制备氧浓缩产物气的方法

文档序号:4915395阅读:360来源:国知局
专利名称:制备氧浓缩产物气的方法
技术领域
本发明涉及由含氧、氮成分的混合气如空气,借助压力摆动吸附(PSA)而获得氧浓缩气的方法。
压力摆吸附系统及方法已被广泛使用于从混合气(包括空气)制备氧浓缩气,且此种系统和方法已被大量采用。
在如此系统中利用较短循环周期,在尽可能短的时间内很好地利用分子筛材料吸附某一成分之方法是有优点的。短的循环周期一般使用更细的分子筛材料颗粒尺寸以减少扩散阻力。具体的短循环周期实例请见美国专利4194891及4194892。采用上述专利方法可增加氧气产量,但回收率较低,仅为10-20%。
传统的真空PSA方法可得高的氧气回收率(50-60%),但产率稍低。传统的三床PSA方法产率不很高;举一例子,床尺寸系数为2000-2600Kg沸石/吨氧气/天。
显然,人们都希望借助更快的循环周期和更细的分子筛颗料而获得高的产率及用传统的三床系统及更经济简单的方法得到高的回收率。
本发明的PSA方法获得氧浓缩产物,其具有高的氧气回收率及高的产率,解决了已有技术的缺点,且降低成本并保持简单操作。
本发明系统采用短循环周期而很好利用分子筛材料,仅需两个床,因而大大简代了已有技术中的高回收率的三床法。
正和后面所叙述,本发明的另一特征是节省能耗。借助一真空泵的连续运行于两塔系统,输送氧浓缩气至塔的出口进行压力平衡,同时从同一塔的入口端进行解吸出氮浓缩气。在此情况下,在整个过程及其他过程中真空泵连续运行,由于真空泵在整个过程各步骤中不空转,故其功率是最理想的。
因此,具有高回收率和产率的二床PSA法借助较细沸石分子筛料颗粒、如20-35筛目,甚至较大颗粒如8-12目在少于30秒、最好在15-25秒内的短循环时间内得以完成。使用真空解吸时,压力摆范围小于300乇,最好200乇,而最大生产压力小于5psig、最好小于3psig。
为更好地理解本发明,以下结合附图对本发明的实施例进行说明。其中

图1是本发明的流程示意图;
图2是本发明的塔循环周期图。
以下结合图1所示的流程示意图和图2所示的塔循环周期图对本发明进行详述。
图1、2共同表示从一含有氧气、氮气的气体如空气中连续制备浓缩氧气流的方法。每一吸附塔A、B均含有选择吸附氮气的吸附剂。
本方法借助较细的沸石颗粒、约8-35筛目、最好约12-20筛目。
具体的沸石筛料可从不同的沸石制造商处购置,呈球粒或丸粒状。各步骤的控制可借助常规方法,如用计时器控制的标准设计电磁阀。
步骤1中,阀门1A、2A处于关闭状态,借助隔绝第一塔A的下端或入口端。在塔A的顶端或出口端,阀4A、5A关闭,阀3A开启。对第二塔B而言,阀9B、10B关闭,因而来自塔B出口的气体通过阀3A进入塔A的出口,并由阀8B控制。此时在步骤1中,塔B的入口端的阀6B关闭而阀7B开启,因而气体从塔B的入口端被真空泵16吸出。
此步骤期间,原先较塔A压力高的塔B之压力使二塔中的压力相等,就是说,在步骤1开始时塔B的压力可为约1010克(4.84psig),减少至步骤1结束时的约500乇(5.03psig),而塔A的压力从起始时的约260乇(-9.67psig)升至470乇(-5.61psig)。因此,步骤1结束时,塔间压力基本平衡。步骤1极快进行,一般用2-6秒,最好约4秒钟。
步骤2中,阀3A关闭,阀5A,2A开启,同时来自贮器18的氧气浓缩产物气进入塔A的出口并由计量阀26控制回充塔A、进一步升高塔A之压力,具体而言,因为产物贮器中的压力约为800乇,塔A中的压力从470乇(-5.61psig)连续增加至约660乇(-1.93psig)。同时,气体仍借助真空泵16通过开启的阀门7B从增B的入口抽出,塔B的压力继续减少。在步骤2中,该压力可从500乇(-5.03psig)减少至约450乇(-6.00psig)。此外,步骤2所用时间极短,一般为1-5秒,最好3秒。
