环境友好型基础油纳米级稳定乳液及其制备方法与流程

文档序号:11245984
环境友好型基础油纳米级稳定乳液及其制备方法与流程

本发明涉及一种粒径小、分布窄、稳定性好的基础油纳米级乳液及其低能高效的制备方法,属于乳液的配方及制备领域。



背景技术:

基础油可用于稀释、调和或溶解具有特定功能活性的化合物。基础油包括矿物基础油、合成基础油及生物基础油三大类。矿物基础油如煤油、硅油、柴油等,大多由石油裂解加工得到,广泛应用于工业生产中。合成基础油则是对石化产品进行合成加工后获得的基础油,例如聚α-烯烃合成油、硅油等,是制备高档润滑油的常用基础油。而生物基础油从动植物中萃取的一类非挥发性油脂,可润滑肌肤,能直接用于肌肤润按摩。在实际运用中,基础油常被制备成乳液,以提高其使用效率、增强效用、提高流动性、增强渗透性、降低刺激性、降低成本。

工业上机械加工和金属表面清洗需要使用大量基础油,但油类由于易燃,在加工场所使用中存在安全隐患。另外基础油相对成本较高,大量使用易对环境造成污染。因此人们常常把基础油制备成水常规的纳米乳液来使用,可以大大降低基础油的用量,但仍能够达到一定的优良使用效果。工业生产中常规制备乳液的方法是把宏观油相通过能量输入细化为小液滴的至上而下的方法,如高速滴加搅拌法、高压均质法和超声等。但这些方法逆势制备,高耗能。且大部分输入能量被转化为热能等其他形式能量扩散到了环境中,用于制造液滴大比表面积的能量利用率很低,因此其耗能相当大。另外,所制备的乳液存在粒径尺寸大、粒径分布宽、粒径稳定性差、消耗大量表面活性剂等缺点,在使用效果上受到了限制。

工业上机械加工和清洗所用常规乳液会大量使用到含磷表面活性剂、烷基苯酚聚氧乙烯醚类表面活性剂、二乙醇胺、二乙醇酰胺、直链烷基苯、直链烷基苯磺酸和一些难降解的盐类表面活性剂,带来水质富营养化、环境荷尔蒙增加、对人畜皮肤和眼睛具有刺激性、致癌等种种环境危害。世界各国相继制定相关法规进行限用或禁用,但在我国仍存在部分大量使用的现象。



技术实现要素:

本发明的目的是提供一种环境友好型基础油纳米级乳液配方及其制备方法,通过该制备方法和配方获得的纳米级乳液液滴粒径小、分布窄、稳定性高、所需乳化剂少、乳化剂易生物降解对环境无公害等优异特点。

实现本发明目的的技术解决方案是:本发明所述的环境友好基础油纳米级乳液,按体积份数计,包括基础油1份、环境友好型乳化剂0.1-4份、易溶于水和基础油的有机溶剂9份,水10份。

进一步的,所述的基础油包括矿物油、燃油、硅油中任意一种。

进一步的,所述的易溶于水和基础油的有机溶剂为既能完全溶于水又能完全溶解基础油的有机溶剂,优选丙酮、四氢呋喃、乙醇、丙醇或丙三醇中任意一种或几种。

进一步的,所述的环境友好型乳化剂为两亲性化合物,能形成水包油型乳液,其HLB处于8 ~ 16。同时所述环境友好型乳化剂对环境无公害且可生物降解,包括聚醚类、聚酯类、聚酰胺类、多糖类或蛋白质类两亲性嵌段共聚物、吐温、平平加、烷基糖苷、糖脂、脂肽、脂蛋白、脂肪酸、磷脂、甘油酯、甜菜碱型化合物、脂肪醇聚氧乙烯醚、脂肪酸甲酯磺酸盐、单烷基磷酸酯盐、α-烯基磺酸盐、醇醚羧酸盐等中的至少一种。

该纳米级乳液通过将基础油溶于易溶于水和基础油的有机溶剂中形成油相,再将环境友好型乳化剂溶于水中形成水相,再将所述油相与所述水相通过在微腔体内高速射流混合而制得;或再将环境友好型乳化剂溶于油相中,再将所述油相与水通过在微腔体内高速射流混合而制得。

