由C5‑C12烃混合物生产苯的方法与流程

文档序号:11109046阅读:1248来源:国知局
由C5‑C12烃混合物生产苯的方法与制造工艺
本发明涉及通过在氢存在下使含C5-C12烃的混合进料物流与具有加氢裂化活性的催化剂接触而由所述进料物流生产苯的方法。
背景技术
:WO2013/182534公开了应用加氢裂化/加氢脱硫催化剂由C5-C12烃混合物生产BTX(苯、甲苯和二甲苯)的方法。按照WO2013/182534,所述方法形成基本上不含BTX共沸物的混合物,因此可以容易地获得试剂级的BTX。虽然WO2013/182534的方法有利地限制了在所获得的混合物中BTX共沸物的量,但在所获得的混合物中对苯、甲苯和二甲苯之间比例的控制是有限的。在一些情况下,优选的是在产品中获得比原料中存在的更多的苯,和/或消除在方法中苯的任何损失。WO2013/182534也提到由混合物中分离BTX,和在适合于产生含苯和燃料气的加氢脱烷基化产品物流的条件下使所分离的BTX与氢接触。这导致高的苯收率,但需要两台串联反应器,因为加氢裂化和加氢脱烷基化在不同的反应条件下实施。应用多个反应器通常会导致更高的投资成本(CAPEX)。CN101734986公开了在催化剂存在下热解C7+烃以获得富含苯和二甲苯的产品物流的方法。CN101734986提到所获得的产品物流包含大量甲苯以及价值较低的重烃(C9+)和非芳烃。按照CN101734986,将重烃(C9+)再循环回反应区。在一些情况下,也将甲苯循环。这些物质的循环提高了苯和二甲苯的收率。US2006/0287564描述了增加由烃混合物的苯产量的方法,所述方法包括将烃原料分离为C6或更低级烃物流和C7或更高级烃物流。通常溶剂萃取过程将C6或更低级烃物流分离为非芳烃物流和芳烃物流。使C7或高级烃物流在包含铂/锡或铂/铅的催化剂存在下进行反应。US3957621描述了处理已经从中脱除大部分苯和更轻组分的重质重整产品的方法。所脱除的物流(图1的管线12处的顶部物流)包含进料中主要部分的苯和可以包含大部分的甲苯(第4栏第65-69行)。希望提供转化C5-C12烃原料物流并由其获得试剂级苯的方法,相比于已知方法,该方法会导致苯的收率增加。还希望提供的方法减小了所要求的投资成本。本发明的一个目的是提供一种转化C5-C12烃原料物流为包含苯的产品物流的方法,该方法满足了上述和/或其它要求。技术实现要素:因此,本发明提供一种生产苯的方法,包括如下步骤:(a)提供包含C5-C12烃的加氢裂化原料物流,(b)在氢存在下使所述加氢裂化原料物流与加氢裂化催化剂在工艺条件下接触,以产生包含苯、甲苯和C8+烃的加氢裂化产品物流,其中所述加氢裂化催化剂相对于催化剂总重量包含0.01-1wt%的加氢金属和孔径尺寸为及二氧化硅(SiO2)与氧化铝(Al2O3)摩尔比为5-200的沸石,和所述工艺条件包括425-580℃的温度、300-5000kPa表压的压力和0.1-15h-1的重时空速,(c)从所述加氢裂化产品物流中分离出苯、甲苯和C8+烃,和(d)将来自步骤(c)的分离产品的至少部分甲苯选择性循环以包含在加氢裂化原料物流中。术语‘选择性循环’在这里理解为在步骤(c)的包含苯、甲苯和C8+烃的分离产品中,只将甲苯循环以包含在加氢裂化原料物流中。取决于加氢裂化反应条件和加氢裂化原料物流中苯/甲苯/二甲苯的比,也可以发生甲苯转化为苯和二甲苯(甲苯岐化)的反应。当原料物流中的甲苯含量有限时,甲苯岐化的程度将受限和加氢裂化将与苯损失有关。通过将由加氢裂化产品物流中分离的甲苯循环回加氢裂化原料物流,可以控制加氢裂化原料物流中苯与甲苯的比和可以增加甲苯岐化的程度。这将导致苯收率的增加。