具有改性的贫NOx阱的排气系统的制作方法

文档序号:11111109阅读:539来源:国知局
具有改性的贫NOx阱的排气系统的制造方法与工艺

本发明涉及一种处理内燃机废气的排气系统,和处理内燃机废气的方法。

发明背景

内燃机产生含有多种污染物的废气,包括氮氧化物(“NOx”)、一氧化碳和未燃烧的烃,这是政府法规的主题。排放物控制系统被广泛用于降低这些污染物排放到大气中的量,并且典型地一旦它们达到了它们的操作温度(典型地200℃和更高),则实现非常高的效率。但是,这些系统在低于它们的操作温度(“冷启动”期)时相当低效。

例如,施用来满足Euro 6b排放标准的当前基于尿素的选择性催化还原(SCR)应用要求,在可以将尿素计量添加并用于转化NOx之前,在尿素计量添加位置处的温度高于约180℃。使用当前的系统难以实现低于180℃的NOx转化,并且未来的欧洲和美国法规将强调低温NOx储存和转化。目前这通过加热方案来实现,但是这具有CO2排放的有害效应。

由于甚至更严格的国家和地区法规降低了可以从柴油机或汽油机排放的污染物的量,所以减少冷启动期过程中的排放物正变成一项主要挑战。因此,持续研发减少冷启动条件过程中排放的NOx水平的方法。

例如,PCT国际申请WO2008/047170公开了一种系统,其中来自于贫废气的NOx在低于200℃的温度吸附,随后在高于200℃热解吸。据称NOx吸附剂由钯和铈氧化物或者含有铈和至少一种其他过渡金属的混合氧化物或复合氧化物组成。

美国申请公布2011/0005200教导了一种催化剂体系,其通过将氨-选择性催化还原(“NH3-SCR”)催化剂配制物置于贫NOx阱下游,来同时除去氨和提高净NOx转化率。据称NH3-SCR催化剂吸附在贫NOx阱中富脉冲过程中产生的氨。储存的氨然后与上游贫NOx阱排放的NOx反应,这提高NOx的转化率,同时消耗储存的氨。

PCT国际申请WO2004/076829公开了一种废气净化系统,其包含布置在SCR催化剂上游的NOx储存催化剂。该NOx储存催化剂包含至少一种碱金属、碱土金属或稀土金属,其用至少一种铂族金属(Pt、Pd、Rh或Ir)来涂覆或活化。据称一种特别优选的NOx储存催化剂包含氧化铈,其用铂和作为基于氧化铝的载体上的氧化催化剂的另外的铂来涂覆。EP1027919公开了一种NOx吸附剂材料,其包含多孔载体材料例如氧化铝、沸石、氧化锆、二氧化钛和/或氧化镧,和至少0.1重量%的贵金属(Pt、Pd和/或Rh)。例子是负载在氧化铝上的铂。

使用任何汽车系统和方法,需要在废气处理系统中获得更进一步的改进,特别是在冷启动条件下。已经发现一种系统,其可以减少冷启动期过程中的NOx排放,同时保持良好的CO氧化活性和表现出耐由于硫酸化而引起的失活。



技术实现要素:

本发明是一种处理内燃机废气的排气系统。该系统包含改性的贫NOx阱(LNT)、尿素注入系统和氨-选择性催化还原(NH3-SCR)催化剂。该改性的LNT包含第一层和第二层。第一层包含NOx吸附剂组分和一种或多种铂族金属。第二层包含柴油氧化催化剂区和NO氧化区。该柴油氧化催化剂区包含铂族金属、沸石和任选的碱土金属。该NO氧化区包含铂族金属和载体。该改性的LNT在低于约200℃的温度储存NOx,在高于约200℃的温度释放。本发明还包括该改性的LNT和使用该改性的LNT的方法。

附图说明

图1显示了来自于使用该改性的LNT的发动机测试的累积NOx

图2显示了LNT的改性的NO2/NOx浓度比,该LNT包含柴油氧化催化剂区和在包含NOx吸附剂的第一层上的NO氧化区。

具体实施方式

本发明是一种处理内燃机废气的排气系统。该系统包含改性的贫NOx阱(LNT)。贫NOx阱是本领域公知的。贫NOx阱典型地经设计来在贫排气条件下吸附NOx,在富条件下释放吸附的NOx,和还原释放的NOx来形成N2

