可生物降解的润滑剂的制作方法

文档序号:5128575阅读:359来源:国知局
专利名称:可生物降解的润滑剂的制作方法
背景技术
本发明涉及可生物降解的润滑剂,尤其涉及半流质油脂组合物,所述组合物包括合成的或天然的基油和增稠剂体系以及抗磨损剂,其中基油包括酯和多元醇,增稠剂体系包括具有扩展性能的天然磷脂,所设计的组合物是用于环境敏感应用中,所述组合物的比重大于或等于1.0,用于海上、内陆、海岸水路、水纯化和废水处理应用中。
对可生物降解的润滑剂一直都有需求。用于轴承和其它海上应用以及二冲程发动机的润滑剂尤其更需要是可生物降解的。这些发动机通常是用于娱乐交通工具如摩托艇、水上滑板、雪地汽车,和用于草坪设备的小型汽油发动机。因此,所有这些应用都是在对污染敏感的环境中进行的。缺乏可接受的生物降解程度,润滑剂的排放以及泄漏都会污染森林、河流、湖泊以及其他水源。
艉轴管轴承是螺旋桨驱动船中最重要的轴承之一,经常成为争论的主题。据报道,对于艉轴直径等于或大于600mm的轮船,用润滑油润滑的金属螺旋轴的不合格率高达10%。这种不合格与密封不合格相关,导致油扩散到水中。已设计出艉轴管润滑剂,用于润滑海运船只螺旋轴的承重轴承。这些矿物油制剂从艉轴管密封件泄漏到水面上引起水面发出光泽或呈现闪光的外观。改进这些种类的润滑剂性能的矿物油和添加剂不是可生物降解的,通常对环境造成危害。
在纯化水和废水处理设施中,机器的一些部件采用可生物降解的润滑剂进行润滑。然而,这些润滑剂的密度小于水,或60°F(15.6℃)下的比重小于1.0。这些比水轻的润滑剂漂浮在水面上,使水面产生光泽。润滑剂的去除需要在下游设置昂贵的撇油设备。
可生物降解度是根据被称为改进的Sturm检测法(Modified Sturm test)的OECD 301B试验测定的,该方法已于1979年被经济合作与发展组织所采纳。该检测法已成为欧盟标准中检测可生物降解度的检测标准EU C.4-C。可生物降解度的检测涉及检测化合物所产生的CO2量,然后将该测量值表示为该化合物能产生的理论CO2量(由化合物的碳含量计算出的)的百分数。该方法通过测定转变为BaCO3的量而测得所释放的CO2的量,这种方法是本领域普通技术人员所熟知的,以下将不做详细介绍。通常,按照OECD 301B检测,可生物降解度大于60%的润滑剂被认为是具有可接受的可生物降解度特性。相比较之下,用相同检测方法测定的矿物油通常的可生物降解度为20%至30%。
目前基于支链合成酯的可生物降解基料以及由其组成的润滑剂在美国专利号5,681,800中公开。其中,支链脂肪酸提供了所需的粘度、低温特性、润滑性、可生物降解性以及添加剂溶于其中的溶解性。基于聚新戊基多元醇酯润滑剂的二冲程发动机润滑剂在美国专利号6,551,968中有描述。这些油和润滑剂漂浮在水面上会附着在海洋生物和鸟类的皮肤、皮毛和羽毛上,而导致对动物和植物的伤害。这种发光的膜还会减少氧气进入水中,从而对海洋生物产生危害。
基于油脂增稠剂体系的高碱性磺酸钙也是本领域所熟知的。这些物质公开于美国专利号4,560,489和5,308,514中。这些油脂通常包含硼酸钙,从而使这些体系不能用于环境敏感应用中。
可获得具有可生物降解性能的各种已知润滑剂,但泄漏仍导致润滑剂积留在水面上。因此,需要获得可生物降解的润滑剂,其可用于环境敏感应用中,该润滑剂不会积留在水面上,易于被水生微生物进行生物降解,从而克服了通常的与润滑剂相关的环境危害。
