一种易于回收的纳米纤维素单宁微凝胶吸附剂的制备方法

文档序号:10560710阅读:470来源:国知局
一种易于回收的纳米纤维素单宁微凝胶吸附剂的制备方法
【专利摘要】本发明涉及一种易于回收的纳米纤维素单宁微凝胶吸附剂的制备方法。该方法包括:由木质纤维素原料制得纳米微晶纤维素胶体悬浮液,加入高碘酸盐,在避光条件下反应,所得产物透析得到双醛纳米微晶纤维素,双醛纳米微晶纤维素加到单宁溶液中,搅拌反应,产物经洗涤后透析,得纳米纤维素单宁微凝胶。所得纳米纤维素单宁微凝胶是由粒径在100?250nm的微球粒子组成,具有较高的吸附容量,且该微凝胶使用后通过过滤或离心可容易地分离回收、再利用。
【专利说明】
一种易于回收的纳米纤维素单宁微凝胶吸附剂的制备方法
技术领域
[0001] 本发明涉及一种利用生物质制备纳米纤维素单宁高效吸附剂的方法,属于吸附材 料技术领域。
【背景技术】
[0002] 随着经济社会的不断进步和工业的迅速发展,水体重金属离子污染已经成为世界 各国面临的最严重的环境问题之一。含重金属离子废水主要来源于电镀、釆矿、炼油、电子 设备制造、陶瓷及化工等行业所排放的工业废水。这些含有毒金属离子的废水会对地表水 和地下水造成严重的污染,并在环境中易蓄积,持续时间长,且很容易通过植物根系进入植 物体而被土壤作物吸收,从而抑制农作物生长发育,降低产量,并进一步通过食物链的传递 和富集进入人体,最终严重危害人体健康。因此,有效地处理含重金属离子的工业废水一直 是环境保护的重要研究工作。
[0003] 含重金属离子废水的处理方法主要有化学沉淀、离子交换、溶剂萃取、化学氧化还 原和吸附法等。其中吸附法具有操作灵活、低能耗、低残留和可重复利用等优点,是处理含 重金属离子废水,特别是低浓度(〈l〇〇mg/L)重金属离子废水,最有效的方法。
[0004] 常用的吸附材料包括活性炭、合成树脂、矿物质、微生物及天然生物质等。这些吸 附剂的吸附能力主要依赖于其自身的物理性质和表面的官能团。但受制于材料本身的比表 面积小、活性位点少以及选择性差等原因,这些吸附剂对重金属离子的吸附效率并不高。因 此,研究开发新型高效、适用范围广、处理成本低的新型吸附材料已成为一项亟待解决的研 究课题。近年来,纳米吸附材料受到广泛关注。与传统吸附剂相比,纳米吸附剂具有比表面 积大、吸附位点多、内扩散距离短和孔径尺寸可调等优势,能够显著提高吸附效率。
[0005] 纳米纤维素是指一维尺寸在纳米范围内的纤维材料。纳米纤维素具有纤维素的基 本结构、性能以及纳米颗粒的典型特性,如巨大的比表面积、较高的杨氏模量、大的长径比、 生物相容性以及环境友好特性。由于纳米纤维素巨大的比表面积和丰富的表面基团,因此 纳米纤维素作为吸附材料的研究逐渐受到重视。不过,纳米纤维素本身与重金属离子的结 合位点少且络合能力差,因此对重金属离子的吸附效果有限。将纳米纤维素进行表面化学 改性,可以改善其吸附性能,获得良好的吸附效果。也可以将纳米纤维素与带有吸附官能团 的化合物复合制备得到纳米复合吸附剂,改善材料的吸附性能。
[0006] 单宁是一类天然多酚化合物,它作为植物的次生代谢产物广泛存在于植物的根、 皮、叶及果实中。例如CN105348332AT提供了 一种柿子单宁的提取方法,CN105418693A公开 了一种核桃壳中单宁的提取方法。单宁具有的多个邻位酚羟基,使它能与多种金属离子发 生静电结合和络合反应,因此可以用于废水中重金属离子的吸附去除。但单宁易溶于水和 极性有机溶剂中,很难直接用于工业废水处理。