LNT典型地包含NOx储存组分、氧化组分和还原组分。该NOx储存组分优选包含碱土金属(例如钡、钙、锶和镁)、碱金属(例如钾、钠、锂和铯)、稀土金属(例如镧、钇、镨和钕)或其组合。该金属典型地以氧化物形式存在。典型地,包含铂来发挥氧化功能,包含铑来发挥还原功能。这些组分包含在一种或多种载体上。

氧化/还原催化剂和NOx储存组分优选负载于载体材料例如无机氧化物上,来形成用于排气系统中的LNT。

本发明的改性的LNT经设计来具有不同于已知LNT的功能,这在于它们优选经设计来在低于约200℃的温度储存NOx,在高于约200℃的温度释放储存的NOx。释放储存的NOx可以通过热来进行,或者还可以通过富吹扫来进行。

该改性的LNT包含第一层和第二层。第一层包含NOx吸附剂组分和一种或多种铂族金属。该NOx吸附剂组分优选包含碱土金属、碱金属、稀土金属及其混合物。该碱土金属优选是钡、钙、锶或镁。该碱金属优选是钾、钠、锂或铯。该稀土金属优选是镧、钇、镨或钕。最优选地,该NOx吸附剂组分包含钡。

如果使用,则碱土金属、碱金属、稀土金属或其混合物可以优选地负载于无机氧化物上。该无机氧化物材料优选是含二氧化铈材料或氧化镁-氧化铝。该含二氧化铈材料优选是二氧化铈、二氧化铈-氧化锆、二氧化铈-氧化锆-氧化铝或其混合物。更优选地,该含二氧化铈材料是二氧化铈,具体地是粒状二氧化铈。该氧化镁-氧化铝优选是尖晶石、氧化镁-氧化铝混合金属氧化物、水滑石或水滑石样材料及其两种或更多种的组合。更优选地,该氧化镁-氧化铝载体是尖晶石。

该碱土金属、碱金属或稀土金属组分可以通过任何已知的手段负载于该无机氧化物材料上,添加方式不被认为特别关键。例如,可以通过浸渍、吸附、离子交换、初始润湿、沉淀等将钡化合物(例如乙酸钡)添加到含二氧化铈材料中。优选地,第一层包含至少2.5重量%的钡。

该铂族金属优选是铂、钯、铑或其混合物。特别优选铂和钯。

优选地,第一层还包含载体。该载体优选是第2、3、4、5、13和14族元素的氧化物。最优选地,该载体是氧化铝、二氧化硅、二氧化钛、氧化锆、氧化镁、氧化铌、氧化钽、氧化钼、氧化钨,其任意两种或更多种的混合氧化物或复合氧化物,及其混合物。

优选的载体优选地表面积是10-1500m2/g,孔体积是0.1-4mL/g,和孔径是约10-1000埃。特别优选表面积大于80m2/g的高表面积载体。

第二层包含柴油氧化催化剂区和NO氧化区。该柴油氧化催化剂区包含铂族金属、沸石和任选的碱土金属。该任选的碱土金属优选是镁、钙、锶或钡;更优选是钡。该铂族金属优选包括铂和钯。优选地,该柴油氧化催化剂区中的Pd:Pt比是0.25-1。

该沸石可以是任何天然或合成的沸石,并且优选包含铝、硅和/或磷。该沸石典型地具有SiO4、AlO4和/或PO4的三维排列,其通过共享氧原子来结合,但是也可以是二维结构。该沸石骨架典型地是阴离子的,其通过电荷补偿性阳离子来平衡,该电荷补偿性阳离子典型地是碱金属和碱土金属元素(例如Na、K、Mg、Ca、Sr和Ba)、铵离子以及质子。