与WO2013/182534中描述的在加氢裂化后利用加氢脱烷基化反应器转化甲苯和二甲苯为苯不同,按照本发明方法,通过循环甲苯只应用加氢裂化反应器就可以增加苯的收率。这对于减小CAPEX也是有益的。另外,相比于加氢脱烷基化,在本发明方法的过程中发生甲苯岐化明显产生更少的燃料气。在加氢裂化产品物流中C8+烃包括二甲苯。本发明步骤b)所应用的温和加氢裂化条件形成包含苯、甲苯和二甲苯(BTX)、其它C8+烃和少量BTX共沸物的产品物流。因为不存在BTX共沸物,BTX是“试剂级BTX”。所获得的苯为试剂级苯。类似地,所获得的甲苯是试剂级甲苯。按照本发明方法,只有甲苯循环被包含在加氢裂化原料物流中。这对于加氢裂化催化剂的寿命有有利影响。更重烃如C9+烃迅速缩短本发明方法中应用的加氢裂化催化剂的寿命。与CN101734986方法中应用的包含C7+烃的原料物流相比,本发明方法中应用的加氢裂化原料物流为较轻的原料物流。原料物流中初始较少量的C9+组分对于加氢裂化催化剂的寿命也有有利影响。原料物流中的二甲苯和C9+组分对于苯收率没有有益影响,和甚至可能通过例如三甲基苯和二甲苯的烷基转移反应而降低苯的收率。因此,选择性循环甲苯而不是一起循环甲苯与二甲苯和C9+组分对于提高苯的收率是有利的。正如这里所应用的,术语“C#烃”,其中“#”为正整数,意在描述具有#个碳原子的所有烃。另外,术语“C#+烃”意在描述具有#或更多个碳原子的所有烃分子。因此,术语“C5+烃”意在描述具有5或更多个碳原子的烃的混合物。在这里所应用的术语“BTX”在本领域中是公知的,和涉及苯、甲苯和二甲苯的混合物。正如这里所应用的,术语"试剂级BTX"指一种烃混合物,其包含小于5wt%非苯、甲苯和二甲苯的烃,优选小于4wt%非苯、甲苯和二甲苯的烃,更优选小于3wt%非苯、甲苯和二甲苯的烃,和最优选小于2.5wt%非苯、甲苯和二甲苯的烃。另外,由本发明方法产生的"试剂级BTX"包含小于1wt%的C6+非芳烃、优选小于0.7wt%的C6+非芳烃、更优选小于0.6wt%的C6+非芳烃和最优选小于0.5wt%的C6+非芳烃。最关键的杂质是沸点与苯接近的非芳族类物质,包括但不限于环己烷、甲基环戊烷、正己烷、2-甲基戊烷和3-甲基戊烷。因此,加氢裂化产品物流基本不含C6+非芳烃。正如这里所指,术语“基本不含C6+非芳烃的产品物流”指所述产品物流包含小于1wt%的C6+非芳烃、优选小于0.7wt%的C6+非芳烃、更优选小于0.6wt%的C6+非芳烃和最优选小于0.5wt%的C6+非芳烃。按照本发明,也可以很容易地由加氢裂化产品物流中分离出试剂级苯。正如这里所应用的,术语"试剂级苯"指包含小于0.5wt%非苯烃的烃物流。按照本发明,也可以很容易地由加氢裂化产品物流中分离出试剂级甲苯。正如这里所应用的,术语"试剂级甲苯"指包含小于0.5wt%非甲苯烃的烃物流。术语“芳烃”是本领域中公知的。因此,术语“芳烃”指具有稳定性的环状共轭烃(由于不定位而稳定),所述稳定性比假定的定位域结构(如Kekulé结构)的稳定性明显更大。确定给定烃芳族性的最常用方法是观测1HNMR光谱中的横向性(diatropicity),例如苯环质子存在7.2-7.3ppm的化学位移。在本发明方法中产生的加氢裂化产品物流优选包含小于10wt%的甲烷。更优选地,在本发明方法中产生的第一产品物流包含小于5wt%的甲烷、更优选小于4wt%的甲烷、更优选小于3wt%甲烷、甚至更优选小于2wt%的甲烷、特别优选小于1.5wt%的甲烷和最优选小于1wt%的甲烷。加氢裂化产品物流还优选基本不含C5烃。正如这里所指,术语“基本不含C5烃的产品物流”指所述加氢裂化产品物流包含小于1wt%的C5烃、优选小于0.7wt%的C5烃、更优选小于0.6wt%的C5烃和最优选小于0.5wt%的C5烃。