用于汽提浆液加氢裂化的产物的方法和设备与流程

文档序号:21697779发布日期:2020-07-31 22:48阅读:305来源:国知局
用于汽提浆液加氢裂化的产物的方法和设备与流程

该领域是回收浆液加氢裂化的产物流。



背景技术:

加氢处理包括在加氢处理催化剂和氢气的存在下将烃转化为更有价值的产物的方法。

氢化处理是用于从烃料流中除去杂原子诸如硫和氮以满足燃料规格并使烯族化合物饱和的加氢处理方法。氢化处理可在高压或低压下进行,但通常在比加氢裂化更低的压力处操作。

加氢裂化是一种加氢处理方法,其中烃在氢气和加氢裂化催化剂的存在下裂化成较低分子量的烃。根据所需的输出,加氢裂化单元可含有一个或多个相同或不同的催化剂床。

浆液加氢裂化是一种浆化催化过程,用于将渣油进料裂化为瓦斯油和燃料。浆液加氢裂化用于对原油蒸馏获得的重烃原料进行初次提质,包括来自常压塔或真空塔蒸馏的烃残余物或瓦斯油。在浆液加氢裂化时,将这些液体原料与氢气和固体催化剂颗粒混合(例如,作为诸如金属硫化物的粒状金属化合物),以提供浆液相。浆液加氢裂化的流出物在约400℃(752°f)至500℃(932°f)的高温下离开浆液加氢裂化反应器。例如,在us5,755,955和us5,474,977中,描述了代表性的浆液加氢裂化方法。

加氢处理回收装置通常包括汽提器,该汽提器使用汽提介质(诸如蒸汽)汽提加氢裂化的流出物,以分离挥发性烃和不需要的硫化氢。通常在火焰加热炉中将汽提的流出物加热至分馏温度,然后进入产物分馏塔,以分离和回收产物诸如石脑油、煤油和柴油。

由于浆液加氢裂化在诸如高温高压苛刻工艺条件下进行,因此能耗非常高。随着时间的推移,尽管在改善浆液加氢裂化能源性能方面已作出了许多努力,但工作重点一直在于减少反应器加热炉负载。然而,在汽提的流出物进入产物分馏塔之前,仍需要较大的加热炉负载来加热。

因此,一直以来需要从加氢裂化的流出物中回收燃料产物的改进方法。此类方法必须更节能以满足炼厂日益增长的需求。



技术实现要素:

对于浆液加氢裂化单元,建议利用至少三个汽提器,以减少产物分馏塔加热炉负载并减少资本支出。具体来讲,除了用于冷加氢裂化的料流的冷汽提器和用于加温加氢裂化的料流的加温汽提器之外,还建议用于汽提来自洗油分离器的加氢裂化的料流的汽提塔。该布置方式使得用于分馏所需的加热炉负载能够降低。此外,该布置减少了特别是真空塔的资本费用。

附图说明

图1是简化的流程图。

图2是图1的替代流程图。

定义

术语“连通”意指在枚举的部件之间可操作地允许物质流动。

术语“下游连通”意指在下游连通中流向主体的至少一部分物质可以从与其连通的对象可操作地流动。

术语“上游连通”意指在上游连通中从主体流出的至少一部分物质可以可操作地流向与其连通的对象。

术语“直接连通”意指来自上游部件的流进入下游部件,而不经过分馏或转化单元,不会因物理分馏或化学转化而发生组成变化。

术语“间接连通”意指来自上游部件的流进入下游部件,在经过分馏或转化单元之后,因物理分馏或化学转化而发生组成变化。

术语“绕过”意指对象至少在绕过的范围内与绕过主体失去下游连通。

术语“塔”意指用于分离一种或多种不同挥发性物质的组分的一个或多个蒸馏塔。除非另外指明,否则每个塔包括在塔的塔顶上的用于冷凝一部分塔顶料流并使其回流回塔的顶部的冷凝器,以及在塔的底部的用于蒸发一部分塔底料流并将其送回塔的底部的再沸器。可以预热塔的进料。顶部压力是塔的蒸气出口处塔顶蒸气的压力。底部温度是液体底部出口温度。塔顶管线和塔底管线是指从任何回流或再沸腾的塔下游到塔的净管线。汽提器塔可省略塔的底部处的再沸器,并且相反提供对液化的惰性介质(诸如蒸汽)的加热要求和分离动力。汽提塔通常从顶部塔盘进料并从底部取出主要产物。

如本文所用,术语“富组分流”意指从容器出来的富流具有比到容器的进料大的组分浓度。

如本文所用,术语“贫组分流”意指从容器出来的贫流具有比到容器的进料小的组分浓度。

如本文所用,术语“沸点温度”意指由观察到的沸腾温度和蒸馏压力计算得出的大气压等效沸点(aebp),如使用astmd1160附录a7“将观察的蒸气温度转换为大气压等效温度的实践”(practiceforconvertingobservedvaportemperaturestoatmosphericequivalenttemperatures)中所提供的公式计算。

如本文所用,术语“真沸点”(tbp)意指与astmd-2892相对应的用于确定物质的沸点的测试方法,其用于生产可获得分析数据的标准化质量的液化气体、馏分和残余物,以及通过质量和体积两者确定上述馏分的收率,从所述质量和体积使用十五个理论塔板在回流比为5∶1的塔中得到蒸馏温度与质量%的关系图。

如本文所用,“沥青”意指在高于538℃(1000°f)aebp沸腾的烃物质,如由任何标准气相色谱模拟蒸馏法诸如astmd2887、d6352或d7169(其全部被石油工业所使用)所确定。

如本文所用,术语“t5”或“t95”分别意指使用astmd-86或者真沸点(tbp)得出的5质量百分比或95质量百分比(根据具体情况)的样品沸腾的温度。

如本文所用,术语“初始沸点”(ibp)意指使用astmd-7169、astmd-86或tbp(视情况而定)得出的样品开始沸腾的温度。

如本文所用,术语“端点”(ep)意指使用astmd-7169、astmd-86或tbp(视情况而定)得出的样品全部沸腾的温度。

如本文所用,术语“柴油沸腾范围”意指在烃在介于125℃(257°f)和175℃(347°f)之间的ibp,或者介于150℃(302°f)和200℃(392°f)之间的t5的范围内沸腾,并且“柴油分馏点”包括介于343℃(650°f)和399℃(750°f)之间的t95。