[0007] CN103877946A公开了一种负载单宁的胶原/纤维素复合生物吸附材料的制备方 法,该方法利用离子液体为介质,将纤维素粉末溶解后,加入海绵状胶原纤维,使其溶解并 与纤维素混合均匀。将含有纤维素/胶原的离子液体经再生、清洗后得到复合材料。将复合 材料置于水溶液中,加入植物单宁,搅拌反应,过滤、洗去未反应的单宁,加入交联剂进行反 应。过滤、洗去未反应的交联剂,冷冻干燥后,即得负载单宁的胶原/纤维素复合生物吸附材 料;可用于含铅、铜等重金属离子工业废水的处理。但该复合生物吸附材料的制备方法需要 添加交联剂,且产品的吸附容量并不高。

【发明内容】

[0008] 针对现有技术的不足,本发明提供一种作为废水中重金属离子吸附剂的纳米微晶 纤维素-单宁微凝胶吸附剂的制备方法。该微凝胶对重金属离子具有很高的吸附容量,且易 于回收。
[0009] 本发明的技术方案如下:
[0010] -种纳米纤维素单宁微凝胶的制备方法,包括步骤:
[0011] (1)将木质纤维素原料进行酸处理,洗涤,透析,超声处理,得到纳米微晶纤维素胶 体悬浮液(NCC);
[0012] (2)取步骤(1)制备的纳米微晶纤维素胶体悬浮液,加入高碘酸盐,调节pH为3-4, 再用PH为3-4的醋酸-醋酸钠(HAc-NaAc)缓冲溶液稀释至原反应体系的2-3体积倍;在避光 条件下反应6-36h,反应温度20-40°C,反应结束后,加入去离子水采用高速离心的方法洗涤 2-3次,除去多余的高碘酸盐;所得产物透析2-5天,透析袋截留分子量为12000-14000;得到 双醛纳米微晶纤维素;
[0013]上述纳米微晶纤维素(NCC)以绝干重计,与高碘酸盐的质量摩尔比为1:卜25,单位 g/mmol;
[0014] (3)将步骤(2)制备的双醛纳米微晶纤维素滴加到单宁溶液中,所述双醛纳米微晶 纤维素与单宁质量比为1:1-7,搅拌下反应3-48h,控制反应温度为20-70°C ;产物经洗涤后, 透析1-3天,得纳米纤维素单宁微凝胶。
[0015] 所得纳米纤维素单宁微凝胶是由粒径在100-250nm的微球粒子组成。所得纳米纤 维素单宁微凝胶中,单宁占比为40-60 % wt.。
[0016] 优选的,上述步骤(1)中的木质纤维素原料选自下列之一或组合:溶解浆、漂白针 叶木硫酸盐浆、漂白阔叶木硫酸盐浆、办公废纸浆、微晶纤维素、棉花。
[0017] 上述步骤(1)纳米微晶纤维素胶体悬浮液的制备可以参考现有技术,本发明优选 的,上述步骤(1)的操作方法是:将木质纤维素原料粉碎,过20目筛,在20Γ-65°C下加入30-64wt%的硫酸,使该酸与木质纤维素原料的体积质量比(5~15):1,单位毫升/克,原料以绝 干料计;搅拌下,反应l〇min-70min,然后将悬浮液离心,,沉淀物用去离子水反复离心冲洗 至pH值5.0~5.5,将得到产物放入透析袋中,用流动的去离子水透析至pH值恒定,透析后的 悬浮液在冰水浴中进行超声波振荡处理5min-50min,得到纳米微晶纤维素胶体悬浮液; [0018]优选的,上述步骤(2)中取纳米微晶纤维素胶体悬浮液(NCC)加入高碘酸盐后,用 无机酸调节PH为3-4。进一步优选的,上述步骤(2)中用无机酸调节pH为3.5,再用pH为3.5的 HAc-NaAc缓冲溶液稀释至原反应体系的2.5体积倍。
[0019]优选的,上述步骤(2)中使用的透析袋截留分子量为12500-13500。
[0020] 优选的,上述步骤(2)中所述调节pH用的无机酸为盐酸或硫酸。
[0021]优选的,上述步骤(2)中所述高碘酸盐为高碘酸钠或高碘酸钾。
[0022] 优选的,上述步骤(3)中所述的单宁为落叶松单宁,杨梅单宁,坚木单宁或黑荆树 单宁。
[0023] 优选的,上述步骤(3)中反应结束后,用去离子水洗涤反应产物3-5次。
