微混合动力机动车辆的制作方法

文档序号:5196660阅读:130来源:国知局

专利名称::微混合动力机动车辆的制作方法
技术领域
:本发明涉及微混合动力机动车辆(micro-hybridmotorvehicle),特别是一种用于在停止-起动运转中起动微混合动力机动车辆的停止-起动系统,其中使用监测电容器退化以适应停止-起动系统。
背景技术
:众所周知,可在安装有传统内燃发动机的机动车辆内提供一个系统,当处于某种预定的状态时,该系统自动地停止机动车辆的发动机以增加燃料经济性并减少污染。这种机动车辆常常作为微混合动力机动车辆或微混合动力车辆被提及。这种微混合动力车辆有一个问题在于需要相当大的电能以重新起动内燃发动机。另外,电能还要在发动机停止时支持12V的供电系统。如果停止-起动循环的频率很高,则需要容量很大的电池以便应对传统电化学电池充电所需的相对长时间周期提供足够的能量。这种大容量电池封装起来又重又大。因此,有提议用超大容量电容器(ultracapacitor)或超级电容器(supercapacitor)取代传统电化学电池。这种装置具有充电迅速的优势。因此,即使停止-起动循环的频率很高,超级电容器通常可以被充电直至其容量基本被充满。这使得可以使用比电化学电池容量更小的超级电容器,这样超级电容器相对于电化学电池的低能量密度得以补偿。然而这种超级电容器的一个问题是由于老化效应随着时间的增长其容量会降低而内阻会增加。迄今为止,为了保证可靠的起动性能,需要(1).使用在新的时候容量比实际所需容量更大的超级电容器以便允许老化效应,该方法的缺点在于这种超级电容器比起动发动机实际所需的更重更大;或者(2).忍受起动性能随时间的劣化。
发明内容本发明的目的在于提供一种具有用于在停止-起动运转中起动发动机的系统的机动车辆,该系统监测超级电容器的老化并能对其进行补偿。根据本发明的第一个方面,采用一种具有内燃发动机和用于起动发动机的发动机起动机系统的微混合动力机动车辆,其中发动机起动机系统包括起动发动机的电力起动机、向起动机提供电能以起动发动机的电容器、向电容器提供电能以对其充电的发电机和调整起动机系统参数的控制器,其中控制器基于监测到的电容器退化可运作地调整起动机系统参数。对起动机系统参数的调整可以包括调整电容器充电达到的电压。电压可以基于起动持续时间与预测起动持续时间的比较进行调整。系统可以进一步包括测量电容器电压的电压传感器和使用测量到的电压计算预测起动持续时间的控制器。可以使用关于达到预定起动速度和电压所用时间的对照表(look-uptable)确定预测起动持续时间。系统可以进一步包括测量电容器电压的电压传感器、测量电容器温度的温度传感器和使用测量到的电压和测量到的温度计算预测起动持续时间的控制器。可以通过使用关于期望起动持续时间、温度和电压的三维对照表以确定预测起动持续时间。如果测量到的起动持续时间比期望起动持续时间长,则可以将电压提高预定量。如果测量到的起动持续时间比期望起动持续时间短,则可以将电压降低预定量。发动机起动机和发电机可以成型为集成的起动机和发电机,或单个起动发电一体机。起动发电一体机为多相装置,微混合动力机动车辆进一步包括具有与电容器相连的直流侧和与起动发电一体机相连的多相侧的逆变器,其中控制器可运作地通过调整从逆变器提供给电容器的对电容器充电的直流电压以调整起动机系统参数。对起动机系统参数的调整可以包括基于对电容器退化的估值的确定调整至少一个起动机系统参数,这种电容器退化是通过对发动机起动时最大电压降的测量得到的。对起动机系统参数的调整可以包括基于对连接电容器和起动机电机的直流电缆的电压降的确定调整至少一个起动机系统参数。对起动机系统参数的调整可以包括基于测量到的电容器电流调整至少一个起动机系统参数。对起动机系统参数的调整可以包括基于对电压曲线的损耗的确定调整至少一个起动机系统参数,该电压曲线是通过发动机起动时进行的测量生成的。