如本文所用,术语“柴油分馏点”使用tbp蒸馏方法得出的介于343℃(650°f)和399℃(750°f)之间。

如本文所用,术语“柴油沸腾范围”意指烃在介于132℃(270°f)和使用tbp蒸馏方法得出的柴油分馏点之间的范围内沸腾。

如本文所用,术语“柴油转化率”意指高于柴油分馏点沸腾的进料向等于或低于柴油沸腾范围中的柴油分馏点沸腾的物质的转化率。

如本文所用,“沥青转化率”意指高于524℃(975°f)沸腾的物质转化成等于或低于524℃(975°f)沸腾的物质的转化率。

如本文所用,“真空瓦斯油”意指通过大气的真空分馏所制备的,具有至少232℃(450°f)的ibp,288℃(550°f)和392℃(700°f)、通常不超过343℃(650°f)的t5,介于510℃(950°f)和570℃(1058°f)之间的t95,或不超过626℃(1158°f)的ep的烃物质,如通过任何标准气相色谱模拟蒸馏法所测定的,诸如astmd2887、d6352或d7169,其全部由石油工业所使用。

如本文所用,“常压渣油”意指从常压粗蒸馏塔的底部获得的,具有至少232℃(450°f)的ibp,288℃(550°f)和392℃(700°f)、通常不超过343℃(650°f)的t5,和介于510℃(950°f)和700℃(1292°f)之间的t95的烃物质。

如本文所用,“减压渣油”意指利用至少500℃(932°f)的ibp沸腾的烃物质。

如本文所用,术语“重减压瓦斯油”意指在介于427℃(800°f)和538℃(975°f)之间aebp范围内沸腾的烃物质,如由任何标准气相色谱模拟蒸馏法诸如astmd2887、d6352或d7169(其全部被石油工业所使用)所确定。

如本文所用,术语“分离器”意指这样的容器,其具有一个入口和至少一个塔顶蒸气出口和一个塔底液体出口,并且还可具有来自储槽(boot)的含水料流出口。闪蒸罐是可与可在较高的压力处操作的分离器下游连通的一种类型的分离器。

如本文所用,术语“主要的”或“占优势”意指大于50%,适当地大于75%,并且优选地大于90%。

如本文所用,溶剂“不溶物”意指不溶解于所述溶剂中的物质。

术语“cx”应理解为具有以下标“x”表示碳原子数目的分子。类似地,术语“cx-”是指含有小于或等于x、并且优选地x和更少个碳原子的分子。术语“cx+”是指具有大于或等于x(、并且优选地x和更多个碳原子的分子。

具体实施方式

主体实施方案可适用于重烃进料流的浆液加氢裂化方法和设备。在较低的压力和/或温度下,通过逐步分离先前分离中回收的连续分离物和闪蒸液体中的加氢裂化的流出物蒸汽,可以回收不同沸腾范围的液体馏分,用于下游分馏。下游分馏需要从这些不同液体加氢裂化的料流中汽提较轻的物质。通过尽可能多地保留汽提各个馏分所需的热量,减少了在分馏之前对额外热输入的需求。为了减少用于产物分馏塔的加热炉负载,建议利用至少三个汽提器,并相应地减少了资金成本。

该设备和方法涉及加氢处理工段10、分离器工段20和分馏工段100。加氢处理工段10可包括至少两个shc反应器。图1中仅示出了两个shc反应器,即前置shc反应器12和后续shc反应器14。可使用更多后续shc反应器14,但图1中仅示出了一个后续shc反应器14。加氢处理工段还包括补充气体压缩机19、循环氢脱硫塔55和循环气压缩机59。

重烃进料流16可包括从340℃(644°f)至570℃(1058°f)沸腾的烃、常压渣油、减压渣油、焦油、沥青、煤油、或页岩油。催化剂管线18中的催化剂流可在加热之前与进料管线16中的重烃进料流混合以获得0.002重量%至10重量%、优选地0.01重量%至1重量%的固体含量,然后将其与循环流出物管线15中的循环流出物流混合之后,进料至前置进料管线17中的前置shc反应器12中。催化剂管线18可包括载液,该载液包含来自第二产物支线176的轻减压瓦斯油或来自第三产物支线177的重减压瓦斯油或诸如管线16中的料流。

通常,浆液催化剂组合物可以包含催化有效量的一种或多种具有铁或钼的化合物。具体地讲,所述一种或多种化合物可包括在烃中、在碳上或在载体上的至少钼或氧化铁、硫酸铁和碳酸铁中的一种。其他形式的铁可包括硫化铁、磁黄铁矿和黄铁矿中的至少一种。此外,催化剂可含有诸如镍和/或钼中的至少一种,和/或其盐、氧化物和/或矿物质的物质。浆液中的钼可具有基于管线18中的催化剂流的总重量计0.001重量%至10重量%的催化活性金属。优选地,所述一种或多种铁化合物包括硫酸铁,并且更优选地为硫酸铁一水化合物和硫酸铁七水化合物中的至少一种。另选地,一种或多种催化剂颗粒可包含2重量%至45重量%的氧化铁和20重量%至90重量%的氧化铝,诸如铝土矿。在另一个示例性实施方案中,期望催化剂是负载型的。此类催化剂可包括氧化铝、二氧化硅、二氧化钛、一种或多种硅铝酸盐、氧化镁、铝土矿、煤和/或石油焦炭的载体。此类负载型催化剂可包括催化活性金属,诸如铁、钼、镍和钒中的至少一种,以及这些金属中的一种或多种的硫化物。一般来讲,负载型催化剂可具有基于所述催化剂的总重量计0.01重量%至30重量%的催化活性金属。

补充氢气可通过管线21提供给补充压缩机19。压缩机19可具有多达五个压缩级,并且以2mpa至24mpa的压力排放氢气流。来自压缩机19的补充氢气可补充循环气体管线22中的循环气体流。循环气体管线22中的循环氢气流可在加热之后分流,为前置氢气管线13提供前置氢气流并且为后续氢气管线8提供后续氢气流。后续氢气管线8中的后续氢气流可以用从循环气体管线22中提取的补充气管线11中的未加热的循环气体流进行补充。从循环气体管线22中的循环气体流提取的前置氢气管线13中的前置氢气流可在加热之后进料至前置shc反应器12。