[0024]本发明制备的纳米纤维素单宁微凝胶由粒径在100-250nm的微球粒子组成,具有 较大的比表面积。单宁所占比例可以达到40-60 %。通过单宁的多个邻位酚羟基与多种金属 离子发生静电结合和络合反应,可以吸附去除废水中重金属离子,具有较高的吸附容量。另 一方面,纳米纤维素-单宁微凝胶之间通过共价键进行交联,结合牢固,因此可以克服使用 过程中单宁易溶出或脱落的问题,吸附重金属离子后结构不会被破坏,易回收,可重复利 用。
[0025] 本发明制备纳米纤维素单宁微凝胶的应用,用于吸附废水中的重金属离子,尤其 是对Cr6+,Cu2+或/和Pb 2+均有较好的吸附效果。例如:对Cr2+吸附容量可达到103mg/g。
[0026] 本发明的制备工艺路线是先对木质纤维原料进行酸处理得到纳米微晶纤维素,再 用高碘酸盐对纳米微晶纤维素进行氧化得到双醛纳米微晶纤维素,最后利用双醛纳米微晶 纤维素与单宁进行共价交联反应,得到纳米纤维素单宁微凝胶。以落叶松单宁为例,反应路 线如下所示:
[0029]本发明的有益效果:
[0030] 1、本发明利用双醛纳米纤维素与单宁反应生成纳米纤维素单宁微凝胶,微凝胶中 微球粒径在100-250nm,具有较高的吸附容量。
[0031] 2、单宁具有的多个邻位酚羟基,使它能与多种金属离子发生静电结合和络合反 应,因此可以用于废水中重金属离子的吸附去除。但单宁易溶于水和极性有机溶剂中,很难 直接用于工业废水处理。本发明将纳米纤维素与单宁进行反应,通过共价交联,制备成微凝 胶,吸附后通过过滤或离心就可以很容易地与水分离。
[0032] 3、本发明的微凝胶吸附材料中含有纳米纤维素,且纳米纤维素与单宁通过共价键 交联,因此具有较高的强度,吸附重金属离子后不会被破坏,通过酸或碱处理后可以再生, 易于重复利用。
[0033] 4、本发明利用生物质资源进行改性制备生物基新材料,能够有效解决生产中的资 源与环境压力,具有很好的发展前景。
【附图说明】
[0034] 图1是实施例1的产品纳米纤维素-单宁微凝胶的原子力显微镜图。
【具体实施方式】
[0035] 下面结合具体实施例对本发明做进一步说明,但不限于此。所述"%"均为质量百 分比,特殊说明的除外。实施例中的原料均为市购产品。
[0036] 实施例1:
[0037] (1)用粉碎机将漂白阔叶木浆粉碎,过20目筛,以绝干浆料20g计取。在45°C下加质 量浓度64%的硫酸170mL混合,在机械搅拌作用下进行反应,反应30min后将悬浮液离心,下 层沉淀物用去离子水反复离心冲洗至pH值为5.0。将离心后的沉淀物放入截留分子量为 12500-13500透析袋中,用流动的去离子水透析5天。透析后的悬浮液用超声波振荡器处理 lOmin,为避免产物因热聚集,所述超声波处理在冰水浴中进行,制得纳米微晶纤维素(NCC) 悬浮液。
[0038] (2)取含有Ig绝干物料的NCC悬浮液,加入6mmol的高碘酸钠,用Imol/L的盐酸调节 pH为3.5,再用pH为3.5的HAc-NaAc缓冲溶液稀释至200mL。在避光条件下反应36h,反应温度 为40°C。反应结束后加入去离子水用高速离心的方法洗涤3次。所得产物使用袋截留分子量 为12000-14000的透析3天,得到双醛纳米微晶纤维素。
[0039] (3)将得到的双醛纳米微晶纤维素滴加到坚木单宁溶液中,双醛纳米微晶纤维素 与聚乙烯胺重量比为1:3,30°C下反应12h。反应结束后,用去离子水洗涤反应产物5次,然后 用截留分子量为5000的透析膜进行透析,得到纳米纤维素单宁微凝胶。
[0040] 实施例1获得的纳米纤维素-单宁微凝胶的单宁含量为45.38%。利用原子力显微 镜对该纳米纤维素聚乙烯胺微凝胶形貌进行观察,如图1所示,微球粒子粒径在l〇〇_250nm。 [0041 ] 实施例2:
[0042] (1)用粉碎机将漂白阔叶木浆粉碎,过20目筛,以绝干浆料20g计取。在45°C下加质 量浓度64%的硫酸170ml混合,在机械搅拌下反应30min后将悬浮液离心,下层沉淀物用去 离子水反复离心冲洗至PH值为5.0。将离心后的沉淀物放入截留分子量为12000-14000透析 袋中,用流动的去离子水透析5天。透析后的悬浮液用超声波振荡器处理lOmin,为避免产物 因热聚集,处理在冰水浴中进行,制得纳米微晶纤维素悬浮液。
[0043] (2)取含有Ig绝干物料的NCC悬浮液,加入9mmol的高碘酸钠,用0.5mol/L的硫酸调 节pH为3.5,用pH为3.5的HAc-NaAc缓冲溶液稀释至200mL。在避光条件下反应36h,反应温度 为40°C。反应结束后加入去离子水用高速离心的方法洗涤3次。所得产物使用袋截留分子量 为12000-14000的透析3天,得到双醛纳米微晶纤维素。
[0044] (3)将得到的双醛纳米微晶纤维素滴加到杨梅单宁溶液中,重量比为1:4.5,50°C 下反应12h。反应结束后,用去离子水洗涤反应产物5次,然后用截留分子量为5000的透析膜 进行透析,得到纳米纤维素单宁微凝胶。
[0045] 实施例3:
[0046] (1)用粉碎机将漂白针叶木浆粉碎,过20目筛,以绝干浆料20g计取。在45°C下加质 量浓度64%的硫酸170ml混合,在机械搅拌作用下进行反应,反应30min后将悬浮液离心,下 层沉淀物用去离子水反复离心冲洗至pH值为5.0。将离心后的沉淀物放入截留分子量为 12000-14000透析袋中,用流动的去离子水透析5天。透析后的悬浮液用超声波振荡器处理 lOmin,为避免产物因热聚集,该处理在冰水浴中进行,制得纳米微晶纤维素悬浮液。
[0047] (2)取含有Ig绝干物料的NCC悬浮液,加入12mmol的高碘酸钠,用lmol/L的盐酸调 节pH为3.5,再用pH为3.5的HAc-NaAc缓冲溶液稀释至200mL。在避光条件下反应36h,反应温 度为40°C。反应结束后加入去离子水用高速离心的方法洗涤3次。所得产物使用袋截留分子 量为12000-14000的透析3天,得到双醛纳米微晶纤维素。
[0048] (3)将得到的双醛纳米微晶纤维素滴加到落叶松单宁溶液中,其用量比为1:6,单 位为克比克,30°C下反应24h。反应结束后,用去离子水洗涤反应产物5次,然后用截留分子 量为5000的透析膜进行透析,得到纳米纤维素单宁微凝胶。
[0049] 实施例4:
[0050] 如实施例1所述,所不同的是步骤(3)中单宁为黑荆树单宁。
[0051 ] 实施例5:
[0052]如实施例1所述,所不同的是在步骤(2)中使用高碘酸钾为氧化剂。
[0053] 实施例6:
[0054]如实施例2所述,所不同的是步骤(1)中原料为漂白针叶木硫酸盐浆。
[0055] 吸附试验:
[0056] 配制浓度为50-500mg/L的重络酸钾、硝酸铜、硝酸铅溶液200mL,调节重络酸钾溶 液pH为2,调节硫酸铜溶液、硝酸铅溶液pH为5,分别加入0.1 g(绝干)实施例1制得的纳米纤 维素单宁微凝胶,吸附12h。吸附完成后进行离心,取上清液,利用原子吸收光谱仪,通过计 算得到微凝胶对各重金属离子溶液的最大吸附量,结果列于表2。纳米纤维素单宁微凝胶对 废水中的重金属离子,Cr 6+,Cu2+及Pb2+均有较好的吸附效果。
[0057]表2纳米纤维素单宁微凝胶对重金属离子的吸附效果
【主权项】