发明概述概括而言,本发明提供了一种改良的可生物降解的润滑剂,该润滑剂基于天然或合成的基油、高碱性磺酸钙增稠剂体系以及天然存在的磷脂以获得改进的性能和抗磨损性,其中基油包括酯或多元醇,磷脂包括α-卵磷脂。合成的酯是可生物降解的,通常在60°F(15.6℃)下的比重大于或等于1.0,使其更适于海上应用中。
优选的组合物包括由具有5-8个碳原子的新戊基多元醇与具有5-18个碳原子的直链一元羧酸或酸混合物酯化形成的多元醇酯基油和基于聚乙二醇、聚丙二醇和乙二醇与丙二醇的共聚物的聚亚烷基二醇基油。基油是通过高碱性磺酸钙、直链烷基苯磺酸和12-24个碳原子的脂肪酸以及α-卵磷脂而被增稠的。优选的润滑剂组合物和添加剂的比重大于1.0,当被排放到水上时,润滑剂会沉入水下,避免了产生水面光泽。然后,沉入水下的润滑剂被生物降解。
因此,本发明的目的在于提供一种可生物降解性得到改进的合成酯润滑剂基料。
本发明的另一个目的在于提供一种适用于海上应用的、可生物降解性得到改进的改良型合成酯润滑剂。
本发明的进一步目的在于提供一种可生物降解性得到改进的合成酯润滑剂,该润滑剂被排放到水中时,不会形成水面光泽。
本发明的另一个目的在于提供一种可生物降解性得到改进的润滑剂,该润滑剂的润滑性能得到改进,且环境温度下的比重大于1.0。
本发明的其它目的和优点根据说明书的描述是显而易见的。
本发明因此包括一种具有上述特征和性质的组合物,各组分之间的关系将在下述内容中进行举例说明,本发明的保护范围在权利要求书中表明。
最佳实施方式根据本发明制备的可生物降解性油脂和润滑剂是半流质油脂组合物,其基于用磺酸钙增稠剂体系和性能改进的天然动物或植物脂肪油、或磷脂化合物如卵磷脂增稠的天然油、合成酯或二醇。合成酯为可生物降解的酯。用于海上、内陆、海岸水路、水纯化和废水处理应用中,它们的特征在于60°F(15.6℃)下的比重大于或等于1.0。油脂组合物可加入性能改进的添加剂而得到改良。添加剂的形式可以是固体膜润滑剂。优选地,改进油脂组合物的添加剂是可生物降解的或对环境无害的,其特征在于60°F(15.6℃)下的比重大于或等于1.0。
作为抗磨剂添加的卵磷脂是存在于包括植物和动物的所有生物中的天然磷脂。其是与磷酸胆碱酯相连的硬脂酸甘油二酯、棕榈酸甘油二酯和油酸甘油二酯的混合物。从大豆获得的卵磷脂和大豆卵磷脂包括棕榈酸、硬脂酸和棕榈油酸、油酸、亚油酸、亚麻酸和C20至C22酸。α-卵磷脂的结构式如下 本发明制备的油脂的合成酯基油通过至少一种具有5-8个碳原子和至少两个羟基的新戊基多元醇与包括至少一种具有5-18个碳原子的正链烷酸的一元羧酸混合物进行反应而制得。被用于制备本发明组合物的基油的新戊基多元醇是至少一种如下结构式所表示的新戊基多元醇 其中,R独自选自如下组成的群组中CH3、C2H5和CH2OH。实例为新戊基多元醇,包括季戊四醇、三羟甲基丙烷、三羟甲基乙烷、新戊基二醇等。本发明的一些实施方式中,新戊基多元醇只包括一种新戊基多元醇。在其它实施方式中,其包括两种或多种新戊基多元醇。
多元醇可以是商购的单季戊四醇或二聚季戊四醇,技术级季戊四醇、三羟甲基丙烷或新戊基多元醇。单季戊四醇C5H12O4(MPE,CAS#=115-77-5)是无色固体,熔点为255-259℃;二聚季戊四醇,C10H22O7(DPE,CAS#=126-58-9)是无色固体,熔点为215-218℃;可商购的技术级季戊四醇包括单季戊四醇和含量通常为约6至15wt%的二聚季戊四醇。
