一种光还原CO2用超薄Ti基LDHs复合光催化剂及其制备方法与流程

文档序号:15498849发布日期:2018-09-21 22:11阅读:511来源:国知局

本发明涉及可见光响应光催化剂制备领域,具体涉及用于可见光下光催化还原CO2的超薄Ti基LDHs复合催化剂及其制备方法。



背景技术:

随着社会的不断发展,能源短缺和环境污染逐渐受到人们的关注,一方面,全球能源供给中大约80%来自于化石燃料这类不可再生能源,人们对能源的大量使用导致能源日渐贫乏。另一方面,化石燃料的燃烧引起环境污染、温室效应等严重的环境问题,因此,开发利用新能源、防治环境污染对人类可持续发展具有重要意义。光催化技术具有绿色、环保、节能的优点,利用光催化技术光催化还原CO2为碳氢化合物为防治环境污染、开发新能源提供了可能。Ti基光催化剂由于其高稳定性、无毒性、廉价易得等优点被广泛应用于光催化领域,但传统Ti基光催化剂禁带较宽,仅吸收紫外光,而太阳能光谱中紫外光占比不到5%,传统Ti基光催化剂低的光利用率严重的制约了其催化性能,因此,开发设计新型高效光催化剂成为了光还原CO2反应的重点和难点。

层状复合金属氢氧化物是一类具有二维结构的阴离子型黏土,简称水滑石(LDHs),由于其独特的层状结构层板元素可调控、具有半导体性质等优点,近年来在光催化领域也受到了广泛关注。K Teramura等在Photocatalytic conversion of CO2in water over layered double hydroxides.中,采用共沉淀法合成三种普通的块体MgM-LDH(M=Al,Ga,In)催化剂,可在紫光照下将CO2还原为CO,但其催化活性十分低下。J Hong等在Photocatalytic Reduction of Carbon Dioxide over Self-Assembled Carbon Nitride and Layered Double Hydroxide:The Role of Carbon Dioxide Enrichment中通过共沉淀自组装将C3N4与MgAl-LDH复合得到C3N4/MgAl-LDH复合催化剂,并负载Pd做助催化剂,在光催化还原CO2反应中可将其还原转化为CH4和CO,产率分别为0.77μmol g-1h-1和0.20μmol g-1h-1。Y Zhao等在Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production中将MgAl-LDO与TiO2复合制备MgAl-LDO/TiO2复合光催化剂,可在紫外光下将CO2还原转化为CO,产率达1.7μmol g-1h-1。可见,虽然水滑石材料在光催化还原CO2反应中具有广泛应用,但Ti基材料作为光催化反应中应用最广泛的催化剂,将Ti元素引入LDHs层板设计Ti基LDHs光催化剂却鲜有报道,且大多数报道的LDHs基光催化剂其尺寸较大、比表面积小、吸光范围窄,而使其光催化还原CO2的催化活性十分低下。本发明基于LDHs层板元素具有可调控性,将具有光活性的Ti元素引入LDHs层板,合成Ti基LDHs催化剂,应用于光催化还原CO2反应中。考虑到块体LDHs材料尺寸大,可接近性弱、活性位点无法得到充分暴露而影响催化性能,而LDHs层板与层间阴离子之间的相互作用较弱,合适的溶剂可将其层间撑开剥层,得到超薄LDHs纳米片,实现活性位点充分而暴露,因此本发明通过对Ti基LDHs催化剂进行剥层,获得高活性的超薄Ti基LDHs纳米晶片。然而,层板剥离后得到的LDHs胶体状催化剂难以回收和利用,为实现LDHs纳米晶片的利用,本发明选择具有可见光响应能力的载体通过静电作用对剥离后的LDHs纳米片进行固载,得到光吸收能力强、活性位点充分暴露的超薄Ti基复合光催化剂。