步骤a)按照本发明方法的步骤a),提供含C5-C12烃的加氢裂化原料物流。加氢裂化原料物流在本发明方法中应用的加氢裂化原料物流为包含C5-C12烃、优选沸点为30-195℃的混合物。加氢裂化原料物流包含从加氢裂化产品物流循环的甲苯。加氢裂化原料物流优选主要包含C6-C8烃。步骤(a)包括使新鲜原料物流和循环甲苯混合。新鲜原料物流可以包含至少10wt%的苯、至少20wt%的苯或至少30wt%的苯。合适的新鲜原料物流包括但不限于第一级或多级加氢处理的热解汽油、直馏石脑油、加氢裂化汽油、轻质焦化石脑油和焦化炉轻油、FCC汽油、它们的重整产品或混合物。优选在加氢裂化原料物流中包含的非芳烃物质被饱和(例如通过预先加氢),以减少包含在本发明方法中应用的加氢裂化催化剂的催化剂床内的放热。因此,优选通过在加氢反应器中使来源原料物流加氢并使加氢后的来源原料物流(新鲜原料物流)与循环的甲苯混合而提供加氢裂化原料物流。合适的来源原料物流包括但不限于第一级或多级加氢处理的热解汽油、直馏石脑油、加氢裂化汽油、轻质焦化石脑油和焦化炉轻油、FCC汽油、它们的重整产品或混合物。来源原料物流可能具有相对较高的硫含量,如热解汽油(热解气)、直馏石脑油、轻质焦化石脑油和焦化炉轻油以及它们的混合物。因此,新鲜原料物流优选为热解汽油、直馏石脑油、轻质焦化石脑油和焦化炉轻油或它们的混合物,任选在加氢反应器中加氢后。新鲜原料物流优选尚未经历脱除苯的步骤。加氢裂化原料物流优选尚未经历脱除苯的步骤。加氢裂化原料物流优选包含至少1wt%的苯,例如至少3wt%、5wt%、10wt%或15wt%和/或至多35wt%、至多30wt%、至多25wt%或至多20wt%。可以通过与加氢裂化反应器串联的加氢反应器或包含串联的加氢床和加氢裂化床或在加氢裂化催化剂顶部的加氢催化剂层的反应器实现来源原料物流的加氢。相比于串联的两个反应器,单个反应器结构意味着更低的投资成本。例如,第一级加氢处理热解汽油的典型组成可以包含10-15wt%的C5烯烃、2-4wt%的C5链烷烃和环烷烃、3-6wt%的C6烯烃、1-3wt%的C6链烷烃和环烷烃、25-30wt%的苯、15-20wt%的甲苯、2-5wt%的乙苯、3-6wt%的二甲苯、1-3wt%的三甲基苯、4-8wt%的双环戊二烯、和10-15wt%的C9+芳烃、烷基苯乙烯和茚;例如参见AppliedHeterogeneousCatalysis:Design,ManufactureandUseofSolidCatalysts(1987)J.F.LePage的表E3.1。但烃混合物也脱了碳五,因此全部C6-C9烃物质的浓度比上面的典型数据相对要高,这种烃混合物可以有利地用作本发明方法的原料物流。在一个实施方案中,对本发明方法中应用的加氢裂化原料物流进行处理从而使其富含单芳族化合物。正如这里所应用的,术语"单芳族化合物"指只具有一个芳环的烃化合物。适合于富集混合烃物流中单芳族化合物含量的设施和方法在本领域中是公知的,如Maxene方法,例如参见Bhirud(2002)ProceedingsoftheDGMK-Conference115-122。在本发明方法中应用的来源原料物流或加氢裂化原料物流可以包含至多300wppm的硫(即在任何化合物中存在的硫原子的重量,相对于原料的总重量)。步骤b)按照本发明方法的步骤b),加氢裂化原料物流在氢存在下在加氢裂化反应器中与加氢裂化催化剂接触。加氢裂化原料物流在氢存在下与加氢裂化催化剂接触产生加氢裂化产品物流。在烃的加氢裂化过程中,甲苯岐化影响产品物流中苯的比例:正向进行的甲苯岐化反应增加苯的量。这种反应在苯与甲苯比较低的物流中更易发生。在本发明方法的步骤d)中将甲苯循环至加氢裂化原料物流将增加加氢裂化原料物流中的甲苯量。