优选地,该沸石选自铝硅酸盐沸石、金属取代的铝硅酸盐沸石、铝磷酸盐沸石、金属取代的铝磷酸盐沸石、硅铝磷酸盐沸石或金属取代的硅铝磷酸盐沸石。

特别优选具有以下骨架类型的沸石:ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATT、CDO、CHA、DDR、DFT、EAB、EDI、EPI、ERI、GIS、GOO、IHW、ITE、ITW、LEV、KFI、MER、MON、NSI、OWE、PAU、PHI、RHO、RTH、SAT、SAV、SIV、THO、TSC、UEI、UFI、VNI、YUG、ZON、MFI、FER、MWW、EUO、CON、BEA、FAU、MOR和EMT,以及其任意两种或更多种的混合物或共生物。最优选地,该沸石的骨架类型是AEI、CHA、LEV、BEA(例如β沸石)、FAU(例如沸石Y)或MFI(例如ZSM-5)。

该柴油氧化催化剂还可以优选包含锰。

该柴油氧化催化剂区优选还包含无机氧化物载体。该无机氧化物载体优选包含第2、3、4、5、13和14族元素的氧化物。最优选地,该载体是氧化铝或二氧化硅掺杂的氧化铝载体。

该NO氧化区包含铂族金属和载体。该铂族金属优选包括铂和钯。优选地,该NO氧化区中的Pd:Pt比是0-0.25。

该载体优选是氧化铝、二氧化硅、含二氧化铈材料、二氧化钛、氧化锆、氧化镁、氧化铌、氧化钽、氧化钼、氧化钨,其任意两种或更多种的混合氧化物或复合氧化物(例如二氧化硅-氧化铝、氧化镁-氧化铝),及其混合物。该含二氧化铈材料优选是二氧化铈、二氧化铈-氧化锆、二氧化铈-氧化锆-氧化铝,或其混合物;更优选地,该含二氧化铈材料是氧化铈,特别是粒状二氧化铈。特别优选载体例如氧化铝和二氧化铈的混合物。

该NO氧化区还可以优选包含锰。

该NO氧化区可以包含碱金属或碱土金属例如钡,但是也可以基本上不含碱金属或碱土金属组分。“基本上不含”表示没有碱金属或碱土金属有意地添加到NO氧化区。优选地,“基本上不含”表示NO氧化区包含小于0.1重量%的碱金属或碱土金属,更优选小于0.05重量%的碱金属或碱土金属,最优选没有碱金属或碱土金属。

该改性的LNT优选包含基底。该基底优选是陶瓷基底或金属基底。该陶瓷基底可以由任何合适的难熔材料制成,该难熔材料例如氧化铝、二氧化硅、二氧化钛、二氧化铈、氧化锆、氧化镁、沸石、氮化硅、碳化硅、硅酸锆、硅酸镁、铝硅酸盐和金属铝硅酸盐(例如堇青石和锂辉石),或者其任意两种或更多种的混合物或混合氧化物。特别优选堇青石、镁铝硅酸盐和碳化硅。

该金属基底可以由任何合适的金属制成,该金属特别是耐热金属和金属合金例如钛和不锈钢以及铁素体合金,该铁素体合金含有铁、镍、铬和/或铝以及其他痕量金属。

该基底优选是流通式基底或过滤器基底。最优选地,该基底是流通式基底。具体地,该流通式基底是流通式整料,其优选具有蜂窝体结构,具有轴向延伸穿过该基底和贯穿该基底延伸的许多小的、平行的薄壁通道。

该基底的通道横截面可以是任何形状,但是优选是正方形、正弦形、三角形、矩形、六边形、梯形、圆形或椭圆形。

当添加到该基底时,该改性的NOx阱的层可以以任何次序布置在该基底上,但是优选第一层位于该基底上,第二层位于第一层上。第二层的该柴油氧化催化剂区优选布置在该NO氧化区的上游,以使得废气首先接触该柴油氧化催化剂区,然后接触该NO氧化区。

本发明的改性的NOx阱可以通过现有技术中公知的方法来制备。优选地,该NOx阱通过使用载体涂覆(washcoat)程序将两层沉积在该基底上来制备。

优选地,该基底的整个长度涂覆有第一层浆料,以使得载体涂层(washcoat)的第一层覆盖该基底的整个表面。该基底的长度从前端起的一部分涂覆有该柴油氧化催化剂区,而基底长度的其余部分涂覆有该NO氧化区。

