纳米变压器油的制作方法

文档序号:9230760阅读:727来源:国知局
纳米变压器油的制作方法
【技术领域】
[0001] 本发明属于变压器油技术领域,尤其涉及一种纳米变压器油及其制备方法。
【背景技术】
[0002] 随着社会日新月异的发展,工程应用中对热交换设备的要求也不断提高,传热技 术正处在关键的转折点,如何提高传热工质的热导率成为了新的研宄热点。自1995年美国 Argonne实验室的Chios提出了纳米流体的概念并指出在基液中分散纳米量级颗粒形成的 新型冷却工质,相较于传统冷却工质,热导率有显著提升,此研宄结果引起了各国研宄人员 的广泛关注,越来越多的学者将目光集中于纳米流体的传热性能及强化传热机理方面。
[0003] 自从1998年Segal等发现磁性纳米粒子可以提高变压器油的正冲击击穿强度以 来,纳米粒子改性变压器油的研宄已受到了国内外研宄者的广泛关注;并且随着中国经济、 电力系统快速发展,电力需求持续增长,电压等级和传输不断提高,变压器油作为电力变压 器中的散热介质,其散热性已然备受关注;变压器油是电器绝缘油中最重要的一种润滑油, 其需求量占电器绝缘油总需求量的98 %以上,主要作为变压器的绝缘盒导热介质,起到绝 缘保护、散热冷却和灭弧的作用;变压器油质量的好坏关系到电网的安全运行,与工业生产 和居民生活息息相关。所以,开发具有优良绝缘性能的变压器油目前已成为保障变压器等 大型电力设备可靠运行的重要任务之一。然而在各种纳米流体悬浮液中,由于纳米颗粒的 高表面活性使其很容易团聚而造成沉淀,从而使稳定性得不到保障,热导率也明显降低,因 此,纳米粒子在变压器油中的分散性和稳定性一直是一个有待解决的问题。为此,本发明人 经过长时间的大量实验研宄,终于找到了一个工艺相对简单的方法获得了一种热导率增强 型的纳米氧化钛改性变压器油,并且抗沉降稳定性非常优异。