用于制备酯的直链一元羧酸包括5-18个碳原子,优选5-10个碳原子的酸,如缬草酸(戊酸)、羊油酸(己酸)、庚酸、羊脂酸(辛酸)、天竺葵酸(壬酸)、羊蜡酸(癸酸)以及它们的混合物。在本发明的优选实施方式中,多元醇是单季戊四醇或基于技术级季戊四醇的多元醇,其被至少一种具有5-10个碳原子的直链一元羧酸所酯化。优选地,直链酸的组分是戊酸(C5)或庚酸(C7)和辛酸至癸酸(C8-C10)的混合物。辛酸至癸酸为具有8-10个碳原子的酸,但实际上包括C6-C12的酸,其中基本上不含C12酸(小于1%)。用于制备本发明酯的优选庚酸和辛酸至癸酸混合物直链酸组分可大范围地变化。例如,混合物可为约30-70wt%的庚酸和余量的辛酸至癸酸。在一个优选实施方式中,正酸混合物为40-60重量份的庚酸和余量的辛酸至癸酸。
制备酯期间,反应混合物中存在酸混合物以形成酯,酸的加入量比多元醇过量约5-10wt%。过量的酸促进反应完全。过量酸虽不是进行反应的关键所在,但过量越少,反应时间越长。反应完全后,通过滴定和精制除去过量的酸。通常,酯化反应在常规催化剂的存在下进行。例如,可采用含锡或含钛催化剂。草酸锡是一个例子。
高碱性磺酸钙增稠剂体系包括
矿物油、白油或合成烃稀释剂中高碱性磺酸钙的总碱值(TBN)为300至400mgKOH/g。低分子量的醇溶剂可以是具有2-5个碳原子,优选3个碳原子的一元醇,例如异丙醇。低分子量的酸为具有1-5个碳原子的一元羧酸,优选为乙酸或戊酸。固体膜润滑剂为碳酸钙。
本发明制备的润滑剂的特征在于包括
根据本发明,制备油脂和润滑剂的方法如下,结合以下实施例进行描述。
·向釜中加入所需数量的高碱性磺酸钙,在搅拌条件下加热至160-185°F(71.1-85℃),然后加入占总重量35-45%的油,和相当于总投料量4-6%的水,保持该温度,并同时加入溶于醇中的直链烷基苯磺酸。混合这三种组分的同时加入酸性的酸。
·在搅拌条件下缓慢加热上述混合物,在30-60分钟内加热至212°F(100℃),然后开始充分加热。
·混合物温度在235-250°F(112.8-121.1℃)时,随着液体变稠,加入约20%总重量的油。此时加入所有的12-羟基硬脂酸,将混合物加热至385-400°F(196.1-204.4℃)。
·然后冷却反应混合物,在350-365°F(196.1-185℃)时,加入碳酸钙与20-40%的油。
·当混合物温度低于250°F(121.1℃)时,碾磨油脂并加入另外的油,从而获得所需粘度。当混合物温度低于180°F(82.3℃)时,停止碾磨,加入α-卵磷脂。
参照以下实施例更有利于进一步理解本发明。除非指明是摩尔数量,否则所有的百分比都是重量百分比。这些实施例只适用于举例说明,而无意于限制本发明。
实施例1本发明可生物降解的油脂是基于以下起始原料制备得到。
制备方法包括如下步骤1)将所有高碱性磺酸钙加至釜中,边搅拌边加热,使混合物的温度升至160-185°F(71.1-85.0℃)。
2)向釜中加入占总量35-45%的PE-C5-10酯和相当于总投料量3-5%的水。搅拌并使混合物温度重新升至160-185°F(71.1-85.0℃)。
3)加入溶解于全部异丙醇中的全部直链烷基苯磺酸。
4)在上述三种组分都混入釜中10-15分钟后,加入全部乙酸。
5)在搅拌条件下继续缓慢加热(在30-60分钟内加热至210-215°F(98.9-101.7℃)),然后开始充分加热。
6)在混合物温度达235-250°F(112.8-121.1℃)时,如果混合物已经开始变稠,则加入Tech-PE-C5-10酯(约为总量的20%)。
