用于齿轮传动架构的燃气涡轮发动机的柔性支撑结构的制作方法

文档序号:5151712阅读:200来源:国知局
用于齿轮传动架构的燃气涡轮发动机的柔性支撑结构的制作方法
【专利摘要】一种燃气涡轮发动机包括用于风扇驱动齿轮系统的由侧向和横向刚度关系限定的挠曲支架。由于它们的紧凑设计和高效的高齿轮减速能力,具有行星或星型齿轮系的行星齿轮箱可用于燃气涡轮发动机中。行星和星型齿轮系通常包括三个齿轮系元件:中心恒星齿轮、具有内齿轮齿的外部环齿轮以及由行星齿轮架支撑的多个行星齿轮,行星齿轮架在恒星齿轮和环齿轮之间并且与恒星齿轮和环齿轮二者啮合。
【专利说明】用于齿轮传动架构的燃气涡轮发动机的柔性支撑结构
[0001]相关申请的交叉引用
本公开是2012年I月3日提交的美国专利申请N0.13/342, 508的部分继续申请,该美国专利申请要求2011年I月8日提交的美国临时专利申请N0.61/494453的优先权。
【技术领域】
[0002]本公开涉及燃气涡轮发动机,并且更具体地涉及用于齿轮传动架构的燃气涡轮发动机的柔性支撑结构。
【背景技术】
[0003]由于它们的紧凑设计和高效的高齿轮减速能力,具有行星或星型齿轮系的行星齿轮箱可用于燃气涡轮发动机中。行星和星型齿轮系通常包括三个齿轮系元件:中心恒星齿轮、具有内齿轮齿的外部环齿轮以及由行星齿轮架支撑的多个行星齿轮,行星齿轮架在恒星齿轮和环齿轮之间并且与恒星齿轮和环齿轮二者啮合。齿轮系元件共享公共的纵向中心轴线,至少两个绕该中心轴线旋转。行星齿轮系的优点在于旋转输入能够被连接到三个元件中的任一个。然后,另外两个元件中的一个相对于另两个保持静止,以允许第三个元件充当输出件。
[0004]在燃气涡轮发动机应用中,当需要减速传动装置时,中心恒星齿轮通常从动力装置接收旋转输入,外部环齿轮通常保持静止,并且行星齿轮架沿着与恒星齿轮相同的方向旋转以便以减小的旋转速度提供扭矩输出。在星型齿轮系中,行星齿轮架保持静止并且环齿轮沿着与恒星齿轮相反的方向驱动输出轴。
[0005]在飞行期间,轻质的结构性外壳在空气动力学和操纵负载的作用下偏斜,从而导致显著量的横向偏斜,这通常称为发动机的脊骨弯曲。该偏斜可导致单独的恒星或行星齿轮的旋转轴线丧失与中心轴线的平行性。该偏斜可导致齿轮系轴颈轴承处的以及齿轮齿啮合处的不对准,这可导致源自于不对准的效率损失以及源自于集中应力增大的潜在寿命降低。

【发明内容】

[0006]根据本公开一个示例性实施例的燃气涡轮发动机包括风扇轴和框架,所述框架支撑所述风扇轴。所述框架限定框架侧向刚度和框架横向刚度。齿轮系统驱动所述风扇轴。柔性支撑件至少部分地支撑所述齿轮系统。所述柔性支撑件限定相对于所述框架侧向刚度的柔性支撑件侧向刚度和相对于所述框架横向刚度的柔性支撑件横向刚度。至所述齿轮系统的输入联接器限定相对于所述框架侧向刚度的输入联接器侧向刚度和相对于所述框架横向刚度的输入联接器横向刚度。
[0007]在一个进一步的非限制性实施例中,所述柔性支撑件侧向刚度小于所述框架侧向刚度。
[0008]在前述示例中任一项的进一步非限制性实施例中,所述柔性支撑件横向刚度小于所述框架横向刚度。
[0009]在前述示例中任一项的进一步非限制性实施例中,所述柔性支撑件侧向刚度小于所述框架侧向刚度,并且所述柔性支撑件横向刚度小于所述框架横向刚度。
[0010]在前述示例中任一项的进一步非限制性实施例中,所述齿轮系统包括齿轮啮合,所述齿轮啮合限定齿轮啮合侧向刚度和齿轮啮合横向刚度。
