内燃机的排气净化装置的制作方法

文档序号:11111106阅读:553来源:国知局
内燃机的排气净化装置的制造方法

本发明涉及内燃机的排气净化装置。



背景技术:

在柴油引擎这样的内燃机中,通过燃烧而产生氮氧化物、颗粒状物质(Particulate Matter(PM))等。在以这样的内燃机作为动力的车辆中,为了抑制这些物质与排气气体被一同排放,而在排气路径中设置氧化催化剂(DOC)、柴油微粒过滤器(DPF)等净化装置。

DPF是用于通过过滤器来捕获排气中所包含的PM的装置。DPF在使用过程中由于PM累积、过滤器网眼堵塞而性能逐渐降低。因此,对DPF送入高温的排气,使累积的PM燃烧。高温排气的生成方法一般是如下的方法:使排气中含有未燃的碳氢化合物(HC)并使其吸附于设置在上游侧的DOC,利用通过使该HC氧化(燃烧)而产生的热。

但是,DOC若超过可使用温度,则容易劣化,其性能降低。因此,若在DOC中吸附积累了超出必要的HC,则在燃烧时,有可能超过可使用温度而使DOC劣化。

因此,在专利文献1的排气净化装置中,设置将排气导向吸附剂的路径和不经由吸附剂的路径,在吸附剂中的HC堆积量的推定值成为规定值以上时,打开前者路径而将高温的排气导入到吸附剂,从而使累积的HC燃烧。

此外,在专利文献2的HC吸附催化剂中,若推定的HC堆积量达到规定的量,则通过喷射器进行近后喷射(after injection)(膨胀行程中的喷射),使排气气体的温度上升,从而进行HC的焚烧。HC堆积量的推定有以下方法:根据HC吸附催化剂的前后的HC浓度的变化来求出的方法(称为前者),或者根据空燃比传感器的测定值来推定对HC吸附催化剂的HC流入量,并使用该HC流入量、HC吸附催化剂的吸附效率、HC吸附催化剂的HC氧化·脱离量来求出的方法(称为后者)。

在先技术文献

专利文献

专利文献1:(日本)特开平11-22449号公报

专利文献2:(日本)特开2010-265873号公报



技术实现要素:

发明要解决的课题

但是,在专利文献1的排气净化装置中,需要设置两个排气路径,导致零件件数增加,或者结构复杂化。

此外,在专利文献2中,在推定HC堆积量时,在前者的方法中,需要在HC吸附催化剂的前后设置HC浓度传感器,导致零件件数增加,或者结构复杂化。另一方面,在后者的方法中,HC吸附催化剂的吸附效率、以及HC吸附催化剂的HC氧化·脱离量并未考虑这些值也会因在HC吸附催化剂中堆积的HC的量而变化的情况。因此,可能导致以过剩的频度进行HC的焚烧而引起燃烧成本恶化,以及反之、焚烧时的HC堆积量超过适当量而引起温度上升到可使用温度以上。

因此,本发明的目的在于提供一种避免零件件数增加、结构复杂化,同时在适当的定时使催化剂中吸附的碳氢化合物燃烧的内燃机的排气净化装置。

用于解决课题的手段

为了达到上述目的,本发明提供一种内燃机的排气净化装置,在排气管中设有能够对碳氢化合物进行吸附氧化的催化剂,所述排气净化装置包括:温度检测部件,检测所述催化剂的温度;推定部件,对由所述温度检测部件所检测的所述催化剂的温度表示第1规定温度以下的时间进行累积,并根据该累积时间来推定所述催化剂中吸附的碳氢化合物量;以及控制部件,在由所述推定部件所推定的所述碳氢化合物量超过了规定上限值的情况下,在第1喷射模式下控制所述内燃机的燃料喷射,所述第1喷射模式是使所述催化剂的温度上升到所述催化剂中吸附的碳氢化合物氧化的温度的模式。

也可以在由所述温度检测部件所检测的所述催化剂的温度连续规定时间成为比所述第1规定温度低的第2规定温度以上的情况下,减少所述累积时间。

可以还包括过滤器,被设置在比所述催化剂靠下游侧的所述排气管中,捕获排气气体中的颗粒状物质,若在所述过滤器中堆积的颗粒状物质超过规定量,则所述控制部件在第2喷射模式下控制所述内燃机的燃料喷射,第2喷射模式是使所述催化剂的温度上升到颗粒状物质的燃烧温度的模式。