对起动机系统参数的调整可以包括基于对时间常数的确定调整至少一个起动机系统参数,该时间常数是通过发动机起动时对电压进行的测量产生的。对起动机系统参数的调整可以包括基于对电容器老化的预测的确定调整至少一个起动机系统参数。对起动机系统参数的调整可以包括基于电容器电容量的估值调整至少一个起动机系统参数,该电容器电容量的估值是使用通过发动机起动时测量生成的电压斜率得到的。电容器可以是具有多个串联在一起的超级电容器的超级电容器组合。根据本发明的另一个方面,采用一种使用电容器作为电源以起动内燃发动机的控制内燃发动机起动机系统运转的方法,该方法包括在发动机起动期间监测电容器性能、以及调整一个或多个起动机系统参数以补偿电容器退化。对一个或多个起动机系统参数的调整可以包括调整提供给电容器以对其充电的电压。该方法可以进一步包括测量起动持续时间、根据一个或多个测量到的参数预测起动持续时间、对测量到的起动持续时间和预测起动持续时间进行比较、以及基于比较调整提供给电容器以对其充电的电压。该方法可以进一步包括在起动前测量电容器电压,而预测起动持续时间是基于测量到的电压的。该方法可以进一步包括在起动前测量电容器电压、在起动前测量电容器温度,而预测起动持续时间是基于测量到的电压和测量到的温度的。该方法可以进一步包括如果测量到的起动持续时间比预测起动持续时间长,则提髙提供给电容器的电压以增加其电荷。该方法可以进一步包括如果测量到的起动持续时间比预测起动持续时间短,则降低提供给电容器的电压以减少其电荷。该方法可以进一步包括根据监测到的发动机起动时的电容器性能确定电容器退化的指示、使用指示器以产生指示所需充电电压修正的变量、以及通过基于该变量调整充电电压来调整一个或多个起动机系统参数以补偿电容器退化。附图i为依照本发明一个实施例的微混合动力车辆的示意图;附图2为依照本发明另一实施例的微混合动力车辆的示意图;附图3是显示了依照本发明的方法的流程附图4是显示了几乎免受温度影响类型的超级电容器在不同初始电压下起动发动机所用时间与温度的关系的图表;附图5是显示了发动机起动时迅速增大的放电电流引起的电压降的图表;附图6是显示了发动机起动时超级电容器的开路电压和超级电容器的滤波路端电压的图表;附图7显示了初始超级电容器电压、内阻以及超级电容器开路电压与超级电容器的滤波路端电压间差值的平方对时间的积分之间的关系;附图8为显示了测量到的起动时超级电容器路端电压和超级电容器开路电压的图表,图中显示了超级电容器的开路电压在起动前后的变化;附图9显示了依照本发明的一般性方法;附图10说明了超级电容器的等效电路;附图ll说明了具有电缆和连接器电阻的超级电容器的等效电路;附图12为将起动时最高涌入电流显示为关于超级电容器电压和附加电容器电阻的函数的图表;附图13为将发动机起动达到700rpm所用时间显示为关于超级电容器电压和附加电容器电阻的函数的图表;附图14为将有效超级电容器电能显示为关于封装电压和电容量降低的函数的图表;和附图15为显示了受温度影响类型的超级电容器在不同初始电压下起动发动机所用时间与温度的关系的图表。具体实施例方式现在将参考附图对本发明的实施例进行描述。请参照附图l,其显示了微混合动力车辆2具有内燃发动机5以通过传动系统(图中来示)向微混合动力车辆2提供牵引力。起动发电一体机6通过驱动带4可驱动地连接至发动机5的曲轴(图中未示)的一端。应了解,也可以使用其它可驱动地连接起动发电一体机6与发动机5的装置,本发明并未限制为皮带驱动。此外,应了解,本发明也可适用于具有分离的起动机电机和发电机的微混合动力车辆。在这种情况下,起动发电一体机6为多相交流电装置且通过多相电缆7连接到逆变器IO。控制导线8被用来在起动发电一体机6与逆变器10之间双向传递数据,在这种情况下,它提供表明起动发电一体机转速的信号以用来计算发动机5的转速。或者,发动机转速可以使用曲轴传感器或其它传感装置直接测量。超级电容器组合12与逆变器10的直流侧相连接。在这种情况下,超级电容器组合含有10个2.7V超级电容器(双电层电容器有时被作为电池提及),因此其额定路端电压为27V。