[0011]根据本公开一个示例性实施例的燃气涡轮发动机包括风扇轴和框架,所述框架支撑所述风扇轴。齿轮系统驱动所述风扇轴。所述齿轮系统包括齿轮啮合,所述齿轮啮合限定齿轮啮合侧向刚度和齿轮啮合横向刚度。柔性支撑件至少部分地支撑所述齿轮系统。所述柔性支撑件限定相对于所述齿轮啮合侧向刚度的柔性支撑件侧向刚度和相对于所述齿轮啮合横向刚度的柔性支撑件横向刚度。至所述齿轮系统的输入联接器限定相对于所述齿轮哨合侧向刚度的输入联接器侧向刚度和相对于所述齿轮哨合横向刚度的输入联接器横向刚度。
[0012]在前述示例中任一项的进一步非限制性实施例中,所述柔性支撑件侧向刚度小于所述齿轮啮合侧向刚度。
[0013]在前述示例中任一项的进一步非限制性实施例中,所述柔性支撑件横向刚度小于所述齿轮啮合横向刚度。
[0014]在前述示例中任一项的进一步非限制性实施例中,所述柔性支撑件侧向刚度小于所述齿轮啮合侧向刚度,并且所述柔性支撑件横向刚度小于所述齿轮啮合横向刚度。
[0015]在前述示例中任一项的进一步非限制性实施例中,所述框架限定框架侧向刚度和框架横向刚度。
【专利附图】

【附图说明】
[0016]本领域技术人员将从所公开的非限制性实施例的以下详细描述明白各种特征。详细描述的附图可简要介绍如下:
图1是燃气涡轮发动机的示意性剖面图;
图2是燃气涡轮发动机的一部分的放大剖面图,其示出了风扇驱动齿轮系统(FDGS); 图3是FDGS的一个非限制性实施例的挠曲支架布置的示意图;
图4是FDGS的另一个非限制性实施例的挠曲支架布置的示意图;
图5是星型系统FDGS的另一个非限制性实施例的挠曲支架布置的示意图;并且 图6是行星系统FDGS的另一个非限制性实施例的挠曲支架布置的示意图;
图7是星型系统FDGS的另一个非限制性实施例的挠曲支架布置的示意图;并且 图8是行星系统FDGS的另一个非限制性实施例的挠曲支架布置的示意图。
【具体实施方式】
[0017]图1示意性地示出了燃气涡轮发动机20。本文所公开的燃气涡轮发动机20是双轴筒涡轮风扇喷气发动机,其大体包括风扇区段22、压缩机区段24、燃烧器区段26和涡轮区段28。替代的发动机可包括推力增强器区段(未示出)以及其他系统或特征。风扇区段22沿着旁通流路驱动空气,而压缩机区段24沿着核心流路驱动空气以便压缩和传输到燃烧器区段26中,然后膨胀通过涡轮区段28。尽管在所公开的非限制性实施例中被示作为涡轮风扇燃气涡轮发动机,但应当理解的是本文所描述的概念并不限于与涡轮风扇喷气发动机一起使用,因为这些教导可适用于其他类型的涡轮发动机,例如三轴筒架构的燃气涡轮发动机以及开式转子(未经管道导引的风扇)发动机。
[0018]发动机20大体包括低速轴筒(spool)30和高速轴筒32,低速轴筒30和高速轴筒32安装成经由若干个轴承系统38A-38C相对于发动机静止结构36绕发动机中心纵轴线A旋转。应当理解的是,可以替代地或者额外地提供各种位置处的各种轴承系统38。
[0019]低速轴筒30大体包括内轴40,内轴40与风扇42、低压压缩机44和低压涡轮46互相连接。内轴40通过齿轮传动架构48连接到风扇42以便以低于低速轴筒30的速度驱动风扇42。高速轴筒32包括外轴50,外轴50与高压压缩机52和高压涡轮54互相连接。燃烧器56布置在高压压缩机52和高压涡轮54之间。内轴40和外轴50是同心的并且绕发动机中心纵轴线A旋转,发动机中心纵轴线A与它们的纵轴线共线。
[0020]核心空气流被低压压缩机44压缩,然后被高压压缩机52压缩,在燃烧器56中与燃料混合并燃烧,然后在高压涡轮54和低压涡轮46上膨胀。涡轮46、54分别响应于从其经过的空气流的膨胀而旋转地驱动低速轴筒30和高速轴筒32。
