如下步骤:

1)将醋酸纤维素反渗透膜浸没在浓度为amol/l的naoh水溶液中,在25℃、80rpm的水浴震荡条件下,皂化反应bmin;

根据astm871-96操作方法,测得皂化处理后的醋酸纤维素反渗透膜的取代度(ds)为d,则重复结构单元中羟基的平均数目为e;

2)将1g多羟基醋酸纤维素反渗透膜浸泡在400ml浓度为12.0g/l的3-氯-2-羟丙基三甲基氯化铵水溶液中,在30℃、90rpm的震荡水浴器中振荡吸附30min;

3)继续90rpm的水浴震荡条件下,将浓度为1.0mol/l的naoh水溶液滴加入上述3-氯-2-羟丙基三甲基氯化铵水溶液中,在30℃条件下进行醚化反应,实时监测和控制反应时反应溶液的ph值为8~11;

当停止滴加naoh水溶液时,反应溶液的ph值不变,即停止滴加naoh水溶液,保持恒温,继续反应ch至反应完成,得到改性后的醋酸纤维素反渗透膜;

4)将改性后的醋酸纤维素反渗透膜取出,用去离子水多次洗涤,至洗涤后的去离子水ph值呈中性,即得到所述季铵盐接枝改性醋酸纤维素反渗透膜。x-射线光电子能谱仪(xps)测试结果表明,本实施例所得季铵盐接枝改性醋酸纤维素反渗透膜中季铵盐抗菌基团的含量为fat.%(由氮元素的原子百分比表示)。

表1

实施例10和11选用醋酸纤维素反渗透商品膜(型号:modelcf;美国osmonics公司提供)直接作为季胺化改性用基膜,根据astm871-96操作方法,测得该醋酸纤维素反渗透商品膜的取代度(ds)为2.450,则重复结构单元中羟基的平均数目为0.550;

实施例10

一种季铵盐接枝改性醋酸纤维素反渗透膜的制备方法,包括如下步骤:

1)将1g醋酸纤维素反渗透商品膜浸泡在400ml浓度为12.0g/l的3-氯-2-羟丙基三甲基氯化铵水溶液中,在30℃、90rpm的震荡水浴器中振荡吸附30min;

3)继续90rpm的水浴震荡条件下,将浓度为1.0mol/l的naoh水溶液滴加入上述3-氯-2-羟丙基三甲基氯化铵水溶液中,在30℃条件下进行醚化反应,实时监测和控制反应时反应溶液的ph值为8~11;

当停止滴加naoh水溶液时,反应溶液的ph值不变,即停止滴加naoh水溶液,保持恒温,继续反应1h至反应完成,得到改性后的醋酸纤维素反渗透膜;

4)将改性后的醋酸纤维素反渗透膜取出,用去离子水多次洗涤,至洗涤后的去离子水ph值呈中性,即得到所述季铵盐接枝改性醋酸纤维素反渗透膜。

x-射线光电子能谱仪(xps)测试结果表明,本实施例所得季铵盐接枝改性醋酸纤维素反渗透膜中季铵盐抗菌基团的含量为0.66at.%(由氮元素的原子百分比表示)。

实施例11

一种季铵盐接枝改性醋酸纤维素反渗透膜的制备方法,包括如下步骤:

1)将1g醋酸纤维素反渗透商品膜浸泡在400ml浓度为12.0g/l的3-氯-2-羟丙基三甲基氯化铵水溶液中,在30℃、90rpm的震荡水浴器中振荡吸附30min;

3)继续90rpm的水浴震荡条件下,将浓度为1.0mol/l的naoh水溶液滴加入上述3-氯-2-羟丙基三甲基氯化铵水溶液中,在30℃条件下进行醚化反应,实时监测和控制反应时反应溶液的ph值为8~11;

当停止滴加naoh水溶液时,反应溶液的ph值不变,即停止滴加naoh水溶液,保持恒温,继续反应2h至反应完成,得到改性后的醋酸纤维素反渗透膜;