相比于没有进行甲苯循环的方法,这将导致更高的苯总收率。通过改变待循环的甲苯的量,可以控制加氢裂化原料物流中的甲苯量。通过控制加氢裂化原料物流中的甲苯量,有可能有利地控制加氢裂化产品物流中苯的量。在一些实施方案中,使步骤(c)的分离后的产品中所有的甲苯循环以包含在加氢裂化原料物流中。在其它实施方案中,使步骤(c)的分离后的产品中的部分甲苯循环以包含在加氢裂化原料物流中。循环更高比例的甲苯会增加苯的收率,但加氢裂化原料物流中过多甲苯的存在可能会导致催化剂对苯共沸物的加氢裂化活性不足,并因此不能生产试剂级苯。如果使步骤(c)的分离后产品中的所有甲苯均循环以被包含在加氢裂化原料物流中,加氢裂化原料物流中甲苯的量可以增加到一定程度,以至于需要非常大的反应器来容纳足够的催化剂来实施甲苯岐化及苯纯化(即加氢裂化)两种反应。通过限制待循环的甲苯量,可以保持通过催化剂对苯提纯即加氢裂化的基本功能。因此,优选选择待循环的甲苯的比例,从而在加氢裂化过程中没有苯的损失或名义上苯的增多,同时使苯的共沸物充分加氢裂化。因此,可以设定加氢裂化原料物流中所包含的甲苯量,从而没有苯损失或名义上苯增加。因此,在本发明方法的一些实施方案中,设定被循环以包含在加氢裂化原料物流中的甲苯的量,从而在加氢裂化产品物流中苯的比例比加氢裂化原料物流中苯的比例高0-50mol%,例如0-25mol%、例如0-10mol%、例如0-5wt%。这可以通过控制如下所述的参数[BX]/T2来实现。[BX]/T2与所得的加氢裂化原料物流和加氢裂化产品物流中苯的比例差之间的关系可以由本领域熟练技术人员实验确定。本领域熟练技术人员因此可以控制[BX]/T2,以达到加氢裂化原料物流和加氢裂化产品物流中苯的比例的理想变化。加氢裂化产品物流中未循环以包含在加氢裂化原料物流中的甲苯可以有利地经历单独和专用的甲苯歧化工艺反应器或用于其它目的。应用专用的甲苯岐化反应器将进一步增加苯收率。因此,在本发明的一些实施方案中,来自步骤(c)的分离产品的部分甲苯在与实施加氢裂化步骤(b)的反应器分开的反应器中在适合甲苯岐化的条件下与氢接触。待循环以包含在加氢裂化原料物流中的甲苯量可以例如为加氢裂化产品物流中甲苯量的10-80wt%、例如50-70wt%。确定包含BTX和乙苯的加氢裂化原料物流的苯收率的一个参数可以按下式来表示:[苯的摩尔量+乙苯的摩尔量]*[二甲苯的摩尔量]/[甲苯的摩尔量]2(在这里有时表示为[BX]/T2)该公式中的所有量均为加氢裂化原料物流中的量。已发现这个参数可以用作预测作为加氢裂化过程中甲苯岐化结果所获得苯量的良好指标。因为试验发现乙苯通过本发明的加氢裂化步骤大部分转化为苯,在上述公式中乙苯的量被加到了苯的量上。通过调节待循环的甲苯量可以很容易地实现对加氢裂化原料物流中[BX]/T2的控制。这确保为了在苯收率和具有合理CAPEX的合理大小反应器的足够加氢裂化活性之间获得良好平衡,有合适量的甲苯被循环。通常,[BX]/T2为至多20、更典型地为至多10、更典型地为至多5、更典型地为至多1。[BX]/T2优选为至多0.5、更优选为至多0.35、更优选为至多0.25、更优选为至多0.15。这导致加氢裂化产品物流中高的苯收率。为了确保催化剂足够的加氢裂化活性,[BX]/T2优选大于比0。[BX]/T2优选为至少0.02,例如至少0.05。对于更大的反应器,参数[BX]/T2可能通常较低。对于良好苯收率与具有合理CAPEX的合理大小反应器的足够加氢裂化活性之间的平衡来说,[BX]/T2范围在0.05-0.2可能是最佳的。应注意US3957621提到将加氢裂化产生的甲苯循环以添加至新鲜原料中。在US3957621的表VII中给出了新鲜原料和加氢裂化产品物流(加氢裂化后的流出物)的组成。