用氧气燃烧的循环流化床蒸汽发生器的制作方法

文档序号:5253940阅读:235来源:国知局
专利名称:用氧气燃烧的循环流化床蒸汽发生器的制作方法
背景技术
本发明涉及循环流化床蒸汽发生器和操作这种循环流化床蒸汽发生器来生产二氧化碳终端产品的方法。
Pak等人的美国专利5 175 995介绍了一种传统的发电装置,其可用于在燃烧室内用空气燃烧燃料以提供燃烧气体能量来驱动蒸汽或气体涡轮。在这种传统的使用天然气、石油燃气或煤炭燃气作为燃烧过程燃料的发电机类型中,这些燃料包括碳组分如碳(C)、一氧化碳(CO)和其他烃(CmHn)。因此,在空气存在下通过燃烧这些燃料的燃烧过程产生的烟道气(flue gas)含有二氧化碳(CO2)、氮氧化物(NOx)和硫氧化物(SOx)以及氮气(N2)。
Pak等的专利‘995进一步提到,气体如NOx、SOx和CO2向空气中的排放产生了环境污染。传统的发电装置通常通过装配诸如涤气器等去除装置除去NOx和SOx污染物来治理这些污染。而且,去除装置被用于去除烟道气中的二氧化碳(CO2),这些装置包括使用吸附剂从烟道气中选择吸收二氧化碳(CO2)的那些去除装置类型。然而,根据Pak等的专利‘995,这种溶剂方法的缺点是需要额外的热能加热溶剂,同时为给溶剂和二氧化碳(CO2)间提供相对长的接触时间以使溶剂充分吸收二氧化碳(CO2)是不实际的。
Pak等的专利‘995公开了封闭式组合循环型发电装置的几种形式,其用于改善二氧化碳(CO2)吸附溶剂方法的一些缺点。在这一参考文献中公开的每种发电装置中,燃料在氧气存在下而不是空气存在下提供给燃烧室,以便产生燃烧气体(烟道气),其主要包括水组分和二氧化碳(CO2)。这种燃烧气体经过处理以分离出水组分和二氧化碳(CO2),分离出的二氧化碳(CO2)被作为工作流体循环使用,以驱动组合式循环发电装置的涡轮机。因为燃料燃烧是在氧气存在下而不是在空气存在下发生,则基本上排除了NOx的产生,而且,因为二氧化碳(CO2)被保留在封闭循环中作为工作流体,则Pak等的专利‘995公开的方法优点在于避免了二氧化碳(CO2)和氮氧化物(NOx)的排放。
Osgersby的美国专利4 498 289也公开了一种发电系统,其通过在氧气代替空气存在下燃烧烃燃料,从而获得由二氧化碳(CO2)组成的工作流体。尽管Pak等的专利‘995和Osgersby的美国专利‘289每个都公开了在氧气代替空气存在下燃烧燃料来减少二氧化碳(CO2)排放的配置,但是这种技术仍然能从为新的或已存在的发电系统设计的配置中受益,所述配置提供了这样的灵活性,即既可以生产二氧化碳(CO2)作为所需的终端产品,又可以用二氧化碳(CO2)作燃烧过程的载体。而且,这种技术也可能受益于这样的配置,其含有循环流化床蒸汽发生器,借助于最高不超过同样操作的煤粉蒸汽发生器通常所需的烟道气循环的一半,就可以控制这种流化床蒸汽发生器的燃烧温度。
发明概述本发明的一个目标是为新的或已存在的发电系统提供一种配置,其提供了这样的灵活性,即既可以生产作为所需的终端产品的二氧化碳(CO2),又可以将其用作燃烧过程的载体。
本发明的另一个目标是为液体二氧化碳(CO2)的生产提供一种配置,其改进了燃烧化石燃料的发电系统的热输出。
根据本发明的一个方面,为新的或已存在的发电系统提供一种操作循环流化床蒸汽发生器的方法,其提供了这样灵活性,即既可以将二氧化碳(CO2)用作所需的终端产品,又可以用作燃烧过程的载体。这种方法包括以下步骤向循环流化床蒸汽发生器引入基本上为纯氧的进料物流;在基本上为纯氧的进料物流存在下燃烧燃料产生含有二氧化碳和水蒸汽作为其两种体积最大的组成成分的烟道气。