本发明的该改性的LNT在低于约200℃的温度储存NOx,在高于约200℃的温度释放储存的NOx

本发明的该排气系统还包含氨-选择性催化还原(NH3-SCR)催化剂。该NH3-SCR催化剂可以包含任何已知的NH3-SCR催化剂,其是本领域公知的。NH3-SCR催化剂是通过与氮化合物(例如氨或尿素)反应来将NOx还原成N2的催化剂。

优选地,该NH3-SCR催化剂包含氧化钒-二氧化钛催化剂、氧化钒-氧化钨-二氧化钛催化剂或金属/沸石。该金属/沸石催化剂包含金属和沸石。优选的金属包括铁和铜。

该沸石可以是任何天然或合成的沸石,优选包含铝、硅和/或磷。该沸石典型地具有SiO4、AlO4和/或PO4的三维排列,其通过共享氧原子来结合,但是也可以是二维结构。

该沸石骨架典型地是阴离子的,其通过电荷补偿性阳离子来平衡,该电荷补偿性阳离子典型地是碱金属和碱土金属元素(例如Na、K、Mg、Ca、Sr和Ba)、铵离子以及质子。

优选地,该沸石选自铝硅酸盐沸石、金属取代的铝硅酸盐沸石、铝磷酸盐沸石、金属取代的铝磷酸盐沸石、硅铝磷酸盐沸石或金属取代的硅铝磷酸盐沸石。

特别优选具有以下骨架类型的沸石:ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATT、CDO、CHA、DDR、DFT、EAB、EDI、EPI、ERI、GIS、GOO、IHW、ITE、ITW、LEV、KFI、MER、MON、NSI、OWE、PAU、PHI、RHO、RTH、SAT、SAV、SIV、THO、TSC、UEI、UFI、VNI、YUG、ZON、MFI、FER、MWW、EUO、CON、BEA、FAU、MOR和EMT,以及其任意两种或更多种的混合物或共生物。最优选地,该沸石的骨架类型是AEI、CHA、LEV、BEA(例如β沸石)或FER(例如镁碱沸石)。

该NH3-SCR催化剂优选涂覆于陶瓷或金属基底上,如上所述。该基底典型地经设计来提供许多车辆排气所穿过的通道,并且该通道的表面将优选涂覆有该NH3-SCR催化剂。

用于该NH3-SCR催化剂的基底可以是过滤器基底或流通式基底。优选地,该NH3-SCR催化剂涂覆到过滤器上,其被称作氨-选择性催化还原过滤器(NH3-SCRF)。SCRF是单个基底装置,其组合了NH3-SCR和颗粒过滤器的功能。它们用于还原内燃机的NOx和颗粒排放物。

本发明的系统进一步包含尿素注入系统。该尿素注入系统优选包含尿素注射器,其将尿素注入该NH3-SCR催化剂上游和该改性的LNT下游的废气流中。该尿素注入系统将优选由喷嘴组成,来产生轮廓分明的尿素溶液小滴。该小滴尺寸优选小于500微米来允许快速蒸发和尿素分解。该注射器压力和泵送速率将使得在该废气流中有效混合。

该尿素注入系统还将优选由尿素槽、输送管线和用于避免尿素溶液冻结的可能的加热系统组成。

优选地,该尿素注入系统在高于约180℃的温度注入尿素。

本发明还包括一种处理内燃机废气的方法。该方法包括使该废气经过上述的改性的LNT。该改性的LNT在低于约200℃的温度从该废气中除去氮氧化物(NOx),并且在高于约200℃的温度释放该NOx。在高于约180℃的温度,尿素在该改性的LNT下游注入该废气中,并且使含有从该改性的LNT释放的NOx和尿素的废气经过NH3-SCR催化剂。该释放的NOx通过氨(由尿素产生)与NOx在该NH3-SCR催化剂上反应而转化成氮。该释放的NOx是在低温储存于该改性的LNT上,然后在较高的温度释放的NOx,并且还包括经过该NH3-SCR催化剂而不储存的NOx