综上所述,本发明基于LDHs层板元素可调控性,及层板易剥离的结构特点,将Ti元素引入LDHs层板,通过剥层获得超薄LDHs纳米片,并将剥离后的LDHs纳米片与具有可见光相应能力的载体进行复合,实现LDHs纳米片的固载,从而得到稳定性高、活性组分高度分散、可接近性强的具有可见光响应能力的超薄Ti基LDHs复合催化剂。该类型催化剂可在可见光激发下的光催化转化CO2为CO和CH4,其中U-TiMgAl-LDH/GO复合催化剂性能最为优异,其CO和CH4的产率分别达到4.64μmol g-1h-1和3.78μmol g-1h-1,其催化活性与大多数文献报道的负载贵金属型催化剂性能相持平,本发明为制备成本低廉的高效光催化剂提供了新思路。



技术实现要素:

本发明的目的是提供一种光催化还原CO2用超薄Ti基LDHs复合催化剂及其制备方法,

本发明提供的催化剂表示为U-TiM1M2-LDHs/S,其中U-TiM1M2-LDHs为超薄Ti基LDHs纳米晶片,其平均厚度为1-2nm,S为具有可见光吸收能力的载体,该催化剂具有可见光响应能力,在光催化还原CO2体系中具有较高的活性和稳定性。

该催化剂的制备是将TiCl4和M12+盐、M23+的硝酸盐溶液配制成混合溶液,在惰性气体保护下加入碱溶液,使其盐离子沉淀,并晶化得到TiM1M2-LDHs前驱体。再将TiM1M2-LDHs前驱体投入溶剂中,在惰性气体氛围下搅拌使其溶胀至层板剥离成1~10层的水滑石晶片;再将其与具有可见光吸收能力的载体浆液混合,过滤,充分洗涤、干燥,即得到超薄U-TiM1M2-LDHs/S催化剂。

具体制备步骤如下:

A.将TiCl4与可溶性M12+、M23+硝酸盐溶于除尽CO2去离子水中配制混合盐溶液,其中Ti4+、M12+、M23+离子总浓度为0.1~1mol/L,(M12++M23+)/Ti4+的摩尔比为1~10;再按照NaOH与阳离子总浓度的摩尔比为1~10的比例配置碱溶液,同时将混合盐溶液和碱溶液滴加到反应器中,维持体系pH=9~11,于40~180℃下反应4~24h,整个反应体系在惰性气体保护下进行;过滤,用除尽CO2的去离子水洗涤沉淀至上清液pH=7~8,于40~60℃干燥6~24h,即得到硝酸根插层的钛基水滑石,表示为TiM1M2-NO3--LDHs;

所述的M12+代表二价金属离子Mg2+、Zn2+、Ni2+、Cu2+、Co2+或Mn2+中的一种,较佳的是Mg2+和Cu2+;M23+代表三价金属离子Al3+、In3+、Mn3+或Cr3+中的一种;较佳的是Al3+和In3+

B.将上述TiM1M2-NO3--LDHs加入溶剂中搅拌1~48h制备浓度为0.2~2g/L的胶体溶液,该胶体溶液具有丁达尔现象,其种TiM1M2-LDHs剥层得到1~10层的LDH纳米片,表示为U-TiM1M2-LDHs;所述的溶剂是甲酰胺、N,N-二甲基甲酰胺或正丁醇中的一种;

C.将具有可见光响应的载体S加入阴离子表面活性剂溶液中超声分散20~60min,得到浓度为0.1~1g/L的载体浆液,使载体带负电荷并稳定分散于溶液中;

所述的具有可见光响应的载体为氧化石墨(GO)或C3N4;所述的阴离子表面活性剂溶液是十二烷基硫酸钠、十二烷基苯磺酸中的一种,其浓度为0.1~0.5g/L;

D.将步骤C的载体浆液以1~10mL/min的速度滴加步骤B的胶体溶液中,其中U-TiM1M2-LDHs和S的质量比为10~1,室温下老化0.5~12h后过滤洗涤,于40~60℃干燥12h得到U-TiM1M2-LDH/S/S催化剂。其中U-TiM1M2-LDH代表单一或几个片层的水滑石纳米片;S代表载体,LDHs纳米晶片平均厚度约为1-2nm。