所述控制部件也可以在所述第1喷射模式的执行过程中禁止所述第2喷射的执行。

附图说明

图1是表示本发明的一个实施方式的内燃机以及排气净化装置的图。

图2-1是用于说明通常模式下的燃料喷射控制的图。

图2-2是用于说明HC净化模式下的燃料喷射控制的图。

图2-3是用于说明DPF再生模式的升温步骤中的燃料喷射控制的图。

图2-4是用于说明DPF再生模式的HC供应步骤中的燃料喷射控制的图。

图3是表示HC净化中的DOC的温度变化(实线)和吸附的HC的量的变化(虚线)的图。

图4是表示伴随引擎运转的排气温度变化的例子的图。

图5是表示执行了HC净化的情况(实线)和不执行的情况(虚线)的DOC中的HC吸附量的变化的图。

图6是表示DPF再生中的DOC的温度变化的图。

图7是表示本发明的另一实施方式的内燃机以及排气净化装置的图。

具体实施方式

以下,基于附图来说明本发明的一个实施方式的排气净化装置。对于同一零件赋予同一标号,它们的名称以及性能也相同。因此,不重复它们的详细说明。

<内燃机以及排气净化装置的结构>

图1是表示本发明的一个实施方式的内燃机以及排气净化装置的结构的图。在本实施方式中,作为内燃机,使用柴油引擎10(以下,简称作引擎)。

在引擎10的各气缸中,分别设有将在共轨管(Common Rail)20中蓄压后的高压燃料直接喷射到各气缸内的喷射器21。各喷射器21的燃料喷射量和燃料喷射定时(timing)根据从电子控制单元(以下,称作ECU)40输入的喷射指示信号而被控制。在本实施方式中,喷射器21的燃料喷射能够在通常模式、HC净化模式、DPF再生模式中切换。各个模式的细节在后叙述。

引擎10的排气岐管11上连接将排气气体排放到大气的排气通道12。在该排气通道12中,从排气上游侧起,依次设有排气温度传感器13、排气后处理装置14等。

排气温度传感器13检测比排气后处理装置14靠近上游侧的排气温度(以下,称作检测温度)θ。由排气温度传感器13检测出的检测温度θ被实时地发送给电连接的ECU40。

排气后处理装置14是通过在催化剂箱14a内从排气上游侧起依次配置DOC15以及DPF16而构成的。另外,标号17表示用于检测DPF的前后压差ΔP的压差传感器。由压差传感器17检测出的前后压差ΔP被实时地发送给电连接的ECU40。

DOC15,例如,通过在堇青石蜂窝结构体等陶瓷制载体表面承载催化剂成分而形成。此外,DOC15中包含用于吸附排气气体中含有的HC的吸附剂。吸附剂由沸石等具有用于捕获HC分子的立体结构的材质构成。吸附的HC通过氧化(燃烧),从而能够使排气温度上升。但是,若后述的DPF再生以及通常运转中产生的未燃HC累积在DOC15中,则过剩量的HC被燃烧,排气温度有可能会超过使用上限温度θL。因此,为了使累积的HC燃烧除去而进行HC净化,关于该细节在后叙述。

DPF16,例如,通过将由多孔质地的隔墙所划分的多个单元沿着排气的流动方向配置,并将这些单元的上游侧和下游侧交替进行孔封闭而形成。DPF16将排气气体中的颗粒状物质(以下,称为PM)捕获在隔墙的细孔或表面(过滤器)。若PM堆积量达到规定量,则执行将其燃烧除去的所谓DPF再生。DPF再生的具体说明在后叙述。

<燃料喷射控制>

(1)通常模式

图2-1是用于说明通常模式下的燃料喷射控制的图。在通常模式下,在上止点或者其近傍进行燃料喷射(主喷射)。另外,这里所说的通常模式中,主喷射设为1次,但只不过是其一例,可以根据需要的性能而将喷射分为多次(多段喷射)进行。