步骤3中,阀1A开启,空气或其它会氧、氮的进气在一预设定进气压力下引入塔A的入口。入口压力可变化但应具有3-7psig的最小预设定压力值,最好为约5psig。在塔A出口处,阀5A关闭,阀4A打开,因此进气流经塔A,在该处氮气被吸附,而后氧气浓缩产物气从塔A的出口端流过阀4B。逆止阀11及管道20到达产物贮器18。在此制备浓缩氧气产物步骤期间,塔A中的压力可从660乇(-1.93psig)增加至约1010乇(4.84psig)。同时,在步骤3中,气体继续借助真空泵从塔B的入口端抽出从塔B解吸氮气及抽空氮浓缩气,同时随着塔B在其入口端的解吸,阀10B及24开启同时氧浓缩产物气流被引至塔B的出口端以吹洗塔B。氧浓缩产物气流量用计量阀26控制。因而塔B即可借助氧浓缩气引至其出口端而吹洗,而同时氮浓缩气从其入口端抽出而解吸。因此,当真空泵不间断地连续抽吸时塔B的压力持续减少,从约450乇(-6.10psig)减至约260乇(-9.67psig)。步骤3也进行得相当快,循环时间一般为10-25秒,最好为18秒。
接着进行步骤4,将塔A的较高压力气输入塔B时,压力再次走向平衡。在关闭塔A出口端的阀4A及开启阀3A压力再次走向平衡。在塔B出口端,阀10B关闭,因此气体从塔A流至塔B,压力平衡由计量阀8B控制。同时,当然要关闭塔A进口端的阀1A以切断进气并开启阀2A,从而气体可从塔A的进口端经由真空泵16抽出塔B的入口端因关闭阀7B而完全隔绝。
因此,在步骤4中,塔A、B中的压力近似平衡,塔A的压力从约1010乇(4.84psig)减至约500乇(-5.03psig),而塔B的压力从约260乇(-9.67psig)增至约470乇(-5.61)。步骤4在约2-6秒内完成,最好4秒。
步骤5中,阀3A关闭,因而完全关闭塔A的出口端,而气体继续从塔A进口端抽出使压力下降,从500乇(-5.03psig)降至450乇(-6.00psig)。阀10B、28开启,氧浓缩气从产物贮器18进入塔B由计量阀30控制回充该塔便使塔B中的压力从约470乇(-5.61psig)增至约660乇(-1.93psig)。另外,如步骤2一样,回充步骤在1-5秒、最好在约3秒内完成。
最后是步骤6,此步骤中阀6B开启,从而将有压力的进气引入塔B入口。阀9B开启从而氧浓缩产物气从塔B经由逆止阀12、而后经管道20流至贮器18。
在步骤6中,由计量阀26控制,阀24、5A开启允许氧浓缩气进入塔A的出口而吹洗塔A。同时,随着塔A的吹洗,气体继续靠真空泵16从塔A的入口排出以解吸氮气及抽空实氮气体。具体而言,塔A的压力约450乇(-6.00psig)减少至260乇(-9.67psig),而塔B的压力从约660乇(-1.93psig)增至约1010乇(4.84psig)。步骤6的进行时间可为10-25秒,最好18秒。
在步骤6完成后,在继续循环基础上重复以上全部步骤,在每一步骤期间经由阀32持续从产物贮器18得到富氧产物(氧浓缩气体)。
可以看到,真空泵16是连续运行有选择地从两塔之一排除气体,因而能有效地利用并减少本方法能耗。
实例使用上述装置,步骤顺序和上述而进行本方法,获得氧浓缩产物气。而吸附塔A、B的直径为2英寸,高15英寸,内充以球粒状钙×沸石分子筛材料,其可从Laporte Co.公司购置,(运行了三个周期)以及丸粒状沸石料,从Tosoh Company公司购置,(运行了一个周期)。
回收率,产量如下表所示表1分子筛材料(沸石) Laporte公司 Tosoh Zeolum SA公司分子筛尺寸 0.4-0.8mm(球粒) 1.5(丸粒)压力摆动范围 3.5psig~-200乇循环时间(第2次) 25 20 17 25氧纯度(%) 93 93 93 93堆积密度(Kg/cm3) 681 620氧回收率(%) 59 58 56 55产物比(所获氧气/标 40 51 59 40准升/小时/床体积升)床尺寸系数(Kg沸石/ 535 420 375 487吨氧/天)从以上试验可知借助两塔系统,在每一步骤期间持续对一塔或另一塔施以真空则可获得高的回收率、高的产率,真空泵被有效地利用,因此,降低了能耗循环进行极快,能很好地利用分子筛料。显然两床系统的结构和效果比复杂而昂贵的三床系统有更多的优点。