应了解,超级电容器组合中可以使用更多或更少的超级电容器,每个组成超级电容器组合的超级电容器的电压可以比2.7V更高或更低。超级电容器组合12还与直流-直流电压转换器15相连接。直流-直流转换器通过电源导线16连接到12V电源(图中未示)。12V电源包含传统的电化学电池(图中未示),且如现有技术已知的用来给安装在微混合动力车辆2上的电子装置提供能源。起动发电一体机6也可搡作地对超级电容器和电化学电池充电,但图中并未显示也未在本文中描述实现该功能的装置与电路连接。如果微混合动力车辆2数周没有运转,超级电容器组合12中的电荷泄漏至低于成功起动所需的预定水准,则直流-直流转换器也被用来从12V电源对超级电容器组合12充电。直流-直流转换器提供了高于"V的电压以实现这种充电功能。或者,也可使用与12V电源连接的传统起动机。图中没有显示该功能,文中也没有描述。超级电容器控制器20通过控制线21可操作地与逆变器10相连接以控制逆变器10与超级电容器组合12之间的电流。超级电容器控制器20连续地通过电压传感器线22从超级电容器组合12接收表明超级电容器组合12路端电压的信号,通过控制线21接收表明发动机转速的信号。应了解,超级电容器控制器20可以成型为逆变器10或另一电子控制器例如动力传输控制器的一部分,本发明并未限制为使用独立的超级电容器控制器。超级电容器控制器20被编程用来监测超级电容器老化导致的退化以及基于对退化的评价调整一个或多个起动机系统参数。也就是说,超级电容器控制器20确定了超级电容器组合12的正常状态,并调整逆变器10的运转以维持稳定的起动性能。本发明所考虑的系统参数为超级电容器电压的电压限制。这些电压限制将超级电容器组合的使用限定在安全运转区域内。电容器电压水准可以在该安全运转区域内由电源逆变器的运转模式和/或直流-直流转换器的运转模式自由调整。为简化本发明的描述,超级电容器被简化为电阻-电容模型(参见附图IO),其中R"ap和C,分别代表了电阻值和电容值。如附图ll所说明,该模型还可以包含用R,s表明的电缆电阻。同样地,本发明也可用于监测电缆和连接器电阻值。这样可以用增大的电阻和/或降低的电容来描述超级电容器的退化。众所周知,超级电容器的电阻值和电容值也会随着温度的变化而变化,但是二维图可以如下文所示轻易地对该效应作出补偿。超级电容器组合的电压水准和其电容值与电阻值影响整个系统的行为。例如,附图12说明在发动机起动时最高涌入电流取决于电压和电阻值。为了保护超级电容器和/或其它系统部件如电源逆变器,必须在一定的电流限制以下运转。同样,依照其增大的电阻值,系统参数指定了超级电容器组合的电压上限。附图13呈现了另一个例子。对于发动机起动,起动时间是关于电阻和电压水准的函数。依照这种关系,可以调整其他系统参数以确保适当的起动性能。附图14说明了有效电能是关于电压与电容量退化的函数。系统参数可以考虑到这一点,以使例如指定的电能储备量是可以利用的。这些例子表明需要依照超级电容器的退化对一个或多个系统参数进行调整。下文显示了测量所提及的退化的方法以及据此调整系统参数的方式。在附图l所示的实施例中,超级电容器组合12包括10个每个电压为2.7V的免受温度影响的超级电容器,这些超级电容器串联在一起以提供27V的额定输出电压。免受温度影响的超级电容器指其中电容和电阻的电学特性在微混合动力车辆2的正常温度运作范围内(在本实施例中为零下25摄氏度至零上25摄氏度及更高)实质上不变。附图4显示了具有不同的初始电压和温度的免受温度影响的超级电容器组合的发动机起动时间的增加,分别为图表16V、20V和2W。其显示的结果是对于GAESI公司(GeneralAtomicsElectronicSystemsInc.)生产的MaxwellBoostcap类型的装置,初始路端电压各自分别为16V、20V和2W。从附图4中可以看出,所有这三种初始电压下的起动时间在整个所需的温度范围内基本上不变,起动时间与电压相关。