对上述步骤得到的产品进行如下表征:

图1是上述步骤得到样品的XRD谱图,结果显示剥层后得到的LDHs纳米晶片与氧化石墨载体复合后,LDH前驱体特征衍射峰消失。

对样品的形貌进行分析,结果见图2,从图中可以观察到LDHs未被剥层前呈六方片层堆积的花球状结构,组成该结构的水滑石纳米片生长完整,尺寸均匀,而剥层后的LDHs纳米晶片为不规则的大片薄膜状结构。

为分析剥层后LDHs纳米晶片的厚度,对其进行AFM表征,结果见图3,图中可以看出剥层后的LDHs纳米晶片平均厚度约为1.1nm,由于在剥层过程中溶剂的柱撑作用会导致LDHs纳米片产生缺陷,所以使得LDHs纳米晶片的形状不规则。

采用紫外可见漫反射光谱对催化剂的吸收能力进行表征,结果见图4,图中可以看出未剥层的LDHs前驱体仅吸收紫外光,而复合催化剂在紫外和可见光区均有较好的吸收,这一结果说明,该方法制备的复合催化剂具有可见光响应能力。

以光催化转化CO2为探针反应,在常温下对催化剂样品进行催化性能评价,结果见图5,图中可以看到不同复合比例的复合催化剂催化性能均明显高于剥层前,具有较高的催化活性。

附图说明:

图1为实施例1中样品的XRD谱图。其中a为步骤A的TiMgAl-NO3--LDH前驱体,b为步骤D得到的U-TiMgAl-LDH/GO催化剂。

图2为实施例1制备的催化剂的SEM照片。a为TiMgAl-NO3--LDH前驱体,b为步骤B得到的U-TiMgAl-LDH胶体。

图3为实施例1步骤B得到的剥层水滑石纳米片U-TiMgAl-LDH的AFM照片。

图4为实施例1中样品的固体紫外漫反射光谱。a为步骤A的TiMgAl-NO3--LDH前驱体,b为步骤D的U-TiMgAl-LDH/GO复合催化剂。

图5为应用例中光催化还原CO2反应的时间-性能曲线。

本发明的有益效果:采用本发明提供的方法制备的复合催化剂,是具有活性组分Ti高度分散且可接近性增强的超薄Ti基LDHs纳米晶片,可充分暴露活性位点,与传统半导体复合催化剂相比,解决了活性组分易团聚、活性金属利用率低的问题。此外,通过静电作用与具有特殊性质的载体复合,增强了活性组分与载体的相互作用,提高了催化剂的稳定性,载体的特殊性质拓宽了复合催化剂的光响应范围,本发明制备的复合光催化剂其催化活性与大多数文献报道的贵金属负载型催化剂性能相持平,为制备成本低廉的高效光催化剂提供了新思路。

具体实施方式:

实施例1

A.量取569μL TiCl4(TiCl4溶解于体积比1:1的浓HCl中)、称取0.009mol的Mg(NO3)2·6H2O、0.006mol的Al(NO3)3·9H2O,加入150mL除尽CO2的去离子水溶解,配置混合盐溶液A;称取0.036mol的NaOH,加入150mL除尽CO2的去离子水溶解,配置碱溶液B,将溶液A以1~10mL/min的速度滴加到500mL反应器中,同时控制溶液B的滴加速度,调控整个体系pH=9~11,待滴加结束后,在80℃反应16h(整个反应过程在N2气氛保护下完成),反应结束后离心至上清液pH=7,于60℃烘箱中充分干燥,得到TiMgAl-NO3--LDHs;

B.称取0.2500g步骤A的TiMgAl-NO3--LDHs于烧瓶中,加入250mL甲酰胺,在氮气气氛下搅拌48h,得到透明稳定的胶体溶液,表示为U-TiMgAl-LDHs;

C.称取0.0250g的GO加入100mL浓度为0.25g/L的十二烷基硫酸钠的水溶液中,超声分散30min,得到均匀分散的GO浆液;