但没有给出加氢裂化原料物流的组成,即待加氢裂化的新鲜原料和循环甲苯的混合物的组成。在US3957621中没有提到对于苯收率与足够加氢裂化活性之间的平衡很关键的加氢裂化原料物流中的[BX]/T2。US3957621没有教导控制加氢裂化原料物流中的[BX]/T2的想法。另外,在US3957621中总是从待加氢裂化的物流中脱除苯。加氢裂化催化剂本发明的催化剂为包含0.01-1wt%加氢金属和孔径为及二氧化硅(SiO2)与氧化铝(Al2O3)摩尔比为5-200的沸石的加氢裂化催化剂,和所述工艺条件包括425-580℃的温度、300-5000kPa表压的压力和0.1-15h-1的重时空速,从而产生加氢裂化产品物流。在优选的实施方案中,所述加氢裂化催化剂还具有加氢脱硫活性。这是有利的,因为在使所述烃原料物流经受加氢裂化处理之前不必使所述原料物流经受除硫处理。具有加氢裂化/加氢脱硫活性的催化剂("加氢裂化/加氢脱硫催化剂")在JuliusScherzer,A.J.Gruia编辑TaylorandFrancis出版的HydrocrackingScienceandTechnology(1996)的第13-14页和第174页中有述。加氢裂化和加氢脱硫反应通过要求相对强酸功能和金属功能的双功能机理实施,其中相对强酸功能提供裂化和异构化并使原料中包含的有机硫化合物中包含的硫-碳键断裂,而金属功能提供烯烃加氢和形成硫化氢。通过使多种过渡金属与固体载体如氧化铝、二氧化硅、氧化铝-二氧化硅、氧化镁和沸石组合形成多种用于加氢裂化/加氢脱硫方法的催化剂。本发明方法的一个特别的优点是加氢裂化产品物流基本不含C6+非芳烃,因为这些烃的沸点通常与C6+芳烃的沸点接近。因此,很难通过精馏将加氢裂化产品物流中包含的C6+非芳烃与C6+芳烃分离开来。通过组合加氢裂化条件有策略地选择加氢裂化催化剂可以获得这些有利的效果。通过组合具有相对强酸功能(例如通过选择包含孔径尺寸为和二氧化硅(SiO2)与氧化铝(Al2O3)摩尔比为5-200的沸石的催化剂)和相对强加氢活性(例如通过选择含0.01-1wt%加氢金属的催化剂)的加氢裂化催化剂与包括相对高工艺温度的工艺条件(例如选择425-580℃的温度),可以由混合物C5-C12烃原料物流生产试剂级BTX,其中原料物流中包含的苯转化为其它烃化合物如环烷烃化合物的转化率降低。原料物流的加氢裂化在300-5000kPa表压的压力下、优选在600-3000kPa表压的压力下、更优选在1000-2000kPa表压的压力下和最优选在1200-1600kPa表压的压力下实施。通过增加反应器的压力,可以增加C5+非芳烃的转化率,但也增加甲烷的收率和芳环加氢为可裂解为LPG类物质的环己烷类物质的收率。这导致随着压力的增加芳烃收率降低,和因为一些环己烷和它的异构体甲基环戊烷未完全加氢裂化,在压力为1200-1600kPa下存在所生成苯的最优纯度。原料物流的加氢裂化/加氢脱硫在重时空速(WHSV)为0.1-15h-1、优选重时空速为1-10h-1和更优选重时空速为2-9h-1下实施。当空速过高时,BTX共沸的链烷烃组分不全加氢裂化,因此不能通过反应器产品的简单蒸馏达到BTX规格。在空速太低时,在牺牲丙烷和丁烷的情况下甲烷的收率增加。通过选择最优的重时空速,意外发现实现了苯共沸物充分完全的反应,从而不需要液体循环就产生合格的BTX。因此,加氢裂化条件包括425-580℃的温度、300-5000kPa表压的压力和0.1-15h-1的重时空速。优选的加氢裂化条件包括450-550℃的温度、600-3000kPa表压的压力和1-10h-1的重时空速。更优选的加氢裂化条件包括450-550℃的温度、1000-2000kPa表压的压力和2-9h-1的重时空速。