本发明的操作循环流化床蒸汽发生器的方法包括以下步骤向循环流化床蒸汽发生器引入基本上为纯氧的进料物流;在基本上为纯氧的进料物流存在下燃烧燃料产生含有二氧化碳和水蒸汽作为其两种体积最大的组成成分的烟道气;使烟道气穿过氧气进料物流预热器,在此使烟道气的热量传递给氧气进料物流;使烟道气分成终端产品部分和循环使用部分;使烟道气的循环使用部分引入到循环流化床蒸汽发生器来有助于其中的燃烧过程。优选本方法也包括冷却和压缩烟道气的终端产品部分以生产液相二氧化碳。
根据本发明的另一方面,提供一种循环流化床蒸汽发生器,其包含把基本上为纯氧的进料物流引入循环流化床蒸汽发生器的装置,在基本上为纯氧的进料物流存在下燃烧燃料产生含有二氧化碳和水蒸汽为其两种体积最大的组成成分的烟道气的装置,使烟道气穿过氧气进料物流预热器从而把热量从烟道气传递给氧气进料物流的装置,使烟道气分成终端产品部分和循环使用部分的装置,将烟道气的循环使用部分引入到循环流化床蒸汽发生器来有助于其中的燃烧过程的装置。优选循环流化床蒸汽发生器也包括冷却和压缩烟道气的终端产品部分以生产液相二氧化碳的装置。
附图简述

图1为循环流化床蒸汽发生器的示意图;和图2为含有图1所示的循环流化床蒸汽发生器的组合式循环发电装置的示意图,用于生产二氧化碳终端产品。
优选实施方案的详细说明首先参考附图的图2,此处描述了本发明的用氧气燃烧的循环流化床蒸汽发生器(CFB)的一个实施方案。循环流化床蒸汽发生器(CFB)一般用附图标记10表示,其用氧气代替空气进行燃烧,由此以成本合算的方式有利于地把再循环烟道气减少到最低量。然而,在对循环流化床蒸汽发生器10提供完全的详细描述,以及其后对含有循环流化床蒸汽发生器10的组合式循环发电装置提供详细描述之前,首先参考附图的图1来对循环流化床蒸汽发生器10的燃烧和热固-气分离器组件子群提供一个全面描述。
应该理解到,循环流化床蒸汽发生器10的构造,包括现存的或没有的、其相关组件的置换和相互连接如此处的举例说明和描述,其应理解为仅仅是采用本发明用氧气燃烧的循环流化床蒸汽发生器10的一种构造的范例。出于这个理由,应注意,接下来对循环流化床蒸汽发生器10的讨论仅仅公开了一种可能的操作配置,并可以设想,正如环境所需或决定的那样,循环流化床蒸汽发生器10的构造,包括现存的或没有的、其相关组件的置换和相互连接可以进行变化,其都可以代表本发明循环流化床系统的一个实施方案。
如图1所示,循环流化床蒸汽发生器10包含用附图标记12表示的炉体,后者由附图标记14表示的水墙管(waterwall tube)进行限定;第一段管道(ductwork),用附图标记16表示;组合式热固-气分离器,用附图标记18表示;回送管道的中间段,用附图标记20表示;和回送体(backpass volume),用附图标记22表示,用附图标记24表示的其它管道从此处进一步延伸。
炉体12通过穿过水墙管14的水实施水冷却,而组合式热固-气分离器18和回送体是通过集成在其壁结构中的管实施蒸汽冷却。