因此,在新条件下,通过使用储存在超级电容器控制器20的存储器中的对照表,可以通过测量超级电容器组合12的输出路端的电压来预测用来达到预定起动速度的时间。因此超级电容器控制器20可运作以使用通过电压传感器线22提供的电压来确定预测起动时间,并将其与实际测量到的时间比较,其中在开始起动时打开内部计时器,完成起动时中止内部计时器,然后读取内部计时器的值以测量实际时间。如果比较表明测量到的时间比预测时间长,则表明了超级电容器组合12的性能损耗(或老化),为了补偿该性能损耗,超级电容器控制器20可运作以提高下次充电时逆变器10提供给超级电容器组合12的电压以便补偿该性能损耗。如果因为任何原因,测量到的时间比预测时间短,这表明了超级电容器组合12的过度充电,为了对其进行补偿,超级电容器控制器20可运作以降低下次充电时逆变器10提供给超级电容器组合12的电压。可以对数次起动进行测量与比较和在逆变器提供的电压改变前取平均值。应了解,充电电压的提高可以与充电电压的预定降低不一样。在使用微混合动力车辆2时,起动发电一体机6被用来对超级电容器组合12充电。当发动机5要被重启时,逆变器10可运作以将超级电容器组合12提供的直流电转变为多相交流电以便将起动发电一体机6作为电机运转以起动发动机5直至达到起动发动机所需的起动速度。这种使用免受温度影响的超级电容器的系统的优点在于只需要二维对照表或线性关系以确定预测起动时间。由于任何超级电容器组合性能损耗通过提高充电电压被补偿,不需要使用根据寿命终期性能选择的超级电容器组合,因此可以使用较小较轻的超级电容器组合。参考附图3,图中显示了补偿超级电容器老化的方法,该方法为附图l所示的超级电容器控制器20的内置可执行指令类型。该方法开始于步骤IOO,其典型地为微混合动力车辆2的触发事件。在步骤110处,从电源逆变器的非易失性存储器中读取用来补偿退化的电压偏移在步骤120处,超级电容器组合12的路端电压被连续地监测并作为变量V^反复存储在存储器装置中。当发动机开始起动时计时器开始运转,构成步骤1"的子步骤,该计时器一直运转至起动过程结東(也就是说直到起动发电一体机6的供能终止)。在步骤130处,测量到的达到预定速度所用时间作为变量T^存储在存储器装置中。然后,在步骤140处,对应于起动开始时测量到的电压V^减去电压偏移量V。^"得到的电压,使用电压与时间的对照表或线性图来确定期望起动持续时间T。w。在步骤155处,比较测量时间乙as先前的存储值与预测或期望起动持续时间T^。如果乙as比T吣长,则表明起动性能有所降低,因此该方法进入步骤l56,但如果T^s比T^短,则表明起动性能比期望高,该方法进入步骤157。在步骤156处,电压偏移量V。m。t向上调整预定量V^p,该预定量可以大约为10mV。或者,在步骤157处,电压偏移量V。r一向下调整预定量V^p,该预定量可以与步骤156中所使用的一样,或者可以是不同的量。然后在步骤156或157之后,该方法进入步骤180,其中新的电压偏移量V。f^存储在存储器中。然后该方法进入步骤190,其中读取最近更新的电压偏移量V。f^以在下一步计算循环中使用,并用于在步骤200中通过使用方程V。h,=V自+V。frset,计算超级电容器组合12下一次充电时逆变器10使用的充电电压V。hw。。其中,V,为超级电容器组合在新的时候的额定充电电压,V。f^为由步骤120至157的方法所确定的修正系数。因此,如果起动持续时间比通过测量到的电压所预测到的时间长,则超级电容器组合12充电时逆变器10使用的电压会增加V一值。超级电容器组合12在首次使用时,V。rr,可以为首次迭代预置为零。本方法的一个优势在于如果超级电容器组合12和起动发电一体机6间的一个能量连接或逆变器10的传输效率发生了退化,则变量V。fM会自动对其进行补偿。现在参考附招2,图中显示了机动车辆2,其在大部分方面与前文参考附图l、附图3描述的相同,重要的区别仅在于超级电容器组合12使用了关于温度可变的超级电容器,也就是说,它们对温度敏感。