7)在混合物温度达235-250°F(112.8-121.1℃)时,可将全部12-羟基硬脂酸加至釜中。
8)加热混合物至385-400°F(196.1-204.4℃)的温度。
9)达到最高温度后,开始冷却这批反应物。
10)当混合物温度达350-365°F(176.6-185.0℃)时,开始加入PE-C5-10酯(约为总量的20-40%)以及全部碳酸钙。
11)当混合物温度低于250°F(121.1℃)时,开始碾磨油脂。
12)在碾磨过程中检查混合物的针入情况,然后加入适量PE-C5-10酯以得到所需的针入范围。
13)当混合物温度低于180°F(82.3℃)时,停止碾磨,加入全部α-卵磷脂。
实施例2以下是实施例1所制备的油脂的物理参数和性能指数。
按照OECD测试,油脂的可生物降解度为69.2%。
实施例3本发明的可生物降解油脂是基于以下起始原料制备得到的。
制备方法1)将所有高碱性磺酸钙加至釜中,边搅拌边加热,使混合物的温度升至160-185°F(71.1-85.0℃)。
2)向釜中加入占总量35-45%的DiPE-C5C8/10酯并加入水,直至达到总投料量的3-5%。搅拌,使混合物温度重新升至160-185°F(71.1-85.0℃)。
3)加入溶解于全部异丙醇中的全部直链烷基苯磺酸。
4)在上述三种组分都混入釜中10-15分钟后,加入全部乙酸。
5)搅拌中继续缓慢加热(在30-60分钟内加热至210-215°F(98.9-101.7℃)),然后开始充分加热。
6)在混合物温度达235-250°F(112.8-121.1℃)时,如果混合物已经开始变稠,则加入DiPE-C5C8/10酯(约为总量的20%)。
7)在混合物温度达235-250°F(112.8-121.1℃)时,可将全部12-羟基硬脂酸加至釜中。
8)加热混合物至385-400°F(196.1-204.4℃)的温度。
9)达到最高温度后,开始冷却这批反应物。
10)当混合物温度达350-365°F(176.6-185.0℃)时,开始加入DiPE-C5C8/10酯(约为总量的20-40%)以及全部碳酸钙。
11)当混合物温度低于250°F(121.1℃)时,开始碾磨油脂。
12)在碾磨过程中检查混合物的针入情况,然后加入适量DiPE-C5C8/10酯以得到所需的针入范围。
13)当混合物温度低于180°F(82.3℃)时,停止碾磨,加入全部卵磷脂。
实施例4以下是实施例3所制备的油脂的物理参数和性能指数。
按照OECD测试,油脂的可生物降解度为46.0%。
可以看出,在不违背本发明精神和范围之下,对上述组分进行适当改变仍可以获得有效的润滑剂,因此本发明的上述说明都只适用于举例说明,而无意于对本发明进行限制。
还可以理解,以下权利要求意欲覆盖本发明所描述的所有总特征和具体特征,在语言描述上,对本发明范围的所有限定可能会落在本发明的范围之间。
权利要求
1.一种润滑剂组合物,其包括(a)约55-90wt%可生物降解的基油;(b)约7.5-20wt%高碱性磺酸钙增稠剂体系;和(c)约5-10wt%磷脂抗磨损剂。
2.权利要求1的润滑剂组合物,其中所述磷脂为α-卵磷脂。
3.权利要求1的润滑剂组合物,其中所述可生物降解的基油为多元醇酯。
4.权利要求1的润滑剂组合物,其中所述多元醇酯是至少一种具有5-8个碳原子和至少两个羟基的新戊基多元醇与包括至少一种具有5-18个碳原子的正链烷酸的一元羧酸混合物进行反应的产物。