组合式热固-气分离器18的下部例如可能是一个传统的旋风分离器,通过一个流体流动系统以流体流动关系连接到炉体12的下部,如图1所示,流体流动系统由以下组成附图标记26表示的初始收集路径;附图标记28表示的定向返回测定的进料的装置;附图标记30表示的定向返回路径;附图标记32表示的流化床热交换器(FBHE)进口;附图标记34表示的控灰阀门;附图标记36表示的流化床热交换器(FBHE);和附图标记38表示的流化床热交换器(FBHE)出口。为了随后的讨论,将管道16、组合式热固-气分离器18和流体流动系统26、28、30、32、34、36、38称为热固循环路径,用附图标记40、42、44表示。而且,应理解,流体流动系统26、28、30、32、34、36、38是典型的流体物流系统,其与组合式热固-气分离器18协同相连。参看附1可以看到,炉体12与穿过附图标记48表示的供给线的燃料和吸附剂源(用附图标记46表示)相连,其也与穿过附图标记50表示的供给线的氧气源(用附图标记52表示)相连。
关于附1,从对它的参考应该理解到,在炉体12的下部将燃料和吸附剂的混合(用附图标记54表示)物与氧气(用附图标记56表示)混合以便燃烧。优选,含有氧气56的流化介质通过底层炉进料(底层炉之上就是炉体12的流化床),额外的氧气在底层炉之上两层处进料。而且,优选将进料和吸附剂供给线48构造成包括空气辅助燃料和吸附剂进料喷嘴,以便有利地使水墙穿透开口尺寸最小并使燃料斜槽被堵塞的可能性最小。灰可以通过传统的灰冷却器58从循环流化床蒸汽发生器10的炉体12下部排出,如图2所示。
在已知的模式中,从燃烧产生了热燃烧气体(用附图标记40表示),而热固体(用附图标记42表示)被夹杂在热燃烧气体40之中。这些夹杂有热固体42的热燃烧气体40在炉体12中上升直到炉体12顶部,由此夹杂有热固体42的热燃烧气体40流过导管16进入组合式热固-气分离器18。
在热固-器分离器18之中,流到此处的热固体42(其超过预定尺寸)与夹杂它们的热燃烧气体40分离开。分离出来的热固体42含有未燃烧的燃料、飞灰和吸附剂,其与二氧化碳(CO2)和水蒸汽(H2O)一起流过组合式热固-气分离器18。来自于组合式热固-气分离器18的热固体42在重力作用下排入初始收集路径26,在此处热固体42的一部分流过初始收集路径26到达并通过定向返回测定的进料的装置28。此后,来自于定向返回测定的进料的装置28的这部分热固体42通过相应的定向返回路径30重新引入炉体12的下部,在此这部分热固体42再次经历发生在循环流化床蒸汽发生器(CFB)10之中的燃烧过程。其余的热固体42(其超过预定尺寸)表示为热交换器热固体44,其从组合式热固-气分离器18通过热交换器进口32被传送到流化床热交换器(FBHE)36中,然后通过相应的热交换器出口38被传送到炉体12的下部。传送经过流化床热交换器(FBHE)36的热固体42在热交换过程中被冷却,在该热交换过程中热固体把热量以传统方式传递给流过流化床热交换器(FBHE)36的工作流体。这样,循环流化床蒸汽发生器(FCB)10中的温度可以受到控制,方法是适当分出离开旋风分离器的再循环热固体42流,以便使未冷却的固体流直接流回循环流化床蒸汽发生器(CFB)10,或在流回循环流化床蒸汽发生器(CFB)10之前被流化床热交换器(FBHE)36冷却。
接着,在另一方面,离开组合式热固-气分离器18的热燃烧气体40(下文中称之为烟道气),从组合式热固-气分离器18经过中段回送管道20被送到回送体22中,在此执行额外的热交换任务,这在后面将会更加全面地描述。烟道气40从回送体22出来,经过管道24进入下游的烟道气处理组件子群,这将在此后参照图2更为详细地描述。