优选地,该改性的LNT定期经过富脱硫步骤。燃料中存在的硫化合物对于该改性的LNT会是有害的,因为硫化合物的氧化产生该废气中的硫氧化物。在该LNT中,二氧化硫可以在铂族金属上被氧化成三氧化硫,并且在该LNT表面上形成表面硫酸盐(例如氧化钡或碳酸钡与三氧化硫反应来形成硫酸钡)。这些硫酸盐比硝酸盐更稳定,并且需要更高的温度(>500℃)来脱硫。如果该改性的LNT具有低的钡含量,则较低的脱硫温度会是有用的。

在富脱硫中,该改性的LNT典型地在富空气:燃料比环境中经过高于约500℃的温度,来完成脱硫。该脱硫优选通过燃料后注入来增加排气温度来进行。脱硫方案可以包括单个的、持续的富含期,或者一系列短的富空气-燃料比脉冲。

以下实施例仅说明本发明。本领域技术人员将认可许多变化在本发明的主旨和权利要求书的范围内。

实施例1:制备改性的LNT

改性的LNT 1A

将400孔/平方英寸(cpsi)的流通式堇青石基底整料用包含两层的NOx吸附剂催化剂配制物进行涂覆。下层载体涂层包含Pt、Pd、28%的Ce/镁-铝酸盐尖晶石和66%的二氧化铈(95%的总二氧化铈负载量包括粒状二氧化铈,其含有7%的Ba)。该载体涂层使用WO99/47260中公开的方法涂覆到原始基底整料上,随后在100℃的强制通风干燥机中干燥30分钟,然后在500℃煅烧2小时。

制备由制浆和研磨到d90<20微米的氧化铝组成的第二浆料,随后添加适量的可溶性铂和钯盐和粒状二氧化铈来产生50%的氧化铝和50%的粒状二氧化铈。将第二浆料经由出口通道施用到经煅烧的下层。将该部分干燥和在500℃煅烧。

制备由在水中制浆和研磨到d90<20微米的二氧化硅掺杂的氧化铝粉末组成的第三浆料。将乙酸钡添加到该浆料中,随后添加适量的可溶性铂和钯盐。该浆料然后搅拌30分钟来均化,然后添加β沸石来产生81%的二氧化硅掺杂的氧化铝和19%的β沸石。将第三浆料经由入口通道施用到经煅烧的下层。将该部分干燥和在500℃煅烧,来产生89g/ft3Pt和30g/ft3Pd的总PGM负载量。

对比LNT 2

将400孔/平方英寸(cpsi)的流通式堇青石基底整料用包含单层的NOx吸附剂催化剂配制物进行涂覆,该层包含Pt、Pd、Ce/镁-铝酸盐尖晶石、Ba涂覆的粒状二氧化铈,和包含33%的Ce/镁-铝酸盐尖晶石、61%的二氧化铈(93%的总二氧化铈负载量包括粒状二氧化铈,其含有7%的Ba)和113g/ft3的Pt和Pd。该载体涂层使用WO99/47260中公开的方法涂覆到原始基底整料上,随后在100℃的强制通风干燥机中干燥30分钟,然后在500℃煅烧2小时。

实施例2:发动机测试

将改性的LNT 1A和对比LNT 2(1.4L催化剂体积)在800℃水热老化5小时。每个LNT在1.6L发动机上使用低压废气再循环(EGR),通过运行4个NEDC周期来预调节,该NEDC周期具有在100kph巡航时λ0.95的5s富吹扫。然后在2.2L发动机上以NEDC驾驶周期进行评价。在评价过程中没有使用富吹扫。

结果显示,该改性的LNT 1A在至多约200℃时储存约0.5g的NOx,随后从200℃到300℃几乎完全热释放了储存的NOx,这表明本发明的改性的LNT能够用于NH3-SCR系统。图2显示,该改性的LNT 1A设计使后LNT NO2/NOx比增加20-40%,这与对比LNT 2的5-20%形成对比。表1描述了使用该改性的LNT 1A的排气管CO排放,其显示了明显更高的CO转化率和对于无富吹扫的4个NEDC的氧化性失活的大为改性的稳定性。表2描述了使用该改性的LNT 1A的排气管HC排放,其显示了明显更高的HC转化率。

表1排气管CO排放

表2排气管HC排放

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1