[0021]参照图2,齿轮传动架构48大体包括的风扇驱动齿轮系统(FDGS) 60,其由低速轴筒30 (示意性示出)通过输入联接器62驱动。输入联接器62将扭矩从低速轴筒30传递到齿轮传动架构48并且有助于它们之间的振动和其他瞬变的隔离。在所公开的非限制性实施例中,FDGS 60可包括行星齿轮系统,该行星齿轮系统可以例如是星型系统或者行星系统。
[0022]输入联接器62可包括接口花键64,接口花键64凭借齿轮花键66连接到FDGS 60的恒星齿轮68。恒星齿轮68与多个行星齿轮70啮合,所示出的行星齿轮70是该多个行星齿轮70的代表。每个行星齿轮70通过各自的行星轴颈轴承75可旋转地安装在行星齿轮架72中。恒星齿轮68的旋转运动促使每个行星齿轮70绕各自的纵轴线P旋转。
[0023]每个行星齿轮70还与旋转的环齿轮74啮合,环齿轮74机械地连接到风扇轴76。由于行星齿轮70与旋转的环齿轮74以及旋转的恒星齿轮68 二者啮合,行星齿轮70绕它们自身的轴线旋转以驱动环齿轮74绕发动机轴线A旋转。环齿轮74的旋转通过风扇轴76被传递到风扇42(图1),由此以低于低速轴筒30的速度驱动风扇42。应当理解的是,所描述的齿轮传动架构48是不过是一个非限制性实施例并且各种其他的齿轮传动架构将会替代地从其受益。
[0024]参照图3,柔性支撑件78支撑行星齿轮架72以相对于静止结构36 (例如前部中心主体)至少部分地支撑FDGS 60A,这有助于它们之间的振动和其他瞬变的隔离。应当理解的是,各种燃气涡轮发动机外壳结构可以替代地或者额外地提供静止结构和柔性支撑件78。应当理解的是,本文所使用的术语“侧向”指的是相对于旋转轴线A的垂直方向,并且术语“横向”指的是相对于旋转轴线A的枢转弯曲移动,从而吸收偏斜,所述偏斜否则可被施加到FDGS 60。静止结构36还可包括编号I和1.5轴承支撑静止结构82,其通常被称为“K框架”,其支撑编号I和编号1.5轴承系统38A、38B。特别地,K框架轴承支撑件限定了侧向刚度(在图3中由Kframe表示)和横向刚度(在图3中由KframeBEND表示),作为该非限制性实施例的参考因素。
[0025]在所公开的该非限制性实施例中,柔性支撑件78和输入联接器62的侧向刚度(KFS ;KIC)各自小于侧向刚度(Kframe)的约11%。也就是说,整个FDGS 60的侧向刚度由该侧向刚度关系控制。替代地,或者除了该关系之外,柔性支撑件78和输入联接器62的横向刚度各自小于横向刚度(KframeBEND)的约11%。也就是说,整个FDGS 60的横向刚度由该横向刚度关系控制。
[0026]参照图4,另一个非限制性实施例FDGS 60B包括柔性支撑件78’,其支撑旋转地固定的环齿轮74’。在示意性示出的行星系统中,风扇轴76’被行星齿轮架72’驱动,其否则通常遵循图3的星型系统架构。
[0027]参照图5,示意性示出了(用于星型系统架构的)FDGS 60C自身内的侧向刚度关系。输入联接器62的侧向刚度(KIC)、柔性支撑件78的侧向刚度(KFS)、环齿轮74的侧向刚度(KRG)和行星轴颈轴承75的侧向刚度(KJB)被相对于FDGS 60内的齿轮啮合的侧向刚度(KGM)控制。