附图15显示了温度敏感超级电容器在初始电压为16V、20V和24V时,25摄氏度到零下25摄氏度之间的温度效应。可以看出,起动时间随着温度的降低而增加。为了克服这些温度效应,附图2所示的微混合动力车辆2包含内置于超级电容器组合12的温度传感器,该超级电容器组合12通过温度传感器线23或任何其它获取超级电容器温度信息(例如超级电容器的温度模型)的装置与超级电容器控制器20连接。本系统的运转与前文所述很相似,但是在本例中,当需要计算期望起动持续时间时,需要使用关于起动持续时间对于电压、温度的二维对照表来确定电压v-(VISC-V。rrsst)。在所有其他方面,超级电容器控制器20使用以调整充电电压V。h,的系统与方法与前文所述相同。尽管本发明到目前为止描述了两种实施例均使用了起动持续时间,应了解也可以使用如下面表l所总结的其它补偿电容器退化或老化的方法。<table>tableseeoriginaldocumentpage11</column></row><table><table>complextableseeoriginaldocumentpage12</column></row><table>表l最大电压降超级电容器(参见附图IO)的电阻或电源逆变器IO(参见附图ll;在该例中IU^包含直流电缆的电阻以及连接器电阻)的直流侧的电阻可以通过起动时的电压降进行估算。这种电压降可以在超级电容器端子(涉及附图IO)处或在电源逆变器端子(涉及附图ll)处测量。电阻Rdc使用该公式计算Rdc=Ud/(U0-Ud)*Rac,其中如附图5所表明,Ud为起动开始时的电压降,UO为初始电容器组合电压,而Rac为电源逆变器交流侧电阻(包括起动发电一体机、三相交流电缆7、任何连接器和电源逆变器10的电阻,在附图10的情况中还包括直流电缆的电阻)。如果Rdc包含电缆和连接器的电阻(依照附图ll),则超级电容器电阻Rscap(依照附图IO)由Rdc减去电缆和连接器电阻得到。控制器20可以使用Rdc的变化以调整逆变器10提供给超级电容器组合12对其充电的电压,从而补偿超级电容器组合12的老化效应。也就是说可以使用类似于附图3所示的方法。同样地,步骤110替换为"读取R-stored";步骤140和150替换为"计算超级电容器电阻Rdc";步骤155替换为"Rdc>R_stored";步骤157替换为"R—stored向下调整R-step";步骤156替换为"R—stored向上调整R—step";步骤18G替换为"存储更新的R-stored";步骤190替换为"读取R—stored"。系统参数基于R—stored进行调整,例如依照附图12、13或14)。R-Stored的初始值应当为新部件的期望电阻值。另一方面,可以直接使用步骤140处估算的电阻值Rdc以改变系统参数(例如在附图12、13或14中那样),或是可以使用低通滤波的Rdc值。应当说,附图13中的图与起动持续时间和初始超级电容器电压可以被用来测量增大的电阻值。同样,该值可以用于类似的算法。直流电缆上的电压降该方法通过直流电缆上的电压降估算了直流电流。起动发动机所需的高电流会导致可测量的电压降。该方法计算了测量轨迹而非单独的电压降。这种方法增强了稳健性。电流可以通过以下公式确定I=(U一PI-Uscap)/Rcab其中,I=电流,U—PI为电源逆变器侧的超级电容器电压,Uscap为感测到的超级电容器电压或直流超级电容器电压,Rcab为电缆电阻。计算的电流I可以与测量到的超级电容器电压U—起估算超级电容器组合12的内阻。电阻R简单地以公式IHU/I计算。另一方法为直接根据分流器或霍尔传感器测量电流。如上文,超级电容器控制器20能基于估算的超级电容器电阻的任何变动调整充电电压以补偿超级电容器老化。如上文所解释,估算的电阻值可以被使用。电压曲线损耗附图6说明了对应于内部电容器损耗的区域"A"。