D.将C步骤得到的GO浆液以2mL/min的速度滴加至步骤B的U-TiMgAl-LDHs胶体溶液中,滴加结束继续搅拌30min后,使用去离子水和乙醇交替洗涤数次,于60℃真空干燥,得到U-TiMgAl-LDH/GO复合催化剂。

E.将步骤D得到的U-TiMgAl-LDH/GO复合催化剂用于可见光下光催化还原CO2反应中。反应条件为:催化剂50mg,反应釜内压力0.08MPa,光电流15A。反应开始后,每间隔2h用不锈钢气密针取2mL气体打入气相色谱(GC-2014型色谱)进行检测,数据处理分析方法采用外标法。实验结果显示在可见光照射下该复合催化剂可催化转化CO2为CO和CH4,其产率分别达到4.64μmol g-1h-1和3.78μmol g-1h-1,其催化活性与文献报道的大多数负载型贵金属催化剂性能相持平,具有较好的催化活性。

实施例2

A.同实施例1;

B.称取0.2500g步骤A的TiMgAl-NO3--LDHs于烧瓶中,加入250mL N,N-二甲基甲酰胺,在氮气气氛下搅拌48h,得到透明稳定的胶体溶液,表示为U-TiMgAl-LDHs;

C.称取0.0250g的C3N4加入100mL浓度为0.25g/L的十二烷基硫酸钠的水溶液中,超声分散30min,得到均匀分散的C3N4浆液;

D.将C步骤得到的C3N4浆液以2mL/min的速度滴加至步骤B的U-TiMgAl-LDHs胶体溶液中,滴加结束继续搅拌30min后,使用去离子水和乙醇交替洗涤数次,于60℃真空干燥,得到U-TiMgAl-LDH/C3N4复合催化剂。

E.将步骤D得到的U-TiMgAl-LDH/C3N4复合催化剂用于可见光下光催化还原CO2反应中。反应条件为:催化剂50mg,反应釜内压力0.08MPa,光电流15A。反应开始后,每间隔2h用不锈钢气密针取2mL气体打入气相色谱(GC-2014型色谱)进行检测,数据处理分析方法采用外标法。实验结果显示在可见光照射下该复合催化剂可催化转化CO2为CO和CH4,其产率分别达到3.23μmol g-1h-1和2.10μmol g-1h-1

实施例3

A.量取569μL TiCl4(TiCl4溶解于体积比1:1的浓HCl中)、称取0.009mol的Zn(NO3)2·6H2O、0.006mol的Al(NO3)3·9H2O,加入150mL除尽CO2的去离子水溶解,配置混合盐溶液A;称取0.036mol的NaOH,加入150mL除尽CO2的去离子水溶解,配置碱溶液B,将溶液A以1~10mL/min的速度滴加到500mL反应器中,同时控制溶液B的滴加速度,调控整个体系pH=9~11,待滴加结束后,在80℃反应16h(整个反应过程在N2气氛保护下完成),反应结束后离心至上清液pH=7,于60℃烘箱中充分干燥,得到TiZnAl-NO3--LDHs;

B.称取0.2500g步骤A的TiZnAl-NO3--LDHs于烧瓶中,加入250mL甲酰胺,在氮气气氛下搅拌48h,得到透明稳定的胶体溶液,表示为U-TiZnAl-LDHs;

C.同实施例1;

D.将C步骤得到的GO浆液以2mL/min的速度滴加至步骤B的U-TiZnAl-LDHs胶体溶液中,滴加结束继续搅拌30min后,使用去离子水和乙醇交替洗涤数次,于60℃真空干燥,得到U-TiZnAl-LDH/GO复合催化剂。

E.将步骤D得到的U-TiZnAl-LDH/GO复合催化剂用于可见光下光催化还原CO2反应中。反应条件为:催化剂50mg,反应釜内压力0.08MPa,光电流15A。反应开始后,每间隔2h用不锈钢气密针取2mL气体打入气相色谱(GC-2014型色谱)进行检测,数据处理分析方法采用外标法。实验结果显示在可见光照射下该复合催化剂可催化转化CO2为CO和CH4,其产率分别达到4.12μmol g-1h-1和2.88μmol g-1h-1