【发明内容】

[0004] 本发明的目的是提供一种分散性好、稳定性高且热导率增强型的纳米变压器油。
[0005] 为了达到上述目的,一方面,本发明提供了一种纳米变压器油,其组分包括:亚油 酸、二氧化钛、烷烃和环烷烃,其中,所述烷烃化学通式为C nH2n+2,n = 5~15 ;所述环烷烃化 学通式为CnH2n,η = 1~20。
[0006] 第二方面,本发明提供了一种纳米变压器油的制备方法,包括以下步骤:
[0007] Α.将亚油酸、钛酸四丁酯、碳酸氢铵和有机溶剂混合均匀,在130~160°C下反应 24~48h,冷却,得到浑浊液;
[0008] B.将步骤A得到的浑浊液分离出沉淀物,得到表面附着有亚油酸的纳米二氧化钛 颗粒;
[0009] C.将步骤B得到的颗粒与烷烃和环烷烃混合分散均匀,得到目标产物。
[0010] 本发明的有益效果是:通过添加表面吸附有亚油酸的纳米二氧化钛颗粒,本发明 提供的纳米变压器油外观澄清透亮,抗沉降稳定性优异,长时间放置不会出现明显的用肉 眼可观察到的改变,另外它的热导率在实际应用中也有着明显的优化,随着温度的变化,热 导率出现不同程度的升高,绝大多数液体的热导率是随着温度的升高而降低的,而本发明 的热导率却随温度的升高而升高,满足了变压器油对绝缘和冷却的要求。
【附图说明】
[0011] 图1为本发明实施例一制备的分散相Ti02纳米颗粒的X衍射图谱;
[0012] 图2为本发明实施例一制备的纳米变压器油热导率曲线;
[0013] 图3为本发明实施例一制备的纳米变压器油热阻曲线。
【具体实施方式】
[0014] 如图1所示,一方面,本发明提供了一种纳米变压器油,其组分包括:亚油酸、二氧 化钛、烷烃和环烷烃,其中,所述烷烃化学通式为C nH2n+2, η = 5~15 ;所述环烷烃化学通式 为 CnH2n,η = 1 ~20。
[0015] 优选的,所述所述各组分质量百分比如下:
[0016] 亚油酸 0.2%~0.5%; 二氧化钛 0.4%~4%; 烷烃 70%~80% ; 环烷烃 15%~25%。
[0017] 优选的,所述二氧化钛为锐钛矿结构,颗粒尺寸为9~20nm,所述亚油酸附着在二 氧化钛颗粒表面。
[0018] 第二方面,本发明提供了一种纳米变压器油的制备方法,包括以下步骤:
[0019] A.将亚油酸、钛酸四丁酯、碳酸氢铵和有机溶剂混合均匀,在130~160°C下反应 24~48h,冷却,得到浑浊液;
[0020] B.将步骤A得到的浑浊液分离出沉淀物,得到表面附着有亚油酸的纳米二氧化钛 颗粒;
[0021] C.将步骤B得到的颗粒与烷烃和环烷烃混合分散均勾,得到目标产物。
[0022] 优选的,所述步骤A中有机溶剂包括环己烷或三乙胺。
[0023] 优选的,所述步骤B中分离出沉淀物的步骤包括,将步骤A得到的浑浊液离心分离 出沉淀物。进一步优选的,所述步骤B中分离出沉淀物的步骤还包括,向上层清液中加入有 机溶剂后再次离心,分离出沉淀物。
[0024] 为了更好的理解本发明,下面结合附图和实施例对本发明做进一步地详细说明。 [0025] 实施例1
[0026] 首先,将25ml亚油酸、8ml环己烧、8ml三乙胺、碳酸氢按Ig混合溶解于100mL烧 杯中,于常温下进行磁力搅拌,IOmin后再用移液器逐滴加入1ml钛酸四丁酯,然后将混合 溶液进行30min的超声处理,之后再进行1个小时的磁力搅拌直至混合溶液中的碳酸氢氨 颗粒溶解;
[0027] 然后,将整个混合溶液体系移入聚四氟乙烯内胆的高压反应釜中,在150°C温度下 反应,48h后使反应釜在常温下自然冷却,得到深棕黄色浑浊溶液;再将溶液装入盐城市凯 特实验仪器有限公司生产的离心机的离心管中,以转速5000转/分进行离心分离,将黄色 上清液倒入50ml烧杯后,再先后向离心管加入按体积比4 :7的正己烷和乙醇溶液混合后 进行离心分离,会发现浑浊溶液先变澄清后迅速形成白色沉淀团聚,以同样方式重复操作 3次,待进行离心处理除去上清液后得到米白色残留物,即为表面附着有亚油酸的纳米二氧 化钛颗粒;再往50ml烧杯所盛的黄色上清液中加入一定量正己烷,溶解后再加入适量的无 水乙醇,然后进行离心分离,得到同样的沉淀物;
[0028] 离心分离后得到的沉淀物的一半分散在无水乙醇中,将这种残留物再置于真空干 燥箱等干燥设备中在温度100°c ±5°C与压力0. 01-0.1 MPa的条件下进行干燥直至恒温,得 到分散相1102纳米颗粒产物;
[0029] 最后,将剩余的沉淀物分散到克拉玛依25号变压器油中,得到目标产物。其中,所 述克拉玛依25号变压器油主要成分是烷烃、环烷族饱和烃、芳香族不饱和烃。
[0030] 采用日本岛津公司生产的XRD仪器,在室温下,衍射角为20-80度,对分散相Ti02 纳米颗粒产物进行XRD测试,测试结果如图1所示。分析结果表明,本发明制备的Ti02纳 米颗粒样品结晶性明显,具有锐钛矿结构的晶体特征;根据谢乐公式D = K λ / β cos Θ以及 锐钛矿相(101)半峰宽计算出Ti02纳米颗粒样品的粒径,约为9nm。
[0031] 最终得到的目标产物纳米变压器油澄清透亮,静置6个月后仍未出现任何明显可 见的改变。
[0032] 采用美国DECAGON公司生产的KD2热导测试仪测量目标产物与克拉玛依25号变 压器油的热导率,得到图2所示的热导率曲线和图3所示的热阻曲线。由图2和3可知:纳 米变压器油的热导率随温度的升高明显增加。
[0033] 实施例2
[0034] 首先,将IOml亚油酸、8ml三乙胺、20ml环己烧混合溶解于100mL烧杯中,于常温 下进行磁力搅拌,并保持搅拌IOmin后再使用移液器逐滴加入1ml钛酸四丁酯,将混合溶液 进行5min的超声处理;
[0035] 然后,将整个混合溶液体系移入聚四氟乙烯内胆的高压反应釜中,在150°C温度下 反应,48h后使反应釜在常温下自然冷却,得到深棕黄色浑浊溶液;再将溶
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1