5.权利要求1的润滑剂组合物,其中所述可生物降解的基油是聚亚烷基二醇。
6.权利要求1的润滑剂组合物,其中所述组合物在60°F(15.6℃)下的比重至少为约1.0。
7.权利要求1的润滑剂组合物,所述组合物进一步包括约1-4wt%固体膜润滑剂。
8.权利要求7的润滑剂组合物,其中所述固体膜润滑剂为碳酸钙。
9.权利要求1的润滑剂组合物,其中所述高碱性磺酸钙增稠剂体系包括高碱性磺酸钙、直链烷基苯磺酸、低分子量的醇溶剂以及低分子量的一元羧酸。
10.权利要求1的润滑剂组合物,其包括组分百分含量(组合物总重量的百分比)高碱性磺酸钙 10-15直链烷基苯磺酸0.45-0.90低分子量的醇溶剂 0.5-0.60低分子量的酸 0.10-0.3012-羟基硬脂酸 2.5-5.0以及余量的可生物降解的基油。
11.一种润滑剂组合物,其包括(a)约55-90wt%可生物降解的基油;(b)约10-35wt%高碱性磺酸钙增稠剂;(c)约3-5wt%12-羟基硬脂酸;(d)约1.5-3.0wt%碳酸钙;以及(e)约5-10wt%磷脂抗磨损剂。
12.权利要求11的润滑剂组合物,其中所述可生物降解的基油为多元醇酯。
13.权利要求12的润滑剂组合物,其中所述多元醇酯是至少一种具有5-8个碳原子和至少两个羟基的新戊基多元醇与至少包括一种具有5-18个碳原子的正链烷酸的一元羧酸混合物进行反应的产物。
14.权利要求11的润滑剂组合物,其中所述可生物降解的基油是聚亚烷基二醇。
15.一种制备可生物降解的润滑剂的方法,该方法包括加热高碱性磺酸钙、油和溶于低分子量醇中的直链烷基苯磺酸的混合物;加入12-羟基硬脂酸并进一步加热至最高温度385-400°F(196.1至204.4℃);冷却;并加入另外的油和碳酸钙,同时继续冷却;碾磨油脂;再加入油以获得所需粘度;以及温度低于180°F(82.3℃)时加入具有扩展性能的天然磷脂和抗磨剂。
16.一种海上应用中的润滑方法,该方法包括采用60°F(15.6℃)下比重至少为约1.0的润滑剂组合物进行润滑。
17.权利要求16的方法,其中所述润滑剂包括(a)约55-90wt%可生物降解的基油;(b)约7.5-20wt%高碱性磺酸钙增稠剂体系;和(c)约5-10wt%磷脂抗磨损剂。
18.一种海上应用中的润滑方法,该方法包括采用含有下列组分的润滑剂组合物进行润滑(a)约55-90wt%可生物降解的基油;(b)约10-35wt%高碱性磺酸钙增稠剂;(c)约3-5wt%12-羟基硬脂酸;(d)约1.5-3.0wt%碳酸钙;以及(e)约5-10wt%磷脂抗磨损剂。
全文摘要
润滑剂组合物,其基于诸如多元醇酯或聚亚烷基二醇的可生物降解基油、基于磺酸钙的增稠剂以及天然磷脂如卵磷脂的抗磨损添加剂,该组合物用于环境敏感的应用中,当60°F(15.6℃)下的比重大于1.0时,可用于海上应用中。增稠剂可包括直链烷基苯磺酸、乙酸和12-羟基硬脂酸和碳酸钙固体膜润滑剂。当润滑剂散入水中时,润滑剂下沉从而避免形成表面光泽,下沉时润滑剂进行生物降解,因此是一种保护水生态环境的润滑剂。
文档编号C10M169/00GK1826402SQ200480016020
公开日2006年8月30日 申请日期2004年5月17日 优先权日2003年5月22日
发明者约翰·M.·库罗斯基, 佐勒菲卡尔·艾哈迈德·塔系尔 申请人:安德罗尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1