特别适合于本发明方法的加氢裂化催化剂包括孔径尺寸为的分子筛,优选为沸石。沸石为公知的具有良好定义的孔径尺寸的分子筛。正如这里所应用的,术语“沸石”或“铝硅酸盐沸石”指铝硅酸盐分子筛。例如在AtlasofZeoliteFrameworkTypes第5版(Elsevier,2001)中Kirk-OthmerEncyclopediaofChemicalTechnology第16卷第811-853页的分子筛章节中提供了它们特性的综述。加氢裂化催化剂优选包含中等孔径尺寸的铝硅酸盐沸石或大孔径尺寸的铝硅酸盐沸石。合适的沸石包括但不限于ZSM-5、MCM-22、ZSM-11、β沸石、EU-1沸石、沸石Y、八面沸石、镁碱沸石和丝光沸石。术语“中等孔径的沸石”经常应用于沸石催化剂领域。因此,中等孔径尺寸的沸石为孔径尺寸为约的沸石。合适的中等孔径尺寸的沸石为10-环沸石,即所述孔由10个SiO4四面体组成的环形成。合适的大孔径尺寸的沸石具有约的孔径尺寸,和为12-环结构类型。8-环结构类型的沸石被称为小孔径尺寸的沸石。在上文引用的AtlasofZeoliteFrameworkTypes中,基于环结构列出了各种沸石。沸石最优选为ZSM-5沸石,其为具有MFI结构的公知沸石。ZSM-5沸石对于BTX的高纯度来说是优选的。ZSM-5沸石的二氧化硅与氧化铝的比优选为20-200、更优选为30-100。沸石为氢型,即与之相连的至少一部分原始阳离子被氢替代。将铝硅酸盐沸石转化为氢型的方法在本领域中是公知的。第一种方法包括采用酸和/或盐直接离子交换。第二种方法包括应用铵盐进行碱交换和然后煅烧。另外,所述催化剂组合物包含足够量的加氢金属以确保催化剂具有相对强的加氢活性。加氢金属在石化催化剂领域是公知的。优选的是催化剂不包含第二金属如锡、铅或铋,这些金属会抑制加氢金属的加氢活性。因此,在本发明方法中应用的加氢裂化催化剂(第一加氢裂化催化剂和第二加氢裂化催化剂)优选包含小于0.01份的锡、小于0.02份的铅和小于0.01份的铋(以总催化剂100重量份为基准),优选小于0.005份的锡、小于0.01份的铅和小于0.005份的铋(以总催化剂100重量份为基准)。所述催化剂组合物包含0.01-1wt%的加氢金属,优选为0.01-0.7wt%,更优选为0.01-0.5wt%,更优选0.01-0.3wt%。所述催化剂组合物可以包含0.01-0.1wt%或0.02-0.09wt%的加氢金属。在本发明的上下文中,当与在催化剂组合物中包含的金属含量相关时,术语"wt%"指相对于包括催化剂粘合剂、填料、稀释剂等的催化剂总重量所述金属的wt%。所述加氢金属优选为选自元素周期表第10族的至少一种元素。优选的第10族元素为铂。因此,在本发明方法中应用的加氢裂化催化剂优选包含孔径尺寸为二氧化硅(SiO2)与氧化铝(Al2O3)摩尔比为5-200的沸石和0.01-1wt%的铂(相对于总催化剂)。所述加氢裂化催化剂组合物还可以包含粘合剂。氧化铝(Al2O3)为优选的粘合剂。以催化剂的总重量为基准,本发明的催化剂组合物优选包含至少10wt%、最优选至少20wt%的粘合剂和更优选包含至多40wt%的粘合剂。在一个实施方案中,将加氢金属沉积于所述粘合剂上,其中粘合剂优选为Al2O3。在一些实施方案中,本发明的催化剂组合物包含很少的粘合剂或没有粘合剂,例如含小于2wt%、小于1wt%、小于0.5wt%或0wt%的粘合剂。按照本发明的一个实施方案,加氢裂化催化剂为在无定形氧化铝和沸石载体上的加氢金属的混合物。在这种情况下,通过物理混合沸石与其上存在有加氢金属的无定形氧化铝可以制备加氢裂化催化剂。