1. 一种纳米纤维素单宁微凝胶的制备方法,包括步骤: (1) 将木质纤维素原料进行酸处理,洗涤,透析,超声处理,得到纳米微晶纤维素胶体悬 浮液; (2) 取步骤(1)制备的纳米微晶纤维素胶体悬浮液,加入高碘酸盐,调节pH为3-4,再用 PH为3-4的醋酸-醋酸钠缓冲溶液稀释至原反应体系的2-3体积倍;在避光条件下反应6-36h,反应温度20-40°C,反应结束后,加入去离子水采用高速离心的方法洗涤2-3次,除去多 余的高碘酸盐;所得产物透析2-5天,透析袋截留分子量为12000-14000;得到双醛纳米微晶 纤维素; 上述纳米微晶纤维素以绝干重计,与高碘酸盐的质量摩尔比为1:1-25,单位g/mmol; (3) 将步骤(2)制备的双醛纳米微晶纤维素滴加到单宁溶液中,所述双醛纳米微晶纤维 素与单宁质量比为1:1-7,搅拌下反应3-481!,控制反应温度为20-70°(:;产物经洗涤后,透析 1-3天,得纳米纤维素单宁微凝胶。2. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于所得纳米纤维 素单宁微凝胶是由粒径在l〇〇_250nm的微球粒子组成。3. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于所得纳米纤维 素单宁微凝胶中,单宁占比为40-60%wt.。4. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于,上述步骤(1) 中的木质纤维素原料选自下列之一或组合:溶解浆、漂白针叶木硫酸盐浆、漂白阔叶木硫酸 盐浆、办公废纸浆、微晶纤维素、棉花。5. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于步骤(1)纳米微 晶纤维素胶体悬浮液的制备步骤是:将木质纤维素原料粉碎,过20目筛,在20°C_65°C下加 入30-64wt%的硫酸,使该酸与木质纤维素原料的体积质量比(5~15): 1,单位毫升/克,原 料以绝干料计;搅拌下,反应l〇min-70min,然后将悬浮液离心,下层沉淀物产物用去离子水 反复离心冲洗至PH值5.0~5.5,将得到产物放入透析袋中,用流动的去离子水透析至pH值 恒定,透析后的悬浮液在冰水浴中进行超声波振荡处理5min-50min,得到纳米微晶纤维素 胶体悬浮液。6. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于,步骤(2)中取 纳米微晶纤维素胶体悬浮液加入高碘酸盐后,用无机酸调节pH为3-4;优选的,用无机酸调 节pH为3.5,再用pH为3.5的HAc-NaAc缓冲溶液稀释至原反应体系的2.5体积倍。7. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于,所述调节pH用 的无机酸为盐酸或硫酸。8. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于,步骤(2)中所 述高碘酸盐为高碘酸钠或高碘酸钾。9. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于,上述步骤(3) 中单宁可以为落叶松单宁,杨梅单宁,坚木单宁或黑荆树单宁。10. 如权利要求1所述的纳米纤维素单宁微凝胶的制备方法,其特征在于,步骤(2)中使 用的透析袋截留分子量为12500-13500。
【文档编号】B01J20/24GK105921121SQ201610302425
【公开日】2016年9月7日
【申请日】2016年5月6日
【发明人】徐清华, 靳丽强, 王玉, 孙秋存, 陈浩
【申请人】齐鲁工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1