实施例4

A.量取569μL TiCl4(TiCl4溶解于体积比1:1的浓HCl中)、称取0.009mol的Ni(NO3)2·6H2O、0.006mol的Al(NO3)3·9H2O,加入150mL除尽CO2的去离子水溶解,配置混合盐溶液A;称取0.036mol的NaOH,加入150mL除尽CO2的去离子水溶解,配置碱溶液B,将溶液A以1~10mL/min的速度滴加到500mL反应器中,同时控制溶液B的滴加速度,调控整个体系pH=9~11,待滴加结束后,在80℃反应16h(整个反应过程在N2气氛保护下完成),反应结束后离心至上清液pH=7,于60℃烘箱中充分干燥,得到TiNiAl-NO3--LDHs;

B.称取0.2500g步骤A的TiNiAl-NO3--LDHs于烧瓶中,加入250mL N,N-二甲基甲酰胺,在氮气气氛下搅拌48h,得到透明稳定的胶体溶液,表示为U-TiNiAl-LDHs;

C.称取0.0250g的C3N4加入100mL浓度为0.25g/L的十二烷基硫酸钠的水溶液中,超声分散30min,得到均匀分散的C3N4浆液;

D.将C步骤得到的C3N4浆液以2mL/min的速度滴加至步骤B的U-TiNiAl-LDHs胶体溶液中,滴加结束继续搅拌30min后,使用去离子水和乙醇交替洗涤数次,于60℃真空干燥,得到U-TiNiAl-LDH/C3N4复合催化剂。

E.将步骤D得到的U-TiNiAl—LDH/C3N4复合催化剂用于可见光下人工光合作用反应中。反应条件为:催化剂50mg,反应釜内压力0.08MPa,光电流15A。反应开始后,每间隔2h用不锈钢气密针取2mL气体打入气相色谱(GC-2014型色谱)进行检测,数据处理分析方法采用外标法。实验结果显示在可见光照射下该复合催化剂可催化转化CO2为CO和CH4,其产率分别达到3.10μmol g-1h-1和2.45μmol g-1h-1

实施例5

A.量取569μL TiCl4(TiCl4溶解于体积比1:1的浓HCl中)、称取0.009mol的Mg(NO3)2·6H2O、0.006mol的In(NO3)3·9H2O,加入150mL除尽CO2的去离子水溶解,配置混合盐溶液A;称取0.036mol的NaOH,加入150mL除尽CO2的去离子水溶解,配置碱溶液B,将溶液A以1~10mL/min的速度滴加到500mL反应器中,同时控制溶液B的滴加速度,调控整个体系pH=9~11,待滴加结束后,在80℃反应16h(整个反应过程在N2气氛保护下完成),反应结束后离心至上清液pH=7,于60℃烘箱中充分干燥,得到TiMgIn-NO3--LDHs;

B.称取0.2500g步骤A的TiMgIn-NO3--LDHs于烧瓶中,加入250mL N,N-二甲基甲酰胺,在氮气气氛下搅拌48h,得到透明稳定的胶体溶液,表示为U-TiMgIn-LDHs;

C.同实施例1;

D.将C步骤得到的GO浆液以2mL/min的速度滴加至步骤B的U-TiMgIn-LDHs胶体溶液中,滴加结束继续搅拌30min后,使用去离子水和乙醇交替洗涤数次,于60℃真空干燥,得到U-TiMgIn-LDH/GO复合催化剂。

E.将步骤D得到的U-TiMgIn-LDH/GO复合催化剂用于可见光下光催化还原CO2反应中。反应条件为:催化剂50mg,反应釜内压力0.08MPa,光电流15A。反应开始后,每间隔2h用不锈钢气密针取2mL气体打入气相色谱(GC-2014型色谱)进行检测,数据处理分析方法采用外标法。实验结果显示在可见光照射下该复合催化剂可催化转化CO2为CO和CH4,其产率分别达到4.10μmol g-1h-1和3.12μmol g-1h-1

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1