尽管本发明的实施例已示出,但可以理解本发明并不局限于此,人们还可进行不同的改进,但这些变化将会落在所附的权利要求书精神实质和范围之内。
权利要求
1.一种利用含有选择吸附氮的两吸附塔及一产物贮器而从含有至少氧、氮的进气来制备氧浓缩气的方法,其特征是包括(i)将气体从较高压力的第二吸附塔出口引至处于低压的第一吸附塔出口,当从第二塔的入口端还在排气的同时,使二塔阀的压力大体平衡;(ii)步骤1平衡后,将置于产物贮器中处于较高压力的产物气引至第一塔的出口,以便在气体继续从第二塔入口排气期间回充第一塔。(iii)在最低预设定压力下将进气引入第一塔并将氧浓缩气从第一塔的出口回收而将所述氧浓缩气引至产物贮器,同时将部分产物气引至第二塔出口以吹洗第二塔并同时从第二塔入口排出气体,从第二塔解吸和抽空氮浓缩气;(iv)将气体从最初处于高压的第一塔出口引至第二塔的出口以平衡二塔间的压力,同时将气体从第一塔之入口排出;(v)步骤(iv)平衡完成后,将产物贮器中较高压力的氧浓缩气产物引至第二塔的出口,同时继续将气体从第一塔的入口排出;(vi)将预设定最小压力的引入进气第二塔之入口并从第二塔的出口回收氧浓缩气产物以将所述氧浓缩气引至产物贮器,同时将部分产物气引至第一塔的出口以吹洗第一塔;与此同时将气体从第一塔入口排出而从第一塔解吸、抽空氮浓缩气;(vii)重复步骤(i)-(vi),同时将氧浓缩气从产物贮器中取出使用。
2.如权利要求1所述的方法,其特征是所述在步骤(ⅲ)及(ⅵ)中引入的进气为约0-7psig的空气,且所述吸附剂为约8-35目的细沸石粒。
3.如权利要求2所述的方法,其特征是所述细沸石粒呈球粒或丸粒状,尺寸为约12-20目。
4.如权利要求1所述的方法,其特征是步骤(ⅰ)及(ⅳ)在约2-6秒内进行;所述步骤(ⅱ)及(ⅴ)在约1-5秒内进行;所述(ⅲ)及(ⅵ)在约10-25秒内进行。
5.如权利要求4所述的方法,其特征是步骤(ⅰ)及(ⅳ)在约4秒内进行;步骤(ⅱ)及(ⅴ)在约3秒内进行;步骤(ⅲ)及(ⅵ)在约18秒内进行。
6.如权利要求1所述的方法,其特征是所述步骤(ⅰ)及(ⅳ)包括使塔中的压力平衡从约470至约500乇;所述产物气在步骤(ⅱ)及(ⅴ)中被以约800乇的压力引入;所述进气在步骤(ⅱ)及(ⅵ)中以约0-7psig的压力引入。
7.如权利要求6所述的方法,其特征是所述进气在步骤(ⅲ)及(ⅵ)中以小于5psig的压力引入。
8.如权利要求1所述的方法,其特征是所述步骤(ⅰ)至步骤(ⅵ)过程进行少于30秒。
9.一种从空气进气连续制备氧浓缩气的装置,其特征是包括两吸附塔、分别在回收所述空气进气和制备所述氧浓缩气之间循环所述两吸附塔的装置以及一真空泵;所述真空泵与二吸附塔相连并可持续将气体在所述分别循环周期间从这一或另一吸附塔抽出气体。
10.如权利要求9所述的装置,其特征是所述进气具有约0-7psig的压力且所述吸附塔内装有约8-35目大小的细沸石粒料。
11.如权利要求9所述的装置,其特征是所述细沸石粒料呈球粒或丸粒状,尺寸为10-20目。
全文摘要
本发明提供一种两床压力摆动吸附法,具有高的回收率和产率。本法利用细的或通常尺寸的沸石分子筛料和较短的循环周期,借助在不同步骤中连续使用一台真空泵而达到节省能耗之效果。
文档编号B01D53/047GK1056292SQ9110201
公开日1991年11月20日 申请日期1991年3月29日 优先权日1990年3月29日
发明者広罔永治 申请人:波克股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1