虛线Viscap对应于超级电容器组合12的内部状态,实线为测量到的滤波路端电压,例如通过传感器线22提供给控制器20的那样。Viscap可以通过例如所描述的"估算RC时间常数"方法所估算(参见下文;nscap等于Vi)。将虛线与实线之间的电压差值的平方对时间积分,该值等于损耗与内阻的乘积,单位为[V"s]或[JOhm]。附图7显示了初始电容器电压、电源逆变器10直流侧的电阻和对时间的电压平'方的关系,通过该关系可以获得超级电容器组合12的电阻值的估值。如上文,可以基于估算的超级电容器电阻的任何变动调整充电电压以补偿超级电容器老化。初始电压只对区域"A"有限制效应,因为更长的起动持续时间补偿了在更低电压下的降低的起动电流。估算的电阻值可以如上文所解释地使用。估算RC时间常数没有关于电流的进一步信息无法通过电压测量对电阻和电容进行估算。但是,可以估算超级电容器组合的时问常数,即电容与电阻的乘积。附图8显示了发动机起动时的路端电压和内部电容器电压。内部电容器电压可以由微分方程描述dU一i/dt=1/R/C*(U—terminal-U—i)。其中U-i为电容器的内压或开路电压,U-terminal为在电容器的端子处测量到的电压,R为电容器内阻,C为电容器的电容量。如果电容器电流在一个起动事件(或任何其它任意充电或放电事件)的开始和结東时为零,则初始、静止电压可以作为内部电容器电压的边界条件。从而可以使用乘积RC。本方法的优点在于它是对超级电容器行为的纯电学计算,不受机械变动的影响,它提供了内部电容器电压的估算器(可用于电压曲线损耗方法),并可与另外的电阻或电容估算器共同使用。本方法的缺点在于它不能区分电阻的增加或电容的下降,因为这些效应混合在一起,寿命里只有很小的改变,且起动事件的开始与结東时电容器电流必须为零。然而,时间常数RC可以如上文被超级电容器控制器20使用以基于RC的任何改变而调整充电电压以补偿超级电容器老化。如果,例如RC增大,则充电电压也可线性或依照一些存储于对照表的非线性关系增大成比例的量。本方法可以与一种其它方法结合使用。如果该其它方法提供了R的指示,而本方法提供了RC的乘积,则可以计算出C-RC/R。如果其他方法提供了C的指示,而本方法提供了RC的乘积,则可以计算出R-RC/C。老化模型在"《Temperaturebehaviorandimpedancefundamentalsofsupercapacitors》,JournalofPowerSources154(2006)pp.550-555"(《超级电容器的温度行为和阻抗》,发表于《电源杂志》2006年第154巻的第550-555页)一文中描述了超级电容器的老化。电压水准与电池温度一起确定了退化速度。实际上,电容量的降低和电阻的增大符合阿雷尼厄斯定律(Arrheniuslaw)。因此,测量到的电容器电压和温度可被用来直接估算装置的退化。缺点在于需要电源逆变器的弱化以便在断开时可靠预测电容器退化,还需要持续测量电容器电压和温度。然而,通过将这种方程编程入超级电容器控制器20,可以估算超级电容器组合12的退化。可依照预测的电阻值与电容值调整起动机系统的系统参数(例如依照附图12、13和14),从而补偿超级电容器组合12的老化或退化。电容量估算超级电容器组合12的电容值可以在充电或放电阶段被估算出。根据电流i关于时间t的积分和分别为V—l和V-2的充电或放电阶段前后的电压,可以计算出超级电容器的容量。电容量为C=integral(i*dt)/(V_2-V_l)。如果容量下降了,则需要增大电压以保持储存的能量(参见附图14)。附图9显示了依照本发明调整起动机系统的参数以补偿电容器退化/老化的一般性方法。该方法从步骤500开始,其为触发事件,然后进入步骤510,其中使用上述方法中的一种获取电容器退化的指示。然后该方法进入步骤520,在该步骤这个指示通过计算或使用对照表被转化为补偿退化所需的电压修正,然后在步骤530处该电压修正在本例中被用于逆变器10的电压输出,以将超级电容器组合12充电至比上一个充电循环略高的电压,以便补偿超级电容器组合性能的损耗。