前置加氢裂化的流出物流离开前置流出物管线9中的前置shc反应器12,并且可在前置流出物分离器23中分离,以提供气相加氢裂化的流出物流给从前置流出物分离器23的顶部延伸的前置塔顶管线24,并且提供液体加氢裂化的流出物流给从前置流出物分离器的底部延伸的前置塔底管线25。前置流出物分离器23在与前置shc反应器12大致相同的温度和压力处进行操作。前置塔底管线25中的液体流出物流分流成循环流出物管线15中的循环流出物流和进料液体流出物管线26中的液体进料流出物流,所述液体进料流出物流从前置流出物管线9中的加氢裂化的流出物流提取。将循环流出物管线15中的循环流出物流与前置shc进料管线16中的前置shc进料混合,并进料至前置进料管线17中的前置shc反应器12。还可以考虑省略管线15和31,以使分离的液体不循环至上游反应器。在此类实施方案中,还可省略前置流出物分离器23,使得来自前置shc反应器12的前置流出物管线9中的前置加氢裂化的流出物流级联到后续shc反应器14,而无需进行分离。进料液体流出物管线26中的液体进料流出物流与循环分离管线102中的循环分离的料流和循环后续流出物管线31中的循环后续流出物流混合,并且在后续进料管线33中进料至与前置shc反应器12下游连通的后续浆液加氢裂化反应器14。可将前置流出物管线9中的前置加氢裂化的流出物流装入进料液体流出物管线26中的后续浆液加氢裂化反应器14,而无需在前置流出物分离器23中进行分离。从前置流出物管线9中的前置加氢裂化的流出物流中可提取液体进料流出物管线26中的液体进料流出物流。此外,从前置塔底管线25中的液体流出物流中可提取液体进料流出物管线26中的液体进料流出物流。从循环气体管线22中的循环气体流提取的后续氢气管线8和/或管线11中的后续氢气流可进料至后续shc反应器14。前置浆液加氢裂化反应器12通过烃输送管线不与后续shc反应器14下游连通。

一般来讲,前置shc反应器12和后续shc反应器14可在任何合适的条件下进行操作,诸如在400℃(752°)至500℃(932°f)的温度和3mpa(a)至24mpa(a)的压力。示例性浆液加氢裂化反应器公开于下列文件,例如,us5,755,955;us5,474,977;us2009/0127161;us2010/0248946;us201i/0306490;和us201i/0303580。通常,shc使用反应器条件进行,该条件足以使重烃进料管线16中的重烃进料流中的至少一部分沥青裂化,以生成沸点低于沥青的产物,诸如瓦斯油、柴油、石脑油和c1-c4产物。前置shc反应器12可在50%至90%的转化率处进行操作,并且后续shc反应器14可操作以实现90%至99%的转化率、优选地介于92重量%和97重量%之间的转化率的总转化率。

后续加氢裂化的流出物流通过后续流出物管线35离开后续shc反应器14,然后进料至分离工段20。分离工段20可包括热分离器28、洗油分离器40、加温分离器46、和冷分离器50,其均与前置shc反应器12和后续shc反应器14下游连通。在分离工段20,在热分离器28中分离后续加氢裂化的流出物流以在从热分离器28的顶部延伸的热塔顶管线27中提供热蒸气流,并在从热分离器的底部延伸的热塔底管线30中提供热液体流。热塔顶管线27中的热蒸气流可与前置塔顶管线24中的气相加氢裂化的流出物流混合,并且混合的热蒸气流出物流可在混合的塔顶管线29中一起输送。热分离器28在与后续shc反应器14大致相同的温度和压力处操作。例如,热分离器28可在200℃至500℃和其压力略低于前置shc反应器12和后续shc反应器14的压力处(考虑到通过管线的压降)进行操作。热塔底管线30中的热液体流可分流成循环后续流出物管线31中的循环后续流出物流和工艺热塔底管线32中的工艺热液体流。循环后续流出物管线31中的循环后续流出物流可与进料液体流出物管线26中的液体进料流出物流和循环分离管线102中的循环分离的料流混合,并且循环后续流出物管线31中的循环后续流出物流可在后续进料管线33中循环至后续shc反应器14。工艺后续流出物管线32中的工艺热液体流可减压并进料至热闪蒸罐34。

工艺热塔底管线32中的工艺热液体流可提供给热闪蒸罐34,该热闪蒸罐将工艺热液体流分离成从热分离器34的顶部延伸的热闪蒸塔顶管线36中的热闪蒸蒸气流,以及从热分离器的底部延伸的热闪蒸塔底管线38中的热加氢裂化的流出物流。从前置流出物管线9中的前置加氢裂化的流出物流和/或后续流出物管线35中的后续加氢裂化的流出物中提取热闪蒸塔底管线38中的热加氢裂化的料流。可以将热闪蒸塔顶管线36中的热闪蒸蒸气流冷却并添加至洗油闪蒸罐70中。一方面,可以将洗油塔底管线44中的洗油塔底料流减压、冷却并添加至洗油闪蒸罐中。一方面,可以将热闪蒸塔顶管线36中的热闪蒸蒸气流和洗油塔底管线44中的洗油液体流混合、冷却并一起添加至洗油闪蒸罐70中。热闪蒸塔底管线38中的热闪蒸液体流可输送至热汽提器塔150。洗油闪蒸罐70可与洗油分离器40下游连通。

混合的蒸气流出物流可在混合的塔顶管线29中一起输送,冷却并分别或一起进料至洗油分离器40。在洗油分离器40中,包含热塔顶管线27中热蒸气流和前置塔顶管线24中的气相加氢裂化的流出物流的混合的蒸气流与来自洗油管线43的在混合的蒸气管线29中的混合的蒸气入口上方的入口处进入洗油分离器的重烃洗油流接触,以洗涤混合的蒸气流中较重的物质。洗油分离器40与洗油管线43下游连通。洗油流可以是减压瓦斯油,并且优选地为重减压瓦斯油(诸如第三产物支线177中的hvgo分离的料流)。洗油分离器40将热分离器塔顶管线27中的热蒸气流和后续塔顶管线29中的混合的蒸气流出物流分离成从洗油分离器40的顶部延伸的洗油分离器塔顶管线42中的洗油蒸气流和从洗油分离器40的底部延伸的洗油塔底管线44中的洗油液体流。可以将洗油塔顶管线42中的洗油蒸气流冷却并进料至加温分离器46中。可以将洗油塔底管线44中的洗油液体流(其包括洗油管线43中的大部分洗油流)与热闪蒸塔顶管线36中的热闪蒸蒸气流混合、冷却并进料至洗油闪蒸罐70中。也可将洗油液体流和热闪蒸蒸气流分别进料到洗油闪蒸罐70中。通常,洗油分离器40可在220℃至450℃下和其压力略低于热分离器28的压力处(考虑到管线的压降)进行操作。