[0028]在所公开的非限制性实施例中,刚度(KGM)可以由恒星齿轮68和多个行星齿轮70之间的齿轮啮合来限定。FDGS 60内的侧向刚度(KGM)是参考因素,并且静止结构82’刚性地支撑风扇轴76。也就是说,风扇轴76被支撑在轴承系统38A、38B上,轴承系统38A、38B被静止结构82’基本刚性地支撑。侧向刚度(KJB)可以在机械上由例如行星轴颈轴承75内的刚度限定,并且环齿轮74的侧向刚度(KRG)可以在机械上由例如环齿轮翼74L、74R (图2)的几何结构限定。
[0029]在所公开的非限制性实施例中,环齿轮74的侧向刚度(KRG)小于齿轮啮合的侧向刚度(KGM)的约12%,柔性支撑件78的侧向刚度(KFS)小于齿轮啮合的侧向刚度(KGM)的约8%,行星轴颈轴承75的侧向刚度(KJB)小于或等于齿轮啮合的侧向刚度(KGM),并且输入联接器62的侧向刚度(KIC)小于齿轮啮合的侧向刚度(KGM)的约5%。
[0030]参照图6,对于行星齿轮系统架构,示意性示出了 FDGS 60D自身内的刚度关系的另一个非限制性实施例,其否则大致遵循图5的星型系统架构。
[0031]应当理解的是,也可以采用上述侧向刚度关系的组合。相比相对难以确定的膜刚度和花键刚度,每个结构性部件的侧向刚度是易于测量的。
[0032]通过挠曲支架以适应轴在设计负载下的不对准,FDGS设计负载被减小达超过17%,这减小了发动机的总体重量。挠曲支架促进了对准,从而增加了系统寿命和可靠性。柔性支撑件和输入联接器中的侧向柔性允许FDGS在操纵期间基本随风扇轴“漂浮”。这允许:Ca)风扇轴、输入联接器和柔性支撑件中的扭矩传递在操纵期间保持恒定;(b)主要通过编号I和1.5轴承支撑K框架来对风扇轴中的由于操纵而引起的侧向负载(其否则可能会使齿轮不对准并且损坏齿)作出反应;以及(c)柔性支撑件和输入联接器二者将少量的侧向负载传递到FDGS中。花键、齿轮齿刚度、轴颈轴承和环齿轮带状结构被特别地设计成使操纵期间的齿轮齿应力变化最小化。到FDGS的另一连接是柔性支架(涡轮联接器、外壳屈曲支架)。已经通过分析确定了这些支架弹簧刚度并且在装配和飞行测试中验证了这些支架弹簧刚度,以将齿轮与发动机操纵负载隔离。另外,还可以控制行星轴颈轴承弹簧刚度以支持系统柔性。
[0033]图7类似于图5,但是示出了(用于星型系统架构的)FDGS 60C内的横向刚度关系。输入联接器62的横向刚度(KICbend)、柔性支撑件78的横向刚度(KFSbend)、环齿轮74的横向刚度(KRGbend)和行星轴颈轴承75的横向刚度(KJBbend)被相对于FDGS 60内的齿轮啮合的横向刚度(KGMbend)控制。
[0034]在所公开的非限制性实施例中,刚度(KGMbend)可以由恒星齿轮68和多个行星齿轮70之间的齿轮啮合来限定。FDGS 60内的横向刚度(KGMbend)是参考因素,并且静止结构82’刚性地支撑风扇轴76。也就是说,风扇轴76被支撑在轴承系统38A、38B上,轴承系统38A、38B被静止结构82’基本刚性地支撑。横向刚度(KJBbend)可以在机械上由例如行星轴颈轴承75内的刚度限定,并且环齿轮74的横向刚度(KRGbend)可以在机械上由例如环齿轮翼74L、74R (图2)的几何结构限定。
[0035]在所公开的非限制性实施例中,环齿轮74的横向刚度(KRGbend)小于齿轮啮合的横向刚度(KGMbend)的约12%,柔性支撑件78的横向刚度(KFSbend)小于齿轮啮合的横向刚度(KGMbend)的约8%,行星轴颈轴承75的横向刚度(KJBbend)小于或等于齿轮啮合的横向刚度(KGMbend),并且输入联接器62的横向刚度(KICbend)小于齿轮啮合的横向刚度(KGMbend)的约5%。
[0036]图8类似于图6,但是示出了用于行星齿轮系统架构的FDGS 60D内的横向刚度关