图2是含有循环流化床蒸汽发生器10的典型组合式循环发电装置110的示意图,其可操作用于发电和生产二氧化碳(CO2)终端产品,以及任选的氮气(N2)产品。配置(下文一般称为终端产品和可再循环组EPRG)的细节现将从关于组合式循环发电装置110的详细描述开始。现在来看图2,其举例说明了典型组合式循环发电装置110,该组合式循环发电装置110具有循环流化床蒸汽发生器10形式的燃烧燃料的燃烧室,并且额外包括下游的烟道气处理组件子群和氧气供给组件子群,这后两子群此后称为终端产品和可再循环组EPRG。氧气供给组件之一处理空气流112,以便从中输送所需纯度的氧气。
组合式循环发电装置110也包括涡轮136,用于在经过其中的蒸汽的驱动作用下发电。蒸汽从循环流化床蒸汽发生器10经由多个导管138导入涡轮136,并正对着涡轮进行喷射以驱动涡轮。
再参考图2,终端产品和可再循环的组EPRG也包括经由合适的设备例如经由氧气引入组件142来提供特定的各类燃烧气体的氧气源140。氧气引入组件142包括供给线50和为另外两个上层提供氧气的氧气供给线,其分别把氧气引入到循环流化床蒸汽发生器10的下部炉体中和把燃料和吸附剂的混合物54引入上述的至少一个位置。引入到循环流化床蒸汽发生器10的氧气与引入到循环流化床蒸汽发生器10的燃料反应,这些燃料优选是高碳含量的化石燃料,如煤炭或焦炭(petcoke)或生物质(biomass)。
氧气源140供给的氧气(O2)优选通过空气分离装置实施空气分离过程产生,其中该装置从环境空气进料流中分离出氧气(O2),在这一点上,氧气源140例如能够被建造成一种具有生产纯度至少95%的氧气(O2)能力的低温装置。根据需要,空气分离装置可被构造用于生产氮气(N2)产品141。可选择地,氧气源140可被构建为含氧传输膜的装置。
经氧气源140供给的氧气(O2)在氧气引入组件142上游通过纯氧预热器144预热,其中纯氧预热器具有与氧气源140出口导管146连通的冷端进口和与导管148连通的冷端出口,该导管148又经由歧管装置连接氧气引入组件142。通过管道24向纯氧预热器144的热端提供由回送体22排出的烟道气。
从回送体提供的烟道气流过与纯氧预热器144热端进口连通的导管150。然后烟道气进一步向流过纯氧预热器144进入循环流化床蒸汽发生器10的氧气(O2)放热。
从回送体22排出的烟道气中体积最大的两种组成成分是二氧化碳(CO2)和水蒸汽(H2O)。烟道气的这种组成来自于在氧源140提供的纯氧或接近纯氧的氧气存在下,以及在通过流化床热交换器(FBHE)36进料到循环流化床蒸汽发生器10的再循环固体存在下,在循环流化床蒸汽发生器10内煤炭进行燃烧结果。
如图1所示,终端产品和可再循环组EPRG另外还包括静电沉淀器152(其通过传统的方式可用于去除夹杂在烟道气中的选定固体)形式的颗粒去除系统,用以除去相对细小的颗粒物质。静电沉淀器152与纯氧预热器144经由导管154连通,用以接收穿过纯氧预热器144的烟道气。接着从静电沉淀器152排出的烟道气经由导管156流入气体冷却器160,在此,在烟道气进一步流向下游流到排风机162之前将一些水蒸汽(H2O)冷凝出来。气体冷却器160使烟道气在循环使用之前被冷却到尽可能低的温度,以最小化流化鼓风机的能量需求。气体冷却器160以逆向模式使烟道气与相对较冷的水接触,导致烟道气中相当大部分的水蒸汽冷凝成水,随后水与烟道气分离。