应了解,充电电压不一定在每次发动机起动后都增加,而只需在性能损耗达到预定程度时进行。因此,总体上而言,许多确定超级电容器组合正常状态的方法都是可行的,所有这些方法都可以被用来提供超级电容器组合的退化或老化的指示,并通过提高/降低超级电容器组合被逆变器10充电达到的电压对退化或老化进行补偿。尽管到目前为止已经通过例子及实施例描述了本发明,其中通过调整起动机系统的超级电容器充电电压形式的参数对超级电容器组合的退化进行补偿,应了解,起动机系统的其它参数也可以被调整,或者调整起动机系统参数包括基于由例如分流器或霍尔传感器测量到的电容器电流调整至少一个起动机系统参数。为了使起动发电一体机正确运行及确保停止/起动时最小/最大允许电压水准的可靠估算,必须达到以下一个或多个条件。1.需要触发信号以在起动发电一体机转子实际激发前提示起动;2.起动开始时24V侧的DCDC电流应当足够低,以至其对应的电压降不会干扰测量(至少在大部分重启中);3.起动开始时可以立刻停止DCDC转换器;4.只有当发动机温度足够高以至发动机摩擦力达到所期望时,以及电容器组合温度为假设免受温度影响类型可行的温度或为可根据图进行补偿的温度时,才期望发动机的自动重启;5.理想地,起动时应当没有皮带滑动,或有皮带滑动的起动可以被忽略;和6.车辆离合器在起动时应当iooy。压紧(脱离),或起动可以被忽略。本领域的技术人员应了解,尽管本发明已通过结合一个或多个实施例来描述,但并非限制于公开的实施例,本发明的实施例或变形例可以做多种变化而在不背离本发明范围。例如,本发明并非限制于文中公开的电压水准,其它的电压水准可以被使用而不脱离本发明的范围。权利要求1.一种微混合动力机动车辆,具有内燃发动机和起动发动机的发动机起动机系统,其中发动机起动机系统包括用于起动发动机的电力起动机、用于向起动机提供电能以起动发动机的电容器、用于向电容器提供电能以对电容器充电的发电机、和用于调整起动机系统参数的控制器,其中控制器可运转地基于监测到的电容器退化调整起动机系统参数。2.根据权利要求l所述的微混合动力机动车辆,其特征在于,调整起动机系统参数包括调整电容器充电所达到的电压。3.根据权利要求2所述的微混合动力机动车辆,其特征在于,基于起动持续时间与预测起动持续时间的比较调整电压。4.根据权利要求3所述的微混合动力机动车辆,.其特征在于,系统进一步包括用来测量电容器电压的电压传感器及使用测量到的电压来计算预测起动持续时间的控制器。5.根据权利要求4所述的微混合动力机动车辆,其特征在于,使用与达到预定起动速度和电压的时间相关的对照表来确定预测起动持续时间。6.根据权利要求3所述的微混合动力机动车辆,其特征在于,系统进一步包括用来测量电容器电压的电压传感器、用来测量电容器温度的温度传感器及使用测量到的电压和测量到的温度计算预测起动持续时间的控制器。7.根据权利要求6所述的微混合动力机动车辆,其特征在于,使用相关于期望起动持续时间、温度和电压的三维对照表以确定所述预测起动持续时间。8.根据权利要求3至7中任一项所述的微混合动力机动车辆,其特征在于,如果测量到的起动持续时间比期望起动持续时间长,则将电压提高预定量。9.根据权利要求3至8中任一项所述的微混合动力机动车辆,其特征在于,如果测量到的起动持续时间比期望起动持续时间短,则将电压降低预定量。10.根据权利要求1至9中任一项所述的微混合动力机动车辆,其特征在于,发动机起动机和发电机成型为单个起动发电一体机。11.根据权利要求10所述的微混合动力机动车辆,其特征在于,所述起动发电一体机为多相装置,微混合动力机动车辆进一步包括具有与电容器连接的直流恻和与起动发电一体机连接的多相侧的逆变器,其中控制器可运转地通过调整逆变器提供给电容器以对其充电的直流电压以调整起动机系统参数。12.