一种直馏石脑油加氢精制工艺的制作方法

文档序号:11125484阅读:614来源:国知局

本发明涉及直馏石脑油加氢脱硫精制工艺,具体涉及一种采用特定催化剂进行的直馏石脑油加氢精制工艺。



背景技术:

石脑油(化工轻油)在炼油和石油化工行业中都是一种主要的原料。石脑油是一种干点小于200-250℃的炼厂一次或二次加工所得的石油馏分,一般来源于炼厂常减压蒸馏的直馏石脑油和炼厂催化裂化、加氢裂化、焦化装置二次加工石脑油,有的凝析油也是一种石脑油馏分。这里应着重指出,因为国产原油普遍偏重,其直馏石脑油馏分含量很低,所以利用好二次加工石脑油作为石化原料是一个很重要的课题,国际上也非常重视原油的深度加工,不少炼厂将所得二次石脑油用作油品调合组分,取代出好的原料供石化业用。因此,炼油、石化产业资源整体集成首先是石脑油(包括二次加工石脑油)的集成。

石脑油的用途是多方面的,在石油炼制方面是制造清洁汽油的主要原料,在石油化工方面是制造乙烯、芳烃/聚酯、合成氨/化肥和制氢的原料。在数量关系方面,石脑油使用于油品的数量最大,乙烯料其次,芳烃更小。国际上油品、乙烯料、芳烃料三者大致数量比例为:6.82:1:0.36。

而在直馏石脑油的一个重要用途中,例如作为重整原料油时,由于重整催化剂对硫中毒,因此必须将原料中的硫含量降低到0.5ppm以下。

随着世界原油的重质化、劣质化日益加深,原油含硫量越来越高,高品质的轻质原油在不断减少。近年来炼厂加工的原油多为进口原油,相对密度逐年增高,本世纪初几年内全球炼厂加工原油的平均密度上升到0.8633左右。含硫量高的问题也十分严重,目前世界上含硫原油和高硫原油的产量占世界原油总产量的75%以上。20世纪90年代中期全球炼厂加工的原油平均含硫量为0.9%,本世纪初已经上升到1.6%。

然而现有的直馏石脑油加氢精制工艺针对的都是低硫产品,对待以委内瑞拉原油为代表的高硫原油产生的直馏石脑油,硫含量过高,导致脱硫能力有限,且催化剂失活快。因此如何提供直馏石脑油精制工艺,能有效的将高硫直馏石脑油中的硫含量控制在0.5ppm以下,以满足燃烧排放标准,是本领域面临的一个难题。



技术实现要素:

本发明的目的在于提出一种直馏石脑油加氢脱硫精制工艺,该工艺可以将直馏石脑油中的总硫含量降低到0.5ppm以下,以满足后续加工要求和满足燃烧排放标准。

为达此目的,本发明采用以下技术方案:

一种直馏石脑油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分。

所述载体为MSU-G、SBA-15和HMS的复合物或混合物。

所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物。

所述的催化剂还含有催化助剂,所述催化助剂为Cr2O3、ZrO2、CeO2、V2O5和NbOPO4的混合物。

所述固定床反应器的反应条件为:反应温度为250-300℃,氢分压为1.5-2.0MPa,氢油体积比80-150,体积空速9-14h-1

本发明所述的高硫直馏石脑油是指含硫量为1000ppm以上的直馏石脑油,比如哈萨克斯坦直馏石脑油,其含硫量高达2400ppm。

本发明的目的之一就在于,提供一种3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能,所述协同效应表现在脱硫精制方面,而特殊的催化性能则是表现在对催化剂的使用寿命及催化活性的提高上。

在催化剂领域,根据国际纯粹与应用化学协会(IUPAC)的定义,孔径小于2nm的称为微孔;孔径大于50nm的称为大孔;孔径在2到50nm之间的称为介孔(或称中孔)。介孔材料是一种孔径介于微孔与大孔之间的具有巨大比表面积和三维孔道结构的新型材料,它具有其它多孔材料所不具有的优异特性:具有高度有序的孔道结构;孔径单一分布,且孔径尺寸可在较宽范围变化;介孔形状多样,孔壁组成和性质可调控;通过优化合成条件可以得到高热稳定性和水热稳定性。