所述的微腔体高速射流混合,其各射流入口的雷诺数之和大于2200,确保提供混合足够的能量达到充分的湍流混合,同时,混合腔体体积小于0.1 mL,确保能量耗散集中、高效转化为液滴的表面能,从而使所制备的液滴粒径小、分布窄。

与现有技术相比,本发明具有如下优点:

1.本发明所公开的水乳液,其制备方法具有低能输入,高能量密度耗散;能量的高效转化为液滴表面能,所需乳化剂少;装置简单,成本低廉;易于操作;可连续化等优点。

2.本公开发明所使用乳化剂为易环境降解,对环境友好、无公害。

3. 本发明所公开的纳米水乳液具有粒径小、分散窄、稳定性好等优点,且制备快速、简单、低能耗。有望满足在农业、机械加工、日化等领域对高端乳液的大量需求。

4. 本发明所公开的纳米水乳液具有较好的金属表面清洗效果可取代纯煤油,摩擦系数非常小,可以作为机械加工的润滑油水乳液。

附图说明

图1为实施例1所得纳米乳液的粒径分布图。

图2为实施例2利用动态光散射仪对乳液液滴大小和两周内的时间稳定性进行测试的结果图。

图3为实施例3利用动态光散射仪对乳液液滴大小和一周内的时间稳定性进行测试的结果图。

图4为实施例4所得纳米乳液的粒径分布图。

图5为实施例5中通过煤油、煤油乳液及水溶液清洗的金属表面数码照片。

具体实施方式

本发明所述的环境友好基础油纳米级乳液,按体积份数计,包括基础油1份、环境友好型乳化剂0.1-4份、易溶于水的有机溶剂9份,水10份,并可按实际需要进一步用水稀释至最多1000倍后使用。该纳米级乳液需通过将环境友好型乳化剂溶于水相或含有基础油的油相中的至少一相,将油相与水相通过在微腔体内高速射流混合而制得。

所述LogP为油水分配系数,其值越大其水溶性越差疏水性越强,本发明所使用液体LogP > 0,为疏水较强的油,如矿物油、燃油、硅油。同时,所述油需要能溶于所使用的有机溶剂,如丙酮、四氢呋喃、乙醇、丙醇或丙三醇。

所述的易溶于水的有机溶剂既能完全溶于水,又能完全溶解基础油,如丙酮、四氢呋喃、乙醇、丙醇或丙三醇。加入该溶剂的目的是1)降低油的粘度,2)将油以分子状态分散到有机溶剂中,在与水混合过程中降低聚集为粗有滴的可能3)混合过程有机溶剂能完全从油相扩散到水相中,降低油水界面张力,使油滴尺寸更稳定。

所述HLB为乳化剂分子亲水亲油平衡值,是表征分子中亲水基和亲油基之间的大小和力量平衡程度的量。HLB值越大代表亲水性越强,HLB在8 ~ 16的乳化剂能形成水包油的乳液,包括聚醚类、聚酯类、聚酰胺类、多糖类或蛋白质类两亲性嵌段共聚物、吐温、平平加、烷基糖苷、糖脂、脂肽、脂蛋白、脂肪酸、磷脂、甘油酯、甜菜碱型化合物、脂肪醇聚氧乙烯醚、脂肪酸甲酯磺酸盐、单烷基磷酸酯盐、α-烯基磺酸盐、醇醚羧酸盐等中的至少一种。

所述的微腔体高速射流混合,其特征在于其各射流入口的雷诺数之和大于2200,确保提供混合足够的能量达到充分的湍流混合。同时,混合腔体体积小于约50 uL,确保能量耗散集中、高效转化为液滴的表面能,从而使所制备的液滴粒径小、分布窄。

实施例1:

通过微腔体高速射流混合制备10 mL矿物油纳米乳液(含0.5 mL矿物油和60 mg两亲性嵌段共聚物mPEG-b-PLGA作乳化剂)。

取0.5 mL矿物油和60 mg mPEG-b-PLGA溶于4.2 mL丙酮和0.3 mL THF中。将溶有矿物油和mPEG-b-PLGA的有机溶液与5 mL水进行高速射流混合,雷诺数约7000,腔体体积约30 uL,得到矿物油纳米乳液。乳化剂mPEG-b-PLGA按体积约为煤油体积的0.1倍。利用动态光散射仪对乳液液滴大小和分布进行测定,液滴大小分布如图1所示,平均直径dI = 67 nm,多分散系数PDI = 0.10,且稳定至少一周。