从排风机162排出的烟道气形成物流164,其主要含有二氧化碳(CO2),并被分开,以使大部分烟道气导入位置166,在此,烟道气可以被处理、使用或封存。例如,终端产品和可再循环组EPRG可以包括液体回收装置168,用于液化烟道气中的部分二氧化碳(CO2),以使液体二氧化碳产品适合于商业用途如强化油回收(EOR)。另外,氧源140(如果其被构建成能生产该产品)生成的氮气(N2)产品也能够用于强化油回收(EOR)。
被传送到位置166的相对较小的一部分烟道气作为再循环物流170最终再循环进入循环流化床蒸汽发生器10中。典型地,这部分烟道气仅仅是流过气体冷却器160的总烟道气的一小部分,对这部分烟道气的要求被作为循环流化床蒸汽发生器10内用于流化目的需求量的函数而进行选择。这种流化至少部分是通过流化鼓风机172实施的,这种流化鼓风机把该烟道气部分送入流化床换热器(FBHE)36中。
这样,终端产品和可再循环组EPRG提供了一种系统,其能够根据本发明方法进行操作来生产液体二氧化碳(CO2)终端产品和用于支持燃烧过程的可再循环烟道气。另外,在本发明方法中利用固体再循环来控制循环流化床蒸汽发生器中的燃烧温度。而且,与不使用氧气燃烧的传统循环流化床蒸汽发生器相比,氮气的产生相对减少。由于使用氧气代替空气,并且最小化了再循环烟道气,所以根据本发明能够实现循环流化床蒸汽发生器、气-热固分离器和回送热交换器的相对更紧凑的设计。
尽管已经表示出了本发明的实施方案和变化,但应该理解,本领域的技术人员仍然容易获得其修改方案(在上面已经提及了其中的一些)。因此,所附的权利要求将涵盖此处提及的修改方案和其他修改方案,它们都落入本发明的实质和范围内。
权利要求
1.一种操作循环流化床蒸汽发生器的方法,包括以下步骤向循环流化床蒸汽发生器引入基本上为纯氧的进料物流;在基本上为纯氧的进料物流存在下燃烧燃料产生含有二氧化碳和水蒸汽作为其两种体积最大的组成成分的烟道气;使烟道气穿过氧气进料物流预热器,在此把热量从烟道气传给氧气进料物流;使烟道气分成终端产品部分和循环使用部分;将烟道气的循环使用部分引入到循环流化床蒸汽发生器来有助于其中的燃烧过程。
2.权利要求1的方法,其进一步包括冷却和压缩烟道气的终端产品部分,以生成液相的二氧化碳。
3.权利要求2的方法,其中将烟道气的循环使用部分引入到循环流化床蒸汽发生器的步骤包括将烟道气的循环使用部分的至少一部分传送通过固体热交换器,以便从烟道气的循环使用部分把热量传给流经该固体热交换器的固体。
4.一种循环流化床蒸汽发生器,包括把基本上为纯氧的进料物流引入循环流化床蒸汽发生器的装置;在基本上为纯氧的进料物流存在下燃烧燃料产生含有二氧化碳和水蒸汽作为其两种体积最大的组成成分的烟道气的装置;使烟道气穿过氧气进料物流预热器从而把热量从烟道气传给氧气进料物流的装置;使烟道气分成终端产品部分和循环使用部分的装置;将烟道气的循环使用部分引入到循环流化床蒸汽发生器来有助于其中的燃烧过程的装置。
5.权利要求4的循环流化床蒸汽发生器,其进一步包括冷却和压缩烟道气终端产品部分以生产液相的二氧化碳的装置。
全文摘要
提供了一种循环流化床蒸汽发生器10和操作该循环流化床蒸汽发生器的方法,其提供了这样的灵活性,即既可以将二氧化碳(CO
文档编号F02C3/34GK1596333SQ02823519
公开日2005年3月16日 申请日期2002年10月4日 优先权日2001年11月26日
发明者D·K·安德森, G·N·利耶达尔, J·L·马里安 申请人:阿尔斯托姆科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1