但在目前的应用中,所述介孔材料在用于催化领域时,都是单独使用,比如MCM系列,如MCM-22、MCM-36、MCM-41、MCM-48、MCM-49、MCM56,比如MSU系列,如MSU-1、MSU-2、MSU-4、MSU-X、MSU-G、MSU-S、MSU-J等,以及SBA系列,如SBA-1、SBA-2、SBA-3、SBA-6、SBA-7、SBA-8、SBA-11、SBA-15、SBA-16等,以及其他的介孔系列等。

少数研究文献研究了两种载体的复合,比如Y/SBA-15、Y/SAPO-5等,多数是以介孔-微孔复合分子筛和微孔-微孔复合分子筛为主。采用3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能的研究,目前尚未见报导。

本发明的催化剂载体是MSU-G、SBA-15和HMS的复合物或混合物。所述复合物或混合物中,MSU-G、SBA-15和HMS的重量比为1:(0.8-1.2):(0.4-0.7),优选为1:(1-1.15):(0.5-0.7)。

本发明采用的MSU-G、SBA-15和HMS介孔分子筛均是催化领域已有的分子筛,其已经在催化领域获得广泛研究和应用。

MSU-G是一种具有泡囊结构状粒子形态和层状骨架结构的介孔分子筛,其具有高度的骨架交联和相对较厚的骨架壁而具有超强的热稳定性和水热稳定性,其骨架孔与垂直于层和平行于层的孔相互交联,扩散路程因其囊泡壳厚而很短。MSU-G分子筛的囊泡状粒子形态方便试剂进入层状骨架的催化中心,其催化活性很高。

SBA-15属于介孔分子筛的一种,具有二维六方通孔结构,具有P3mm空间群。在XRD衍射图谱中,主峰在约1°附近,为(10)晶面峰。次强峰依次为(11)峰以及(20)峰。其他峰较弱,不易观察到。此外,SBA-15骨架上的二氧化硅一般为无定形态,在广角XRD衍射中观察不到明显衍射峰。SBA-15具有较大的孔径(最大可达30nm),较厚的孔壁(壁厚可达6.4nm),因而具有较好的水热稳定性。

六方介孔硅HMS具有长程有序而短程相对无序的六方介孔孔道,其孔壁比HCM41S型介孔材料更厚,因而水热稳定性更好,同时短程相对无序的组织结构及孔径调变范围更大,使HMS材料具有更高的分子传输效率和吸附性能,适宜于作为大分子催化反应的活性中心。

本发明从各个介孔材料中,进行复合配对,经过广泛的筛选,筛选出MSU-G、SBA-15和HMS的复合或混合。发明人发现,在众多的复合物/混合物中,只有MSU-G、SBA-15和HMS三者的复合或混合,才能实现加氢精制效果的协同提升,并能够使得催化活性长期不降低,使用寿命能够大大增加。换言之,只有本发明的MSU-G、SBA-15和HMS三者的特定复合或混合,才同时解决了协同和使用寿命两个技术问题。其他配合,要么不具备协同作用,要么使用寿命较短。

所述复合物,可以采用MSU-G、SBA-15和HMS三者的简单混合,也可以采用两两复合后的混合,比如MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合。所述复合可以采用已知的静电匹配法、离子交换法、两步晶化法等进行制备。这些介孔分子筛和其复合物的制备方法是催化剂领域的已知方法,本发明不再就其进行赘述。

本发明中,特别限定活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例,发明人发现,不同的混合比例达到的效果完全不同。发明人发现,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例(摩尔比)为1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比在该范围内,才能够实现直馏石脑油中含硫量控制在10ppm以下且脱氮能力显著。也就是说,本发明的四种活性组分只有在摩尔比为1:(0.4-0.6):(0.28-0.45):(0.8-1.2)时,才具备协同效应。除开该摩尔比范围之外,或者省略或者替换任意一种组分,都不能实现协同效应。

优选的,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。

所述活性组分的总含量为载体重量的1%-15%,优选3-12%,进一步优选5-10%。例如,所述含量可以为2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。

本发明的目的之一还在于提供所述催化剂的助催化剂。本发明所述的催化剂还含有催化助剂,所述催化助剂为Cr2O3、ZrO2、CeO2、V2O5和NbOPO4(磷酸铌)的混合物。