根据权利要求1或权利要求2所述的微混合动力机动车辆,其特征在于,调整起动机系统参数包括,基于对从发动机起动时最大电压降的测量中获得的电容器退化估值的确定调整至少一个起动机系统参数。13.根据权利要求1或权利要求2所述的微混合动力机动车辆,其特征在于,调整起动机系统参数包括,基于对连接电容器与起动机电机的直流电缆上的电压降的确定调整至少一个起动机系统参数。14.根据权利要求1或权利要求2所述的微混合动力机动车辆,其特征在于,调整起动机系统参数包括,基于测量到的电容器电流调整至少一个起动机系统参数。15.根据权利要求1或权利要求2所述的微混合动力机动车辆,其特征在于,调整起动机系统参数包括,基于对起动发动机时测量得到的电压曲线的损耗的确定调整至少一个起动机系统参数。16.根据权利要求1或权利要求2所述的微混合动力机动车辆,其特征在于,调整起动机系统参数包括,基于对起动发动机时测量电压得到的时间常数的确定调整至少一个起动机系统参数。17.根据权利要求1或权利要求2所述的微混合动力机动车辆,其特征在于,调整起动机系统参数包括,基于对电容器老化预测的确定调整至少一个起动机系统参数。18.根据权利要求1或权利要求2所述的微混合动力机动车辆,其特征在于,调整起动机系统参数包括,基于使用起动发动机时测量得到的电压斜率获得的电容器电容量的估值调整至少一个起动机系统参数。19.根据权利要求1至18中任一项所述的微混合动力机动车辆,其特征在于,所述电容器为具有多个串联连接的超级电容器的超级电容器组合。20.—种使用电容器作为起动内燃发动机的电源的控制内燃发动机起动机系统运转的方法,该方法包括在发动机起动期间监测电容器性能和调整一个或多个起动机系统参数以补偿电容器退化。21.根据权利要求20所述的方法,其特征在于,调整一个或多个起动机系统参数包括调整提供给电容器以对其充电的电压。22.根据权利要求21所述的方法,其特征在于,所述方法进一步包括测量起动持续时间、根据测量到的一个或多个参数预测起动持续时间、比较测量到的起动持续时间和预测起动持续时间、以及基于比较调整提供给电容器以对其充电的电压。23.根据权利要求22所述的方法,其特征在于,所述方法进一步包括在起动前测量电容器电压,而所述预测起动持续时间是基于所测量到的电压的。24.根据权利要求22所述的方法,其特征在于,所述方法进一步包括在起动前测量电容器电压,在起动前测量电容器温度,而所述预测起动持续时间是基于所测量到的电压和测量到的温度的。25.根据权利要求22至24中任一项所述的方法,其特征在于,所述方法进一步包括如果测量到的起动持续时间比预测起动持续时间长,则提高提供给电容器的电压以增加其电荷。26.根据权利要求22至25中任一项所述的方法,其特征在于,所述方法进一步包括如果测量到的起动持续时间比预测起动持续时间短,则降低提供给电容器的电压以减少其电荷。27.根据权利要求20所述的方法,其特征在于,所述方法包括根据在发动机起动时监测到的电容器性能确定电容器退化的指示,使用指示器生成指示所需充电电压修正的变量,并通过基于所述变量调整充电电压以调整一个或多个起动机系统参数以便补偿电容器退化。28.—种基本上如本文所描述并参考相关附图的微混合动力机动车辆。29.—种基本上如本文所描述并参考相关附图的控制内燃发动机起动机系统运转的方法。全文摘要本发明公开了一种具有由电力起动机(6)起动的发动机(5)的微混合动力机动车辆(2),具有可适应地响应电源(例如用于给起动机电机(6)供电的电容器(12))的老化以维持发动机起动性能的起动机系统。起动机系统包含控制器(20),其在确定电容器(12)的正常状态退化时被编程以增加给电容器(12)充电的电压。文档编号F02N99/00GK101348071SQ200810134108公开日2009年1月21日申请日期2008年7月18日优先权日2007年7月19日发明者伯恩哈德·科斯查克,艾伦·沃克,博高申请人:福特环球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1