(2)HC净化模式

图2-2是用于说明HC净化模式中的燃料喷射控制的图。在HC净化模式下,除了主喷射之外,在其前后各1次(预喷射和近后喷射),分别以少于主喷射中的喷射量的喷射量进行喷射。在HC净化模式下,排气温度高于通常模式,DOC15的温度上升到比HC能够燃烧的温度(活性温度θA)高的目标温度θB。另外,这里所说的HC净化模式的控制只不过是其一例,只要是能够使DOC15的温度上升到目标温度θB的控制,也可以是其他的控制内容。

(3)DPF再生模式

在DPF再生模式中,首先进行用于使DOC15的温度上升的喷射(升温步骤:图2-3),然后,切换为用于对DOC15供应HC的喷射(HC供应步骤:图2-4)。

图2-3是用于说明DPF再生模式的升温步骤中的燃料喷射控制的图。在升温步骤中,进行预喷射、主喷射、近后喷射。升温步骤中的近后喷射的喷射量比HC净化模式中的近后喷射多。通过升温步骤中的喷射,DOC15的温度上升,在达到比目标温度θB高的规定温度时切换为HC供应步骤。

图2-4是用于说明DPF再生模式的HC供应步骤中的燃料喷射控制的图。在HC供应步骤中,除了升温步骤的燃料喷射之外,在燃烧后的排气行程中,还进行燃料喷射(远后喷射(Post injection))。在该喷射模式下,远后喷射的燃料不燃烧而会包含在排气中。因此,燃料中包含的HC被供应给DOC15。由于DOC15被充分地升温,因此供应的HC在DOC15中燃烧。另外,远后喷射的控制不限于此,只要是在燃烧后喷射,且未燃的燃料通过排气而被供应给DOC15的控制,则例如也可以是分为多次喷射等控制。

<HC净化>

图3是表示HC净化中的DOC15的温度变化(实线)和HC的吸附量的变化(虚线)的图。图中,使用上限温度θL表示用于不引起DOC15的显著劣化的温度。

HC净化开始后,先是HC净化模式的燃料喷射,随着排气温度的上升,DOC15的温度也上升。若DOC15的温度达到活性温度θA,则DOC15上吸附的HC的燃烧开始。由此,虽然DOC15的温度进一步上升,但通过后述的控制,HC吸附量被抑制在规定量以下,因此不会达到使用上限温度θL

由于HC的燃烧,DOC15中吸附的HC的量减少,若HC被充分地除去,则HC净化结束。从HC净化的开始到结束为止的时间根据应除去的HC量、DOC15的尺寸、排气气体的流量等条件而被适当调整。

<HC净化的执行条件>

图4是表示随着引擎10的运转的排气温度的变化的例子的图。在本实施方式中,基于排气温度传感器13检测出的温度θ和时间T的关系来推定DOC15的HC吸附量,并判断是否执行HC净化。该推定以及判断通过ECU40进行。

在本实施方式中,检测温度θ在活性温度θA以下的时间,若累积的时间ΣT(=TA1+TA2+TA3+TA4+···)成为规定的值TA,则推定DOC15中的HC吸附量达到了应进行HC净化的量,并进行HC净化开始的判断。θA以及TA例如可以通过实验求出,进而能够预计排气温度传感器13和DOC15之间的温度下降等,进行适当调整。此外,应进行HC净化的量是在DOC15中的HC燃烧时,DOC15的温度达不到使用上限温度θL的量。

若不成为活性温度θA以上则不会发生HC的燃烧。因此,若DOC15的温度小于活性温度θA则判断为累积了HC的本实施方式的HC吸附量的推定方法可以说是准确且稳定的方法。

进而,除了这些条件之外,在本实施方式中,若排气温度为规定温度,例如目标温度θB(>θA)以上的状态连续达规定时间TB以上,则ΣT的值被重置(ΣT=0)。这是因为若排气温度足够高,则推定DOC15中吸附的HC进行了充分燃烧。另外,为了使DOC15内部的温度为θB,也可以估计排气温度传感器13和DOC15之间的温度下降,并将判定所使用的温度例如设定为θB+Δ。此外,也可以设定为若ΣT=(TA1+TA2+TA3+TA4+···)-kTB(k:由HC的燃烧效率决定的系数,例如通过实验求出)达到规定的值,则开始HC净化(ΣT≧0)。