实施例2:

通过微腔体高速射流混合制备煤油纳米乳液,使用mPEG-b-PLGA作为乳化剂配方。

分别取160 mg mPEG-b-PLGA溶于3.8 mL丙酮和0.7 mL THF中,并分别加入0.5 mL煤油,将溶有煤油和mPEG-b-PLGA的有机溶液与5 mL水进行高速射流混合,雷诺数约7000,腔体体积约30 uL,得到10 mL煤油纳米乳液。利用动态光散射仪对乳液液滴大小和两周内的时间稳定性进行测试,如图2所示,可知煤油乳液配方中乳化剂mPEG-b-PLGA按体积约为煤油体积的0.3倍,即16.0 mg/mL,所得乳液粒径小于200 nm且稳定至少1-2周。

实施例3:

通过微腔体高速射流混合制备煤油纳米乳液,使用吐温80作为乳化剂配方优化。

分别取0.33、0.25、0.1 mL煤油和0.17、0.25、0.4 mL吐温80溶于3.8 mL丙酮和0.7 mL THF中。将溶有煤油和吐温80的有机溶液与5 mL水进行高速射流混合,雷诺数约7000,腔体体积约30 uL,得到10 mL煤油纳米乳液。利用动态光散射仪对乳液液滴大小和一周内的时间稳定性进行测试,如图3所示,可知煤油乳液配方中控制吐温体积大于煤油体积的0.5倍,小于煤油体积的4倍,所得乳液粒径小于200 nm且稳定至少一周。

实施例4:

对比实验,通过传统滴加搅拌的方法获得10 mL具有大粒径的煤油乳液,使用160 mg mPEG-b-PLGA作为乳化剂。

取0.5 mL煤油和160 mg mPEG-b-PLGA溶于3.8 mL丙酮和0.7 mL THF中并置于小烧杯中,使用磁力搅拌器在~ 800 rpm速度下搅拌,以0.1 mL/min滴加速度滴加5 mL水到THF溶液中,完成乳液制备。并利用动态光散射对新制乳液液滴大小进行测试。如图4所示乳液初始粒径较大为833 nm粒径,分布很宽PDI~1,乳液在数小时内迅速分层。因此,通过滴加搅拌法制备得到的乳液粒径大小远远大于例2中通过微腔体高速射流混合法制备的相同配方的乳液,且分布更宽、稳定性差很多。说明微腔体高速射流混合法所制备的粒径要远远小于滴加搅拌法所制备的粒径,宽度也更窄。

实施例5:

煤油乳液对金属表面清洗效果对比实验。分别使用纯煤油、微腔体高速射流混合法制备的0.1%乳液(例2,用水稀释50倍)、滴加搅拌法制备的0.1%乳液(例4,用水稀释50倍)、0.9%丙酮水溶液、水清洗沾有大量齿轮油污渍的金属板表面。纯煤油与微腔体高速射流混合法制备乳液清洗效果接近,均较好;滴加搅拌法制备的煤油乳液留下较多污渍;丙酮水溶液与水效果最差,留下大部分污渍。说明煤油乳液粒径越小、分布越窄,对金属的清洗效果越好,如图5。

实施例6:

矿物油乳液润滑效果对比实验。采用四球摩擦试验机对纯机械油、微腔体高速射流混合法制备的0.5%矿物油乳液(例1稀释10倍)、滴加搅拌法制备的0.5%乳液及4.5%丙酮水溶液。根据国标GB/T3142,保持条件在转速1450 转/分、时间10秒、温度27±8 oC,测得在38 kg的载荷下平均和最大摩擦系数(见表1),其中矿物油的最小,油膜强度最高,性能最好,微腔体高速射流混合制备的矿物油纳米乳液次之,滴加搅拌法制备的矿物油乳液油膜已经处于破裂边缘,摩擦系数较大,丙酮水溶液难以形成油膜,在此载荷下已经破裂,摩擦系数最大。结果说明粒径较小、分布较窄的乳液形成的油膜强度大,摩擦系数较小。

表1 机械油、机械油乳液与水溶液的摩擦系数及乳液粒径

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1