尽管在加氢精制特别是加氢脱硫领域,已经有成熟的催化助剂,比如P、F和B等,其用于调节载体的性质,减弱金属与载体间强的相互作用,改善催化剂的表面结构,提高金属的可还原性,促使活性组分还原为低价态,以提高催化剂的催化性能。但上述P、F和B催化助剂在应用与本发明的载体与活性组分时,针对高硫组分,其促进催化脱硫/精制的作用了了。

本发明经过在众多常用助催化剂组分,以及部分活性组分中进行遴选、复配等,最终发现采用Cr2O3、ZrO2、CeO2、V2O5和NbOPO4(磷酸铌)的混合物对本发明的催化剂促进作用明显,能显著提高其水热稳定性,并提高其防结焦失活能力,从而提高其使用寿命。

所述Cr2O3、ZrO2、CeO2、V2O5和NbOPO4之间没有固定的比例,也就是说,Cr2O3、ZrO2、CeO2、V2O5和NbOPO4每一种各自的含量达到有效量即可。优选的,本发明采用的Cr2O3、ZrO2、CeO2、V2O5和NbOPO4各自的含量均为(分别为)载体质量的1-7%,优选2-4%。

尽管本发明所述的催化助剂之间没有特定的比例要求,但每一种助剂必须能够达到有效量的要求,即能够起到催化助剂作用的含量,例如载体质量的1-7%。本发明在遴选过程中发现,省略或者替换所述助剂中的一种或几种,均达不到本发明的技术效果(提高水热稳定性,减少结焦提高使用寿命),也就是说,本发明的催化助剂之间存在特定的配合关系。

事实上,本发明曾经尝试将催化助剂中的磷酸铌NbOPO4替换为五氧化二妮Nb2O5,发现尽管助剂中也引入了Nb,但其技术效果明显低于磷酸铌NbOPO4,其不仅水热稳定性稍差,其催化剂床层结焦相对快速,从而导致催化剂孔道堵塞,催化剂床层压降上升相对较快。本发明也曾尝试引入其他磷酸盐,但这种尝试尽管引入了磷酸根离子,但同样存在水热稳定性相对稍差,其催化剂床层结焦相对快速,从而导致催化剂孔道堵塞,催化剂床层压降上升相对较快。

尽管本发明引入催化助剂有如此之多的优势,但本发明必须说明的是,引入催化助剂仅仅是优选方案之一,即使不引入该催化助剂,也不影响本发明主要发明目的的实施。不引入本发明的催化助剂特别是磷酸铌,其相较于引入催化助剂的方案,其缺陷仅仅是相对的。即该缺陷是相对于引入催化助剂之后的缺陷,其相对于本发明之外的其他现有技术,本发明所提及的所有优势或者新特性仍然存在。该催化助剂不是解决本发明主要技术问题所不可或缺的技术手段,其只是对本发明技术方案的进一步优化,解决新的技术问题。

所述催化剂的制备方法可以采取常规的浸渍法以及其他替代方法,本领域技术人员可以根据其掌握的现有技术自由选择,本发明不再赘述。

优选的,所述固定床反应器的反应条件为:反应温度为260-280℃,氢分压为1.8-2.0MPa,氢油体积比100-150,体积空速9-12h-1

优选的,所述工艺流程包括,原料经过滤器、缓冲罐后,由进料泵泵入换热器与成品换热,换热后与循环氢和新氢混合形成氢油混合物,再次与反应产物换热后进入加热炉,加热到反应温度进入加氢精制反应器(固定床反应器),在反应器中氢油混合物在催化剂作用下,进行加氢脱硫、脱氮等反应,反应产物经换热,再经水冷至预定温度,进入高压分离器,高压分离器顶部气相作为循环氢返回循环氢缓冲罐,油相进入低压分离器,低压分离器底部引出的生成油与反应产物换热后进入汽提塔,塔顶油气经空冷、水冷后进入分液罐得到轻烃,汽提塔底得到直馏石脑油。

优选的,所述固定床反应器包括1-5个催化剂床层,进一步优选2-3个催化剂床层。

本发明的加氢精制工艺通过选取特定的催化剂,所述催化剂通过选取特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体,以及选取特定比例的氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC作为活性成分,所述的催化剂还含有催化助剂,所述催化助剂为Cr2O3、ZrO2、CeO2、V2O5和NbOPO4的混合物,使得该催化剂产生协同效应,对直馏石脑油的加氢脱硫能控制在总硫含量低于5ppm,同时对直馏石脑油中的总氮含量控制在10ppm之内。