加温分离器46将洗油塔顶管线42中的洗油蒸气流和加温闪蒸塔顶管线72中的加温闪蒸蒸气流分离成从加温分离器40的顶部延伸的加温分离器塔顶管线47中的加温蒸气流和从加温分离器的底部延伸的加温分离器塔底管线48中的加温液体流。加温分离器46可与洗油闪蒸罐70下游连通。可将水流添加至加温塔顶管线47中的加温蒸气流中,并将其冷却并进料到冷分离器50中。加温闪蒸塔顶管线82中的加温闪蒸蒸气流也可与加温塔顶管线47中的加温蒸气流一起或分别进料至冷分离器50中。加温蒸气流在热交换器中冷却之后,加温闪蒸塔顶管线82中的加温闪蒸蒸气流优选地与加温塔顶管线47中的加温蒸气流混合,并在进入冷分离器50之前于空气冷却器中对其一起冷却。可将加温塔底管线48中的加温液体流减压并进料至加温闪蒸罐80。通常,加温分离器46可在170℃至400℃下和其压力略低于洗油分离器40的压力处(考虑到管线的压降)进行操作。

冷分离器50将加温分离器塔顶管线47中的加温蒸气流和加温闪蒸塔顶管线82中的加温闪蒸蒸气流分离成从冷分离器50的顶部延伸的冷分离器塔顶管线52中的冷蒸气流和从冷分离器的底部延伸的冷分离器塔底管线54中的冷液体流。可从冷分离器50中的储槽中除去冷凝水。一般来讲,冷分离器50以不超过100℃、优选地不超过70℃且至少50℃的温度操作。分离器28、40、46和50都在其压力略小于前置shc反应器12和后续shc反应器14的压力处(考虑到通过管线的压降)进行操作。管线32、44、48和54中的分离器液体流可作为热加氢裂化、洗油加氢裂化、加温加氢裂化和冷加氢裂化的流分别提供给分馏工段100。热分离器28与前置shc反应器12和后续shc反应器14下游连通。洗油分离器40与前置shc反应器12、后续shc反应器14、热分离器28和热塔顶管线27下游连通。加温分离器46与前置shc反应器12和后续shc反应器14、热分离器28、热塔顶管线27、洗油分离器40、洗油塔顶管线42、热闪蒸罐34、热闪蒸塔顶管线36、洗油闪蒸罐70、以及洗油闪蒸塔顶管线72下游连通。冷分离器50与前置shc反应器12、后续shc反应器14、热分离器28、热塔顶管线27、洗油分离器40、洗油塔顶管线42、热闪蒸罐34、热闪蒸塔顶管线36、洗油闪蒸罐70、洗油闪蒸塔顶管线72、加温分离器46、加温塔顶管线47、加温闪蒸罐80和加温闪蒸塔顶管线82下游连通。使用热分离器28、洗油分离器40、加温分离器46和冷分离器50来降低加氢裂化的流出物的温度,同时将气体与液体的分离。

此外,氢气可在加氢处理工段10内循环。具体地讲,从冷分离器50可获得冷塔顶管线52中的冷蒸气流。冷蒸气流中的氢气可通过与贫胺流56接触进行清洗,其作为管线58中的顶部料流从循环氢脱硫塔55获得。管线58中的顶部料流可送至循环气体压缩机59,以将循环氢气流22提供给前置shc反应器12和后续shc反应器14。

分离器工段20还可选择性地包括热闪蒸罐34、洗油闪蒸罐70、加温闪蒸罐80和冷闪蒸罐90。由于热闪蒸罐34可从热分离器28接收工艺热塔底管线32中的工艺热液体流,因此与热分离器28和前置shc反应器12以及后续shc反应器14下游连通。在较低压力下,热闪蒸罐34将工艺热塔底管线32中的热液体流闪蒸,以将热闪蒸塔顶管线36(沿热闪蒸罐34的顶部延伸)中的热闪蒸蒸气流从热闪蒸塔底管线38(沿热闪蒸罐的底部延伸)中的热闪蒸液体流中分离出来。热闪蒸塔底管线38中的热闪蒸液体流的温度介于200°和500℃之间且压力介于350kpa和6,200kpa之间,其代表热闪蒸罐34的条件。热闪蒸塔底管线38中的热闪蒸液体流可输送至热汽提器150。

洗油闪蒸罐70可从洗油分离器40接收洗油塔底管线44中的洗油液体流。此外,可以将来自热闪蒸罐34的热闪蒸塔顶管线36中的热闪蒸蒸气流冷却并提供给洗油闪蒸罐70中。因此,洗油闪蒸罐70与热闪蒸罐34、热闪蒸塔顶管线36、洗油分离器40、洗油塔底管线44、热分离器28和前置shc反应器12以及后续shc反应器14下游连通。在较低压力下,洗油闪蒸罐70将洗油塔底管线44中的洗油液体流和热闪蒸塔顶管线36中的热闪蒸蒸气流闪蒸,以将洗油闪蒸塔顶管线72(沿洗油闪蒸罐70的顶部延伸)中的洗油闪蒸蒸气流从洗油闪蒸塔底管线74(沿洗油闪蒸罐70的底部延伸)中的洗油加氢裂化的料流中分离出来。从前置流出物管线9中的前置加氢裂化的流出物流和/或后续流出物管线35中的后续加氢裂化的流出物中提取洗油闪蒸塔底管线74中的洗油加氢裂化的料流。洗油闪蒸塔顶管线72中的洗油闪蒸蒸气流可被输送至温热分离器46。洗油闪蒸塔底管线74中的洗油闪蒸液体流的温度介于220℃和450℃之间且压力介于350kpa和6,200kpa之间,其代表洗油闪蒸罐70的条件。洗油闪蒸塔底管线74中的洗油闪蒸液体可输送至洗油汽提器60。