系O
[0037]应当理解的是,诸如“前”、“后”、“上”、“下”、“上方”、“下方”之类的相对位置术语
是参照交通工具的正常操作姿态的,并且不应被认为是限制性的。
[0038]应当理解的是,遍及几幅附图,相同的附图标记指代对应或相似的元件。应当理解
的是,尽管在所示实施例中公开了一种特定的部件布置方式,但其他布置方式将会由此获益。[0039]尽管示出、描述和请求保护特定的步骤顺序,但应当理解的是,可以以任何顺序,单独地或组合地执行所述步骤,除非另有所指,并且依然将从本公开获益。
[0040]前面的描述是示例性的而非由其内的限制因素限定。本文公开了各种非限制性实施例,然而本领域普通技术人员将会意识到根据前述教导的各种修改和变化将会落入所附权利要求的范围内。因此,应当理解的是,在所附权利要求的范围内,本公开可以以不同于所具体描述的方式实施。为此,应当研究所附权利要求以确定真实范围和内容。
【权利要求】
1.一种燃气涡轮发动机,包括: 风扇轴; 框架,所述框架支撑所述风扇轴,所述框架限定框架侧向刚度和框架横向刚度; 齿轮系统,所述齿轮系统驱动所述风扇轴; 柔性支撑件,所述柔性支撑件至少部分地支撑所述齿轮系统,所述柔性支撑件限定相对于所述框架侧向刚度的柔性支撑件侧向刚度和相对于所述框架横向刚度的柔性支撑件横向刚度;和 至所述齿轮系统的输入联接器,所述输入联接器限定相对于所述框架侧向刚度的输入联接器侧向刚度和相对于所述框架横向刚度的输入联接器横向刚度。
2.如权利要求1所述的燃气涡轮发动机,其中,所述柔性支撑件侧向刚度小于所述框架侧向刚度。
3.如权利要求1所述的燃气涡轮发动机,其中,所述柔性支撑件横向刚度小于所述框架横向刚度。
4.如权利要求1所述的燃气涡轮发动机,其中,所述柔性支撑件侧向刚度小于所述框架侧向刚度,并且所述柔性支撑件横向刚度小于所述框架横向刚度。
5.如权利要求1所述的燃气涡轮发动机,其中,所述齿轮系统包括齿轮啮合,所述齿轮啮合限定齿轮啮合侧向刚度和齿轮啮合横向刚度。
6.一种燃气涡轮发动机,包括: 风扇轴; 框架,所述框架支撑所述风扇轴; 齿轮系统,所述齿轮系统驱动所述风扇轴,所述齿轮系统包括齿轮啮合,所述齿轮啮合限定齿轮啮合侧向刚度和齿轮啮合横向刚度; 柔性支撑件,所述柔性支撑件至少部分地支撑所述齿轮系统,所述柔性支撑件限定相对于所述齿轮哨合侧向刚度的柔性支撑件侧向刚度和相对于所述齿轮哨合横向刚度的柔性支撑件横向刚度;和 至所述齿轮系统的输入联接器,所述输入联接器限定相对于所述齿轮啮合侧向刚度的输入联接器侧向刚度和相对于所述齿轮哨合横向刚度的输入联接器横向刚度。
7.如权利要求6所述的燃气涡轮发动机,其中,所述柔性支撑件侧向刚度小于所述齿轮啮合侧向刚度。
8.如权利要求6所述的燃气涡轮发动机,其中,所述柔性支撑件横向刚度小于所述齿轮啮合横向刚度。
9.如权利要求6所述的燃气涡轮发动机,其中,所述柔性支撑件侧向刚度小于所述齿轮啮合侧向刚度,并且所述柔性支撑件横向刚度小于所述齿轮啮合横向刚度。
10.如权利要求6所述的燃气涡轮发动机,其中,所述框架限定框架侧向刚度和框架横向刚度。
【文档编号】F01D25/28GK103917750SQ201380003245
【公开日】2014年7月9日 申请日期:2013年9月17日 优先权日:2012年9月20日
【发明者】M.E.麦丘恩, J.哈斯班 申请人:联合工艺公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1