具体实施方式

本发明通过下述实施例对本发明的加氢精制工艺进行说明。

实施例1

通过浸渍法制备得到催化剂,载体为MSU-G、SBA-15和HMS的混合物,混合比例是1:1.1:0.5。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.4:0.3:0.8。

将所述催化剂装填入固定床反应器,所述反应器的反应管由内径50mm的不锈钢制成,催化剂床层设置为3层,催化剂床层温度用UGU808型温控表测量,原材料直馏石脑油由北京卫星制造厂制造的双柱塞微量泵连续输送,氢气由高压气瓶供给并用北京七星华创D07-11A/ZM气体质量流量计控制流速,催化剂装填量为2kg。反应后的产物经水浴室温冷却后进行气液分离。

所用原料为哈萨克斯坦直馏石脑油,其含硫量高达2400ppm。

控制反应条件为:温度270℃,氢分压2.0MPa,氢油体积比150,体积空速10h-1

测试最终的产品,总硫含量降低到0.3ppm。

实施例2

通过浸渍法制备得到催化剂,载体为MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合,其中MSU-G、SBA-15和HMS的比例与实施例1相同。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.6:0.45):1.2。

其余条件与实施例1相同。

测试最终的产品,总硫含量降低到0.1ppm。

对比例1

将实施例1的载体替换为MSU-G,其余条件不变。

测试最终的产品,总硫含量降低到37ppm。

对比例2

将实施例1的载体替换为SBA-15,其余条件不变。

测试最终的产品,总硫含量降低到29ppm。

对比例3

将实施例1的载体替换为HMS,其余条件不变。

测试最终的产品,总硫含量降低到34ppm。

对比例4

将实施例1中的载体替换为MSU-G/SBA-15复合物,其余条件不变。

测试最终的产品,总硫含量降低到27ppm。

对比例5

将实施例1中的载体替换为SBA-15/HMS复合物,其余条件不变。

测试最终的产品,总硫含量降低到29ppm。

对比例6

将实施例1中的载体替换为MSU-G/HMS复合物,其余条件不变。

测试最终的产品,总硫含量降低到32ppm。

实施例1与对比例1-6表明,本发明采用特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体,当替换为单一载体或两两复合载体时,均达不到本发明的技术效果,因此本发明的特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体与催化剂其他组分之间具备协同效应,所述加氢精制工艺产生了预料不到的技术效果。

对比例7

省略实施例1中的MO2N,其余条件不变。

测试最终的产品,总硫含量降低到28ppm。

对比例8

省略实施例1中的WC,其余条件不变。

测试最终的产品,总硫含量降低到26ppm。

上述实施例及对比例7-8说明,本发明的加氢精制工艺的催化剂几种活性组分之间存在特定的联系,省略或替换其中一种或几种,都不能达到本申请的特定效果,证明其产生了协同效应。

实施例3

催化剂中含有催化助剂Cr2O3、ZrO2、CeO2、V2O5和NbOPO4,其含量分别为1%、1.5%、2%、1%和3%,其余与实施例1相同。

测试最终的产品,其使用3个月后,催化剂床层压降无任何变化,相较于同样使用时间实施例1的催化剂床层压降减少17.7%。

对比例9

相较于实施例3,将其中的NbOPO4省略,其余条件相同。

测试最终的产品,其使用3个月后,催化剂床层压降升高,相较于同样使用时间实施例1的催化剂床层压降只减少6.5%。

对比例10

相较于实施例3,将其中的CeO2省略,其余条件相同。

测试最终的产品,其使用3个月后,催化剂床层压降升高,相较于同样使用时间实施例1的催化剂床层压降只减少4.7%。

实施例3与对比例9-10表明,本发明的催化助剂之间存在协同关系,当省略或替换其中一个或几个组分时,都不能达到本发明加入催化助剂时的减少结焦从而阻止催化剂床层压降升高的技术效果。即,其验证了本发明的催化助剂能够提高所述催化剂的使用寿命,而其他催化助剂效果不如该特定催化助剂。

申请人声明,本发明通过上述实施例来说明本发明的工艺,但本发明并不局限于上述工艺,即不意味着本发明必须依赖上述详细催化剂才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1