按照本发明的另一个实施方案,所述加氢裂化催化剂包含在沸石基载体上的加氢金属。在这种情况下,加氢金属在作为载体的沸石上沉积。加氢金属在沸石上沉积是公知的,和例如可以通过湿法浸渍、碱交换或离子交换来实现。加氢金属在沸石上的存在例如可以通过能量散射X-光光谱(EDS)(通过应用SEM)、CO化学吸附、电感耦合等离子体原子发射光谱法(ICP-AES)或X-射线荧光光谱(XRF)确定。在这种情况下,给出裂化功能的加氢金属和沸石相互之间十分接近,其在两个位点之间转化为更短的扩散长度。这将允许高的空速,从而转化为更小的反应器体积和因此更低的CAPEX。因此,在一些优选的实施方案中,加氢裂化催化剂为在沸石载体上的加氢金属,和步骤(b)在1-15或10-15h-1的重时空速下实施。在反应混合物中有过量氢存在下实施加氢裂化步骤。这意着超过化学计算量的氢存在于经受加氢裂化的反应混合物中。反应器进料中氢与烃物质的摩尔比(H2/HC摩尔比)为1:1至4:1、优选为1:1至3:1和最优选为1:1至2:1。通过选择相对较低的H2/HC摩尔比可以获得产品物流中更高的苯纯度。在上下文中,术语"烃物质"指在反应器进料中存在的全部烃分子,如苯、甲苯、己烷、环己烷等。必须知道原料的组成,然后计算该物流的平均分子量,从而能够计算正确的氢进料流率。反应混合物中的过量氢将抑制焦炭的形成,据信所述焦炭将导致催化剂失活。步骤c)按照本发明方法的步骤c),将苯、甲苯和C8+烃从加氢裂化产品物流中分离出来。加氢裂化产品物流包含甲烷、LPG、苯、甲苯和C8+烃。正如这里所应用的,术语“LPG”为“液化石油气”的公知英文首字母缩写。LPG通常由C2-C4烃的共混物组成,即为C2、C3和C4烃的混合物。可以通过适合于分离加氢裂化产品物流中包含的甲烷和未反应氢作为第一分离物流、加氢裂化产品物流中包含的LPG作为第二分离物流及苯、甲苯和C8+烃作为第三分离物流的标准装置和方法对加氢裂化产品物流进行分离。优选地,通过气液分离或精馏将包含苯、甲苯和C8+烃的物流从加氢裂化产品物流中分离出来。这种分离方法的一个非限定性实例包括一系列精馏步骤。中等温度下的第一精馏步骤将大多数芳族物质(液体产品)与氢、H2S、甲烷和LPG物质分离。该精馏的气态物流进一步冷却(至约-30℃)和再一次精馏以将剩余的芳族物质与大多数丙烷和丁烷分离。然后使气体产物(主要为氢、H2S、甲烷和乙烷)进一步冷却(至约-100℃),以分离乙烷和将氢、H2S和甲烷留在气态物流中,后者将循环回加氢裂化反应器。为了控制反应器进料中H2S和甲烷的浓度,使一定比例的循环气物流作为排放气从系统中脱除。排放的物料量取决于循环物流中甲烷和H2S的浓度,而后者则取决于原料组成。排放气具有与循环物流相同的组成。因为排放气主要含氢和甲烷,其适合于用作燃料气,或者可以进一步处理(例如通过变压吸附单元)以单独回收高纯度的氢气物流和可用作燃料气的甲烷/H2S物流。步骤d)按照本发明方法的步骤d),将苯和甲苯从苯、甲苯和C8+烃的物流中分离出来。通过气液分离或精馏将苯和甲苯相互分离。获得试剂级的苯和试剂级的甲苯。将至少一部分所获得的甲苯循环以包含在加氢裂化原料物流中。可以改变待包含在加氢裂化原料物流中的甲苯量,从而优化加氢裂化产品物流中苯的量。将二甲苯与C8+烃分离。该分离优选通过气液分离或精馏来实施。虽然为了描述目的已经详细地描述了本发明,但应理解这些详细描述只是为了该目的,本领域熟练技术人员在不偏离权利要求所定义的本发明实质和范围的情况下可以进行改变。还要注意的是本发明涉及这里所描述的所有可能的特征组合,特别优选的是权利要求中存在的那些特征组合。应注意术语"包含"和“包括”不排除其它元素的存在。但也应理解对于包含一些组分的产品的描述也公开了由这些组分组成的产品。