加温闪蒸罐80可从加温分离器46接收加温塔底管线48中的加温液体流。因此,加温闪蒸罐与热闪蒸罐34、洗油分离器40、加温分离器46、加温塔底管线48、热分离器28、前置shc反应器12和后续shc反应器14下游连通。在较低压力下,加温闪蒸罐80将加温分离器塔底管线48中的加温液体流闪蒸,以将加温闪蒸塔顶管线82(沿加温闪蒸罐80的顶部延伸)中的加温闪蒸蒸气流从加温闪蒸塔底管线84(沿热闪蒸罐80的底部延伸)中的液体加温加氢裂化的料流中分离出来。从前置流出物管线9中的前置加氢裂化的流出物流和/或后续流出物管线35中的后续加氢裂化的流出物中提取加温闪蒸塔底管线84中的加温加氢裂化的料流。还从加温塔底管线48中的加温液体流中提取加温闪蒸塔底管线84中的加温加氢裂化的料流。加温闪蒸塔顶管线82中的加温闪蒸蒸气流在冷却之后或者可能在与加温塔顶管线47中的加温蒸气流混合之后可输送至冷分离器50。加温闪蒸塔底管线84中的加温加氢裂化的料流的温度介于170℃和400℃之间且压力介于350kpa和6,200kpa之间,其表示加温闪蒸罐70的条件。加温闪蒸塔底管线84中的加温闪蒸液体流可输送至加温汽提器塔190。加温汽提器塔可与加温分离器46下游连通。

冷闪蒸罐90减压后,可从冷分离器50接收冷塔底管线54中的冷液体流。因此,冷闪蒸罐90与冷分离器50、冷塔底管线54、加温分离器46、洗油分离器40、热分离器28、热闪蒸罐34、洗油闪蒸罐70、加温闪蒸罐80、加温闪蒸塔顶管线82、前置shc反应器12和后续shc反应器14下游连通。冷闪蒸罐90将冷塔底管线54中的冷液体流闪蒸,以将冷闪蒸塔顶管线92(沿冷闪蒸罐90的顶部延伸)中的冷闪蒸蒸气流(含正常下情况下气态烃)从冷闪蒸塔底管线94(沿冷闪蒸罐90的底部延伸)中的冷闪蒸液体流中分离出来。从前置流出物管线9中的前置加氢裂化的流出物流和/或后续流出物管线35中的后续加氢裂化的流出物中提取冷闪蒸塔底管线94中的冷加氢裂化的料流。从冷塔底管线54中的冷液体流中提取冷闪蒸塔底管线94中的冷加氢裂化的料流。冷闪蒸塔底管线94中的冷闪蒸液体流的温度不超过100℃且压力介于350kpa和6,200kpa之间,其表示冷闪蒸罐90的条件。可从闪蒸罐90中的储槽除去含水料流。冷闪蒸塔底管线94中的冷闪蒸液体流可输送至冷汽提器塔110。

采用热闪蒸罐34、洗油闪蒸罐70、加温闪蒸罐80和冷闪蒸罐90来降低加氢裂化的流出物的压力,同时将气体与液体的分离。据设想,可以免除闪蒸罐34、70、80和90中的一个或全部,使得分离器液体流32、44、48和54可直接送至分馏工段100。

在一个实施方案中,分馏工段100可包括冷汽提器塔110、脱丁烷塔140、洗油汽提器塔60、加温汽提器塔190、热汽提器塔150、主分馏塔200和产物分馏塔170。根据该实施方案,分馏工段100利用四个独立的汽提器塔110、60、190和150。冷汽提器塔110汽提冷闪蒸塔底管线94中的冷加氢裂化的料流,加温汽提器塔190汽提加温闪蒸塔底管线84中的加温加氢裂化的料流,洗油汽提器塔60汽提洗油闪蒸塔底管线74中的洗油加氢裂化的料流,并且热汽提器塔150汽提热闪蒸塔底管线38中的热加氢裂化的料流。冷汽提器塔110可与前置shc反应器12、后续shc反应器14、冷分离器50和冷闪蒸罐90下游连通。加温汽提器塔150可与前置shc反应器12、后续shc反应器14、加温分离器46和加温闪蒸罐80下游连通。洗油汽提器塔60可与前置shc反应器12、后续shc反应器14、洗油分离器40和洗油闪蒸罐70下游连通。热汽提器塔150可与前置shc反应器12、后续shc反应器14、热分离器28和热闪蒸罐34下游连通。

可将冷闪蒸塔底管线94中的冷闪蒸液体流加热并进料至塔的顶部附近的冷汽提器塔110。在冷闪蒸塔底管线94入口下方的入口处,可将加温汽提器塔顶管线194中的加温汽提器蒸气流进料至冷汽提器塔110。冷闪蒸塔底管线94中的冷闪蒸液体流绕过加温汽提器塔190、洗油汽提器塔60和热汽提器塔150。冷闪蒸液体流和加温汽提器蒸气流可在冷汽提器塔110中用冷汽提介质汽提,该冷汽提介质是惰性气体,诸如来自冷汽提介质管线114的蒸汽,以在冷汽提器塔顶管线116中提供液化石油气(lpg)、石脑油、氢气、硫化氢、蒸汽和其他气体的冷汽提器蒸气流。冷汽提器蒸气流的至少一部分可在接收器118中冷凝和分离。接收器118的净塔顶管线122携带可能用于进一步处理的蒸气废气流。来自冷凝管线120中接收器118底部的冷凝冷塔顶料流(包含不稳定的液体石脑油)可分流为回流到冷汽提器塔110顶部的回流料流和净冷凝冷塔顶料流,该净冷凝冷塔顶料流可在冷凝冷塔顶管线126中输送以进一步在诸如脱丁烷塔140中进行分馏。从冷汽提器塔110的底部回收的冷汽提管线112中的冷汽提的料流包含在柴油沸腾范围内沸腾的柴油,并且可以用作柴油混合料而无需进一步分馏。另选地,可将冷汽提管线112中的冷汽提的料流进料至主分馏塔200。冷汽提器塔110可利用介于149℃(300°f)和260℃(500°f)之间的塔底温度和为0.5mpa(g)(73psig)至2.0mpa(g)(290psig)的塔顶压力操作。塔顶接收器118中的温度在38℃(100°f)至66℃(150°f)的范围内,并且压力基本上与冷汽提器塔110的塔顶压力相同。