4)将改性后的醋酸纤维素反渗透膜取出,用去离子水多次洗涤,至洗涤后的去离子水ph值呈中性,即得到所述季铵盐接枝改性醋酸纤维素反渗透膜。

x-射线光电子能谱仪(xps)测试结果表明,本实施例所得季铵盐接枝改性醋酸纤维素反渗透膜中季铵盐抗菌基团的含量为0.81at.%(由氮元素的原子百分比表示)。

对比例

制备醋酸纤维素反渗透膜:

a)称取25.89g1,4-二氧六环和10.38g丙酮加入到装有机械搅拌的100ml三口烧瓶中混合均匀,然后将6.00g三醋酸纤维素溶解其中,最后加入1.66g甲醇和2.22g顺丁烯二酸并继续搅拌混合均匀;静置24h脱泡,得到铸膜液;

b)在环境温度为25℃、湿度为40%的刮膜室中,利用250μm刮刀将所述铸膜液刮制成平板膜,静置挥发40s后,浸没在25℃的水凝固浴中固化成型,得到初生平板膜;

c)将所述平板膜在80℃的水中热处理10min,取出,用蒸馏水清洗干净,得到醋酸纤维素反渗透膜。

对比例所得醋酸纤维素反渗透膜的化学结构和膜表面元素组成分别通过全反射傅里叶红外光谱仪(atr-ftir,图2a)和x-射线光电子能谱仪(xps,图3a)进行表征。

图4a和图5a分别给出了本对比例所得醋酸纤维素反渗透膜对大肠杆菌和金黄色葡萄球菌的抗菌活性照片。

以下给出性能测试的方法:

1、膜性质测试:

通过x-射线光电子能谱仪(xps)对对比例和实施例所得所有膜产品的表面化学元素组成进行测试和表征,并根据n元素特征峰的积分面积计算其原子百分比,以此来衡量抗菌基团的含量以及评价膜产品的抗菌性能。

2、膜性能测试:

(1)选择透过性能评价

水渗透通量和盐截留率是评价反渗透膜选择透过性能的两个重要参数。通过错流渗透过滤测试,对反渗透膜进行分离性能评价。

水渗透通量(j)的定义为:在一定的操作条件下,单位时间内透过单位膜面积的水的体积,其单位为l/(m2·h),公式如下:

j=v/(a×t)

其中,v为水的渗透体积,l;a为膜的有效面积,m2;t为渗透时间,h。

盐截留率(r)的定义为:在一定的操作条件下,进料液与透过液的盐浓度差占进料液浓度的百分数,其单位为%,公式如下:

r=(1-cp/cf)×100%

其中,cp为渗透液的电导率,μs/cm;cf为进料液的电导率,μs/cm。

本发明季铵盐接枝改性醋酸纤维素反渗透膜性能测试采用的操作条件为:对于对比例和实施例,以2000ppmnacl水溶液为进料液,操作压力为225psi,温度为25℃,ph为7.0,测试反渗透膜的水渗透通量和盐截留率。

(2)膜抗菌性能评价

以革兰氏阴性的大肠杆菌和革兰氏阳性的金黄色葡萄球菌作为细菌模型,依据中华人民共和国国家标准(gb/t20944.3-2008),采用菌液震荡法对对比例制备所得醋酸纤维素反渗透膜和实施例1-11制备所得季铵盐接枝改性醋酸纤维素反渗透膜进行抗菌性能测试。通过平板计数法计算每个琼脂板上的菌落数来分析各膜样品的抑菌率(k),公式如下:

k=(1-nm/n0)×100%

其中,k为抑菌率,%;nm为季铵盐接枝改性醋酸纤维素反渗透膜样品的菌落数,cfu/ml;n0为醋酸纤维素反渗透膜样品的菌落数,cfu/ml。

表2列出了对比例和实施例1-11制备所得反渗透膜的选择透过性能测试和抗菌性能测试数据。对比分析可发现,季铵盐接枝改性醋酸纤维素反渗透膜表现出良好的抗菌性,并且膜的使用性能没有受到明显影响。

表2

图2b给出了实施例9所得季铵盐接枝改性醋酸纤维素反渗透膜的全反射傅里叶红外光谱图(atr-ftir),通过与纯醋酸纤维素反渗透膜的谱图(图2a)对比可知,皂化处理和季胺化改性没有改变和破坏膜的主体结构。

图3b给出了实施例7所得季铵盐接枝改性醋酸纤维素反渗透膜的x射线光电子能谱仪(xps)谱图,可见,实施例所得季铵盐接枝改性醋酸纤维素反渗透膜中季铵盐抗菌基团的含量为1.76at.%。

图4b和图5b分别给出了实施例7所得季铵盐接枝改性醋酸纤维素反渗透膜对大肠杆菌和金黄色葡萄球菌的抗菌活性照片。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1