图5是表示执行了HC净化时(实线)和不执行时(虚线)的DOC15中的HC吸附量的变化的图。伴随引擎10的运转,排气中包含的少量的未燃HC累积,HC的吸附量逐渐增加。而且,若如上述那样判断为HC吸附量达到了规定量、进行HC净化,则HC被除去。因此,根据本实施方式,DOC15中的HC吸附量被控制为不超过规定的量。此外,由此,在后述的DPF再生时,HC的吸附量不会如虚线那样成为过大,不会超过使用上限温度θL。此外,由于HC净化的执行不会超出必要,因此多余的燃料消耗被抑制。

上述的HC吸附量的推定,即是否执行HC净化的判断方法只不过是一例,例如,也可以根据在排气温度为θA以下的状态下车辆行驶了的距离的累计值来进行判断。

<DPF再生>

图6是表示DPF再生中的DOC15的温度变化的图。图中,实线表示进行了本实施方式的HC净化时的温度变化,虚线表示不进行HC净化时的温度变化。DPF再生通过如下进行:使排气中的未燃燃料(HC)在DOC15中燃烧,从而使DOC15的温度上升,使流入DPF16的排气温度升温到PM燃烧温度。

若DPF16中堆积的PM增加,则DPF16前后的压差ΔP上升。因此,在本实施方式中,DPF再生以由压差传感器17检测出的前后压差ΔP成为规定值以上作为开始条件。不过,本实施方式中,在HC净化执行过程中不进行前后压差ΔP的检测,不开始DPF再生。这是因为在HC净化执行过程中,压差传感器17的检测精度会降低。此外,这也是因为若在HC被累积了的状态下进一步供应HC而使其燃烧,则存在达到使用上限温度θL的可能性。

这里,说明本实施方式(实线)。DPF再生开始后,开始DPF再生模式的燃料喷射。首先,通过升温步骤的燃料喷射,DOC15上升。然后,切换到HC供应步骤,HC被供应到DOC15并燃烧,从而DOC15的温度进一步上升并达到θPM。通过DOC15后的高温的排气气体以PM燃烧温度以上的温度流入DPF16。

另一方面,在不进行本实施方式的HC净化而在DOC15中积累了过剩的HC的情况下,如虚线这样,若DOC15被升温,则引起急剧的温度上升,DOC15的温度达到使用上限温度θL。若DOC15的温度达到使用上限温度θL,则DOC15中包含的吸附剂的立体结构破坏,HC的吸附性能降低。

<本实施方式的效果>

通过进行ECU40的程序改写而能够进行本实施方式的HC净化,无需为了该控制而进行引擎10以及喷射器21的设计变更等。进而,进行HC净化的判断基于排气温度传感器13的检测温度θ而被进行,排气温度传感器13是也被用于引擎10的运转状态、DPF再生时的温度控制等的部件。

此外,如上所述,通过DOC15的温度(排气温度传感器13的检测温度θ)来判断是否积累了HC并推定HC吸附量的本实施方式的方法是准确且稳定的方法。因此,通过根据该推定来判断是否执行HC净化,从而在准确的定时进行HC净化。

因此,根据本实施方式,能够提供一种既避免零件件数增加、结构复杂化,又在适当的定时使DOC15中吸附的碳氢化合物燃烧的内燃机的排气净化装置。

<其他实施方式>

图7是表示本发明的另外一个实施方式的内燃机以及排气净化装置的图。本实施方式与上述实施方式在结构上不同之处在于,在引擎10和排气后处理装置14之间设有燃料喷射喷嘴18。

在本结构中,由于能够从燃料喷射喷嘴18供应燃料(HC),因此DPF再生模式下的喷射器21的燃料喷射方法仅为图2-3的步骤(升温步骤)即可。在本结构中,由于HC是在引擎外部被供应的,因此不必如远后喷射(图2-4)这样进行燃烧后的排气步骤,可以使喷射定时具有宽度。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1