类似地,还应理解对于包括一些步骤的方法的描述也公开了由这些步骤组成的方法。下面通过如下非限制性实施例描述本发明。图1给出了一个方案,其中描述了本发明方法的一个实例。在该实例中,在加氢反应器中使来源原料物流(热解汽油)与氢接触并进行处理。加氢后,提供更多的氢和使加氢后物流与循环的甲苯组合,并将如此获得的加氢裂化原料物流引入加氢裂化反应器(MHC)。使加氢裂化产品物流经受气液分离以分离为气相的氢、甲烷和LPG及液相的苯、甲苯和C8+烃。随后将液相通过简单精馏分离为苯、甲苯和C8+烃。将获得的部分甲苯循环以与加氢后的物流组合。实施例使包含不同烃组成的原料混合物经受加氢裂化,以确定原料组成对产品组成的影响。实验在12mm的反应器中实施,其中催化剂床层位于反应器加热器的等温区。所应用的催化剂为2.0g沉积在ZSM-5上的Pt,其中SiO2/Al2O3=50。相对于Pt和ZSM-5的总量,Pt的量为0.08wt%。催化剂中没有应用粘合剂。将原料物流进料至反应器。在进入反应器前使原料物流进入汽化器,在其中在280℃下气化并与氢气混合。所有这些实验所应用的条件为:WHSV=6/hr、压力为1379kPa(200psig)、温度为475℃和H2/烃的摩尔比为3。对反应器的流出物气相取样至在线气相色谱。每一小时进行一次产品分析。在实验1中,使通过向热解汽油样品中加入甲苯获得的不同原料物流(原料1-5)进行加氢裂化。原料物流的组成在表1中给出。加氢裂化形成具有表2所示组成的加氢裂化产品物流(产品1-5)。通过比较表2中的结果可以看出:当原料物流中甲苯的wt%增加时,[BX]/T2的摩尔值([(苯+乙苯)和二甲苯的摩尔量乘积]与[甲苯的摩尔量]2的比)减小,加氢裂化过程中苯的总收率增加。在[BX]/T2为0.16时苯的损失几乎为零。当[BX]/T2为0.09时所获得的苯增加。表1:加氢裂化原料物流的组成组分原料#1原料#2原料#3原料#4原料#5苯(wt%)51.64%50.14%46.75%43.28%39.86%甲苯(wt%)12.73%15.64%21.39%27.35%33.13%乙苯(wt%)4.19%4.04%3.79%3.51%3.21%BTX(wt%)67.35%68.64%70.80%73.10%75.25%总芳烃(wt%)72.11%73.20%75.08%77.06%78.86%[BX]/T2(摩尔)1.030.640.300.160.09表2:加氢裂化产品物流的组成组分原料#1原料#2原料#3原料#4原料#5苯(wt%)48.29%47.25%45.28%43.17%41.28%甲苯(wt%)18.78%20.42%23.47%26.56%29.35%乙苯(wt%)0.34%0.35%0.32%0.30%0.26%BTX(wt%)69.89%70.86%72.62%74.50%76.23%总芳烃(wt%)70.84%71.83%73.64%75.46%77.17%[BX]/T2(摩尔)0.410.390.340.310.29苯纯度(%)99.90%99.89%99.88%99.88%99.88%甲苯增加/损失(%)+47.52%+30.56%+9.72%-2.89%11.41%甲苯增加/损失(摩尔)+0.066+0.052+0.023-0.009-0.041苯增加/损失(%)-6.49%-5.76%-3.14%-0.25%+3.56%苯增加/损失(摩尔)-0.043-0.037-0.019-0.001+0.018苯纯度定义为[苯的质量]/[苯、2-甲基戊烷、3-甲基戊烷、己烷、甲基环戊烷和环己烷质量的总和]。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1