冷凝冷塔顶管线126中的冷凝不稳定的石脑油料流可进料至脱丁烷塔分馏塔140,该脱丁烷塔分馏塔与前置shc反应器12和后续shc反应器14以及冷汽提器塔110下游连通。在冷塔顶管线126入口下方的入口处,可将净主塔顶液体管线204中的净冷凝主料流进料至脱丁烷塔140。脱丁烷塔140分馏不稳定的石脑油和净冷凝主料流,以在净废气管线142中提供净废气流,在净脱丁烷塔塔顶管线144中提供主要包含c4-烃的净lpg料流,以及在脱丁烷塔底管线146中提供主要包含c5+烃的石脑油料流。脱丁烷塔分馏塔可在1034kpa(g)(150psig)至2758kpa(g)(400psig)的顶部压力和149℃(300°f)至260℃(500°f)的底部温度的处操作。应保持尽可能低的压力,以保持再沸器温度尽可能低,同时仍能够与典型的冷却设施完全冷凝,而无需制冷。

加温闪蒸塔底管线84中的加温加氢裂化的料流可在加温汽提器塔190的顶部附近进料至该加温汽提器塔。在加温闪蒸塔底管线84入口下方的入口处,可将洗油汽提器塔顶管线64中的洗油汽提器蒸气流进料至加温汽提器塔190。加温加氢裂化的料流和洗油汽提器蒸气流可在加温汽提器塔190中用加温汽提介质汽提,该加温汽提介质为惰性气体,诸如来自加温汽提管线192的蒸汽,以在加温汽提器塔顶管线194中提供柴油、石脑油、和其他气体的加温汽提器蒸气流,以及在加温汽提管线196中提供包含柴油和vgo的加温汽提的料流。加温汽提器塔190可利用介于170℃(338°f)和400℃(752°f)之间的塔底温度和0.5mpa(g)(73psig)至2.0mpa(g)(290psig)的塔顶压力进行操作。

加温汽提器蒸气流的至少一部分可在接收器中冷凝和分离。然而,一方面,在冷闪蒸塔底管线94入口位置下方的入口位置处,加温汽提器塔顶管线194中的加温汽提器蒸气流可直接进料至冷汽提器塔110。因此,冷汽提器塔110与加温汽提器塔190的塔顶管线194下游连通。

从加温汽提器塔190底部提取的加温汽提管线196中的加温汽提的料流,可在火焰加热炉198中加热,并在主分馏塔底部附近进料至该主分馏塔200。冷汽提管线112中的冷汽提的料流也可进料至所述主分馏塔200。主分馏塔200与前置shc反应器12、后续shc反应器14、冷汽提器塔110和加温汽提器塔190下游连通。主惰性气体管线210中的主惰性气体流诸如蒸汽可用于为主分馏塔200提供热量。主分馏塔200分馏加温汽提的料流和冷汽提的料流,以提供若干分离的料流,所述分离的料流包括管线202中的净废气料流、净塔顶管线204中的净冷凝塔顶料流(包含石脑油)、轻质支线205中的主要轻分离的料流(包含轻柴油)、重质支线207中的主要重分离的料流(包含重柴油)、以及主塔底管线206中的主分离的塔底料流(包含vgo),可在fcc单元或加氢裂化单元中对其进一步处理。在替代方案中,可以将主塔底管线206中的主分离的塔底料流加热并进料至产物分馏塔170。主分馏塔可在7kpa(g)(1psig)至345kpa(g)(50psig)的顶部压力为和260℃(500°f)至399℃(750°f)的底部温度处操作。

洗油闪蒸塔底管线74中的洗油加氢裂化的料流可在洗油汽提器塔60的顶部附近进料至该洗油汽提器塔。在洗油闪蒸塔底管线74入口下方的入口处,可将热汽提器塔顶管线154中的热汽提器蒸气流进料至洗油汽提器塔60。洗油加氢裂化的料流和热汽提器蒸气流可在洗油汽提器塔60中用洗油汽提介质汽提,该洗油汽提介质为惰性气体,诸如来自洗油汽提管器线62的蒸汽,以在洗油汽提器塔顶管线64中提供柴油、石脑油、和其它气体的洗油蒸气流,以及在洗油汽提管线66中提供包含柴油、vgo和沥青的洗油汽提的料流。洗油汽提器塔60可利用介于170℃(338°f)和400℃(752°f)之间的塔底温度和0.5mpa(g)(73psig)至2.0mpa(g)(290psig)的塔顶压力进行操作。

洗油汽提器蒸气流的至少一部分可在接收器中冷凝和分离。然而,一方面,在加温闪蒸塔底管线84入口位置下方的入口位置处,洗油塔顶管线64中的洗油汽提器蒸气流可直接进料至加温汽提器塔190。因此,加温汽提器塔190与洗油汽提器塔190的塔顶管线64下游连通。从洗油汽提器塔60底部提取的洗油汽提管线66中的洗油汽提的料流,无需加热或至少在火焰加热炉中无需加热的情况下,可在产物分馏塔170底部附近进料至该产物分馏塔。

热闪蒸塔底管线38中的热加氢裂化的料流可进料至热汽提器塔150。热加氢裂化的料流可在热汽提器塔150中用热汽提介质汽提,该热汽提介质是惰性气体,诸如来自热汽提管线152的蒸汽,以在热汽提器塔顶管线154中提供柴油、石脑油、氢气、硫化氢、蒸汽和其他气体的热蒸气汽提器料流。热蒸气流的至少一部分可在接收器中冷凝和分离。然而,一方面,在加温闪蒸塔底管线74中的加温加氢裂化的料流入口位置下方的入口位置处,热汽提器塔顶管线154中的热汽提器塔顶料流可直接进料至洗油汽提器塔60。热汽提器塔150可利用介于160℃(320°f)和482℃(900°f)之间的塔底温度和0.5mpa(g)(73psig)至2.0mpa(g)(292psig)的塔顶压力进行操作。

在热汽提管线158中产生加氢裂化的热汽提的料流。在洗油汽提管线66入口下方的入口位置处,可将至少一部分热汽提管线158中的加氢裂化的热汽提的料流进料至产物分馏塔170。产物分馏塔170可在其中在真空压力下进行分馏。因此,产物分馏塔170可与热汽提器塔150的热汽提管线158下游连通。从热汽提器塔150底部提取的热汽提管线158中的热汽提的料流可,无需加热或至少在火焰加热炉中无需加热的情况,可在产物分馏塔170底部附近进料至该产物分馏塔。

产物分馏塔170可利用汽提介质(诸如来自产物惰性管线172的蒸汽)分馏热汽提管线158中的热汽提的料流、洗油汽提管线66中的洗油汽提的料流和主塔底管线206中的受热主塔底料流,以提供若干分离的料流。主塔底管线206的入口可位于洗油汽提管线66的入口上方,该洗油汽提管线的入口可位于热汽提管线158的入口上方。分离的料流可包括净产物塔顶管线174中的轻柴油分离的料流、来自第一侧出口的第一产物支线175中的重柴油分离的料流、来自第二侧出口的第二产物支线176中的轻减压瓦斯油(lvgo)分离的料流、来自第三侧出口的第三产物支线177中的重减压瓦斯油(hvgo)分离的料流、来自第四侧出口178o的第四产物支线178中的粗蜡分离的料流和来自底部出口180o的产物塔底管线180中的沥青分离的料流。可通过冷却第一产物支线175中的柴油分离的料流、第二产物支线176中的lvgo分离的料流和管线177中的hvgo分离的料流并将每个冷却分离的料流的一部分送回产物分馏塔170以去除产物分馏塔170中的热量。

一方面,产物分馏塔170在低于大气压时可用作真空塔。因此,净产物塔顶管线174中的塔顶轻柴油分离的料流可通过产物分馏塔170的塔顶管线186上的真空系统182从产物分馏塔170中抽出。真空系统可包括排放装置,所述排放装置用于当排放装置管线187中的蒸汽流或其它惰性气体流进料至排放装置时产生真空。另选地,真空泵可用于在净塔顶管线174上抽真空。产物分馏塔170保持在介于0.1kpa(a)(1托(a))和6.7kpa(a)(50托(a))之间、优选地介于0.2kpa(a)(1.5托(a))和2.0kpa(a)(15托(a))之间的压力,并且保持在300℃(572°f)至400℃(752°f)的真空蒸馏温度,从而导致hvgo和沥青之间的大气当量分馏点介于454℃(850°f)和593℃(1100°f)之间,优选地介于482℃(900°f)和579℃(1075°f)之间,并且最优选地介于510℃(950°f和552℃(1025°f)之间。

为了抑制加氢处理工段10中的中间相生成,循环分离的料流可以在绕过前置shc反应器12时,循环至后续shc反应器14。循环分离的料流可从净塔顶管线174中的轻柴油分离的料流、产物分馏塔170一侧的第一产物支线175中的重柴油分离的料流、产物分馏塔170一侧的第二产物支线176中的lvgo分离的料流、产物分馏塔170一侧的第三产物支线177中的hvgo分离的料流、产物分馏塔170一侧的第四产物支线178中的粗蜡分离的料流和产物分馏塔170底部的产物塔底管线180中的沥青分离的料流中的一种提取。循环分离的料流也可从主分馏塔200的分离的料流(包括主分馏塔200一侧的轻质支线205中的轻主分离的料流)、主分馏塔200一侧的重质支线207中的重主分离的料流、以及主分馏塔200底部的主塔底管线206中的主分离的塔底料流中的一种提取。

在一个实施方案中,循环分离的料流可从产物分馏塔170的底部提取。例如,通过底部出口180o,从产物塔底管线180中的沥青分离的料流中可提取循环分离的料流。产物塔底管线180中的沥青分离的料流可分流成沥青产物管线182中的沥青产物流和沥青循环管线184中的沥青循环分离的料流。沥青循环管线184中的沥青循环分离的料流可至少部分地在循环分离管线102中提供循环分离的料流。

在另一个实施方案中,循环分离的料流可从产物分馏塔170的侧出口提取。例如,通过侧出口178o,从产物分馏塔170第四侧的第四产物支线178中的粗蜡分离的料流中可提取循环分离的料流。第四产物支线178中的粗蜡分离的料流可分流成粗蜡吹扫线186中的可选粗蜡吹扫料流和粗蜡循环管线188中的粗蜡循环分离的料流。粗蜡循环管线188中的粗蜡循环分离的料流可至少部分地在循环分离管线102中提供循环分离的料流。循环分离管线102中的循环分离的料流的流量可以为5重量%至75重量%的进料管线16中重烃进料流流量。

循环分离管线102中的循环分离的料流绕过前置shc反应器12并进料至后续shc反应器14。如果有一个以上的后续shc反应器14,则循环分离管线102中的循环分离的料流绕过前置shc反应器并进料至一个或多个后续shc反应器14。通过循环分离管线102,后续shc反应器14可与分离器(诸如,热分离器28、洗油分离器40、加温分离器46、和冷分离器50)、热闪蒸罐34、洗油闪蒸罐70、加温闪蒸罐80、冷闪蒸罐90、冷汽提器110、加温汽提器190、洗油汽提器60、热汽提器150、脱丁烷塔140、主分馏塔200或产物分馏塔170下游连通。

关键是前置shc反应器12不通过烃输送管线,并且特别是通过循环分离管线102与先前述分离器下游连通。允许后续反应器14与前置shc反应器12通过冷塔顶管线52连通,因为可在shc反应器12中转化的烃将不存在于冷蒸气流中。我们发现,重芳烃流循环至后续shc反应器14改善了中间相(其会引起结焦)产量的稳定性并且增加了石脑油和柴油的选择性,所述石脑油和柴油是有价值的燃料产物。然而,我们发现将重芳烃流循环至前置shc反应器12导致其中中间相产量增加。中间相的增加会导致shc反应器12结焦,从而能导致装置停机。然而,重芳烃流通过烃输送管线(诸如沥青循环管线184)循环至后续shc反应器14,粗蜡循环管线188通过循环分离管线102,用于抑制加氢处理工段10中间相的生成。

图2示出了省略热汽提器的实施方案。图2中的许多元件具有与图1中相同的构型,并且具有相同的参考标号。图2中对应于图1中的元件但具有不同构型的元件具有与图1相同的附图标号,但用引号(‘)标记。

在图2的实施方案中,将来自热闪蒸罐34并且与分离器工段20′中的热分离器28下游连通的热闪蒸塔底管线38′中的热加氢裂化的蒸汽直接送至分馏工段100′中的产物分馏塔170′,对其进行分馏而无需在汽提塔中提前汽提。从加氢裂化的流出物管线(诸如,前置流出物管线9或后续流出物管线35)中的加氢裂化的流出物流中提取热加氢裂化的料流。图2其余部分的实施方案的操作和构型如图1所述。

实施例

进行经济分析以比较利用洗油汽提器塔处理29,092m3/d(40,000bbl/d)减压渣油进料的浆液加氢裂化单元的资本和运营费用。根据分析,利用洗油汽提器塔的浆液加氢裂化单元可将热汽提器塔尺寸设定成具有比没有洗油汽提器塔的单元中的相同容器小至少8%的直径,并且将产物分馏塔尺寸设定成具有比没有洗油汽提器塔的单元中的相同容器小至少12%的直径。即使考虑到新洗油汽提器塔的额外资本费用,较小的热汽提器塔和产物分馏塔节省至少19%的成本。产物分馏塔的资本成本降低了20%。

运行时,由于加热进料至产物分馏塔的主分离的塔底料流所需的加热炉负载降低了10%,因此利用具有洗油汽提器塔的浆液加氢裂化单元,每年可节省约$230,000费用。

通过向浆液加氢裂化单元添加洗油汽提器塔可显著降低资本和运营费用是有悖常理的。

提供实施例仅为了说明的目的,并且不旨在以任何方式限制本文所述的各种实施方案。

具体的实施方案

虽然结合具体的实施方案描述了以下内容,但应当理解,该描述旨在说明而不是限制前述描述和所附权利要求书的范围。

本发明的第一实施方案是一种用于浆液加氢裂化的方法,所述方法包括在浆液加氢裂化反应器中浆液加氢裂化烃进料流,以提供加氢裂化的流出物流;在冷汽提器塔中汽提从所述加氢裂化的流出物流中提取的冷加氢裂化的料流,以提供冷汽提的料流;在加温汽提器塔中汽提从所述加氢裂化的流出物流中提取的加温加氢裂化的料流,以提供加温汽提的料流;用重洗油清洗从所述加氢裂化的流出物流中提取的热蒸气流,以提供洗油液体流;以及在洗油汽提器中汽提从洗油液体流中提取的洗油加氢裂化的料流,以提供洗油汽提的料流;本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括在热汽提器塔中汽提从所述加氢裂化的流出物流提取的热加氢裂化的料流,以提供热汽提的料流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括在热分离器中分离加氢裂化的流出物流,以提供热蒸气流和热液体流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括闪蒸洗油液体流,以提供洗油闪蒸蒸气流和洗油加氢裂化的料流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括在加温分离器中分离洗油闪蒸蒸气流以提供加温蒸气流和加温液体流,以及从所述加温液体流中提取加温加氢裂化的料流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括闪蒸热液体流,以提供热闪蒸蒸气流和所述热加氢裂化的料流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括闪蒸热闪蒸蒸气流,以提供洗油闪蒸蒸气流和所述洗油加氢裂化的料流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括将加温液体流闪蒸为加温闪蒸蒸气流和所述加温加氢裂化的料流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括分离加温闪蒸蒸气流,以提供冷蒸气流和从其中提取冷加氢裂化的料流的冷液体流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括分离加温蒸气流,以提供冷蒸气流和从其中提取冷加氢裂化的流出物流的冷液体流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括分馏主分馏塔中的冷汽提的料流和加温汽提的料流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括分馏产物分馏塔中的洗油汽提的料流。本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括分馏产物分馏塔中的热汽提的料流;本发明的实施方案是本段中的先前实施方案至本段中的第一实施方案中的一个、任一个或所有实施方案,所述方法还包括分馏从产物分馏塔中加氢裂化的流出物流提取的热加氢裂化的料流。

本发明的第二实施方案是一种用于浆液加氢裂化的设备,所述设备包括浆液加氢裂化反应器;洗油分离器,所述洗油分离器与所述浆液加氢裂化反应器下游连通并且与重洗油管线下游连通;洗油汽提器塔,所述洗油汽提器塔与所述洗油分离器下游连通;冷汽提器塔,所述冷汽提器塔与所述浆液加氢裂化反应器下游连通;和加温汽提器塔,所述加温汽提器塔与所述浆液加氢裂化反应器下游连通。本发明的实施方案是本段中的先前实施方案至本段中的第二实施方案中的一个、任一个或所有实施方案,所述设备还包括与洗油分离器下游连通的洗油闪蒸罐、与洗油闪蒸罐下游连通的加温分离器;和与加温分离器下游连通的加温汽提器。本发明的实施方案是本段中的先前实施方案至本段中的第二实施方案中的一个、任一个或所有实施方案,所述设备还包括与加温分离器下游连通的加温闪蒸罐、与加温分离器下游连通的冷分离器、以及与冷分离器下游连通的冷汽提器。

本发明的第三实施方案是一种用于浆液加氢裂化的方法,所述方法包括在浆液加氢裂化反应器中浆液加氢裂化烃进料流,以提供加氢裂化的流出物流;在冷汽提器塔中汽提从所述加氢裂化的流出物流中提取的冷加氢裂化的料流,以提供冷汽提的料流;在加温汽提器塔中汽提从所述加氢裂化的流出物流中提取的加温加氢裂化的料流,以提供加温汽提的料流;在洗油汽提器塔中汽提从所述流出物流中提取的洗油加氢裂化的料流,以提供洗油汽提的料流;以及在热汽提器塔中汽提从所述加氢裂化的流出物流提取的热加氢裂化的料流,以提供热汽提的料流。本发明的实施方案是本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,所述方法还包括用重洗油清洗从所述加氢裂化的流出物流提取的热蒸气流以提供洗油液体流,以及从所述洗油液体流中提取洗油加氢裂化的料流。本发明的实施方案是本段中的先前实施方案至本段中的第三实施方案中的一个、任一个或所有实施方案,所述方法还包括分离加氢裂化的流出物流以提供热蒸气流和热液体流,以及从热液体流提取热加氢裂化的料流。

尽管没有进一步的详细说明,但据信,本领域的技术人员通过使用前面的描述可最大程度利用本发明并且可容易地确定本发明的基本特征而不脱离本发明的实质和范围以作出本发明的各种变化和修改,并且使其适合各种使用和状况。因此,前述优选的具体的实施方案应理解为仅例示性的,而不以无论任何方式限制本公开的其余部分,并且旨在涵盖包括在所附权利要求书的范围内的各种修改和等效布置。

在前述内容中,所有温度均以摄氏度示出,并且所有份数和百分比均按重量计,除非另外指明。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1