柴油机微粒过滤器的清洁方法与流程

文档序号:11110974阅读:7269来源:国知局
柴油机微粒过滤器的清洁方法与制造工艺

本公开大体涉及内燃机部件的清洁方法,更具体地涉及去除积聚在柴油机微粒过滤器上的微粒的方法。



背景技术:

内燃机系统中的燃料燃烧通常在其排气流中排放出一种复杂的化学物质混合物。来自这些发动机的排放物可包含有机和无机微粒物质,比如烟灰、硫酸盐、可溶性有机馏分和灰烬。为了减少这些化学物质在发动机排放物中的含量,内燃机系统具有后处理系统。柴油机微粒过滤器(DPF)表示用于从排气流中去除和/或减少柴油机微粒物质的后处理系统的一个部件。DPF可用于捕获这些从燃烧中产生的微粒物质,从而限制排放到环境中的烟灰和其它微粒物质的量。

典型的DPF可包括多孔的或可渗透的基底,该基底可涂覆有改变排气物组成的各种化学化合物。当排气流在DPF上方通过或穿过DPF时,过滤器的多孔基底物理性地捕获碳颗粒或烟灰。一段时间后,微粒物质开始在PDF中积聚。该积聚可阻止空气从发动机流过排气流,这可最终损害发动机的效率。

通常,为了减少发动机上的背压和/或为了防止在捕获在过滤器中的烟灰载荷中发生失控的烟灰氧化放热反应,柴油机微粒过滤器须定期再生。减少发动机上的背压通常与更高的运行效率相关联,且从而逐渐降低发动机的燃料消耗。因为温度可在短时间内变得很高以至于过滤器基底(例如,沸石)可开裂或受损以使得可损坏过滤器,所以通常是不期望发生失控的放热氧化反应。柴油机微粒过滤器的主动再生指一种过程,为促进烟灰氧化,所述过程通过升高过滤器的温度来氧化柴油机微粒过滤器中积聚的烟灰。主动再生过程有时是通过使用电加热器等将燃料注入位于柴油机微粒过滤器的上游的后处理系统内进行的。

不同于烟灰,因为灰烬是不可燃的,灰烬微粒通常对典型的过滤器再生过程不敏感。灰烬微粒通常包含金属元素和无机化合物,其来自发动机润滑油中的添加剂。金属氧化物颗粒由在发动机正常运行期间的金属元素和无机化合物的燃烧启动氧化反应所形成。这些颗粒可随后穿过发动机系统进入后处理系统,在所述后处理系统中,它们可积聚在柴油机微粒过滤器上并且阻塞柴油机微粒过滤器。通常,该灰烬层之所以被认为是种麻烦,是因为灰烬阻塞过滤器,使发动机背压增高从而增加燃料消耗并降低功率。

用于去除此残留微粒积聚的常规清洁方法可采用一种加压空气流,或一种在美国专利第8,568,536号中所呈现的气动风刀。然而,此特定方法可能不是很令人满意,因为积聚的微粒可能不会被加压空气充分移走。因此,本公开提供一种从尚未被常规清洁方法去除微粒的柴油机微粒过滤器中有效地移走微粒的方法。本公开的方法在过滤器中使用阻断剂来产生足够的力以使流体充分移走由常规清洁方法无法移动的微粒。



技术实现要素:

本公开涉及一种用于从内燃机的柴油机微粒过滤器(DPF)中去除微粒物质的方法。一方面,一种从DPF中去除微粒物质的方法可包括在邻近柴油机微粒过滤器的过滤介质的第一部分设置阻断剂,引导加压流体流从过滤介质的出口侧处的柴油机微粒过滤器的第二轴向端通过尚未应用阻断剂的过滤介质的第二部分,以及去除阻断剂。

另一方面,一种从DPF中去除微粒物质的方法可包括阻断流体通过过滤介质从出口侧流动到带有阻塞物的过滤介质的入口侧,引导加压流体流通过流体通路尚未阻塞的过滤介质的一些部分,以及去除流体通路的阻塞物。

又一方面,本公开涉及一种过滤系统,其包括:具有过滤介质的柴油机微粒过滤器,和设置成邻近柴油机微粒过滤器的过滤介质的一些部分的阻断剂,其中柴油机微粒过滤器配置成用于去除柴油机微粒过滤器的过滤介质内的微粒。

附图说明

图1是根据本公开的一些方面的内燃机的后处理系统的示意图,所述后处理系统包括柴油机微粒过滤器。

图2是根据本公开的一些方面的柴油机微粒过滤器的局部横截面剖面图。

图3是根据本公开的一些方面的发动机排气流通过柴油机微粒过滤器的通路的示意图。

图4是根据本公开的一些方面的具有微粒堆积的柴油机微粒过滤器的局部横截面剖面图。

图5是根据本公开的一些方面的发动机排气流通过柴油机微粒过滤器的通路和选择性施加的阻断剂的示意图。

图6是根据本公开的一些方面的具有微粒堆积和选择性施加的阻断剂的柴油机微粒过滤器的局部横截面剖面图。

图7是根据本公开的一些方面的具有微粒堆积和气动空气流动的柴油机微粒过滤器的局部横截面剖面图。

图8是根据本公开的一些方面的方法的流程图。

具体实施方式

本公开涉及一种通过使用阻断剂来去除积聚在DPF中的微粒的系统和方法。根据本文公开的方法的各个方面,可选择性地将阻断剂应用到DPF的过滤介质中。采用气动风刀的DPF微粒去除处理可用于移走微粒。这样,阻断剂可阻断风刀的空气流动并由此再引导空气流动并使空气流动聚集于尚未阻塞的DPF过滤器壁的区域。在移走微粒后,可去除阻断剂。

如图1中所示,后处理系统100可配置成限制或去除发动机排气流102中的微粒物质。后处理系统100可包括用于来自内燃机(未示出)的发动机排气流102的系统入口104、系统出口106、还原剂供应器108、第一壳体110,和第二壳体112。系统入口104可将发动机排气流102传递到第一壳体110中。第一壳体110可经由中间管道114与第二壳体112流体连通,其也可流体地连接到还原剂供应器108。第一壳体110可包括柴油机氧化催化器(DOC)116和包含过滤介质134的柴油机微粒过滤器(DPF)118。第二壳体112可包括选择性催化还原(SCR)催化器120和氨氧化(AMOX)催化器122。如图1中的箭头“A”所示,发动机排气流102可穿过系统入口104进入第一壳体110且通过DOC 116。DOC 116可配置成促进发动机排气流102的组成的化学氧化,比如,但不限于,一氧化碳、碳氢化合物,和柴油机微粒的有机馏分(SOF)。

发动机排气流102可从DOC 116穿过用于微粒过滤的DPF 118来到用于连通到后处理系统100的第二壳体112的中间管道114。还原剂(例如,尿素、柴油机排气流体等)供应器108可在中间管道114处与后处理系统100的壳体110、112流体连通。当发动机排气流102穿到包括SCR催化器120和AMOX催化器122的第二壳体112时,还原剂供应器108可将所需还原剂传递到位于DPF 118上游的发动机排气流102中。通常,SCR催化器120可将发动机排气流102中的氮氧化物化学地还原成元素氮,而当发动机排气流102经由系统出口106离开后处理系统100时,AMOX催化器122可配置成还原大量未反应的氨。

参照图2,DPF 118可包括具有圆柱形形状的过滤器主体124。然而,可以使用其它形状和尺寸。过滤器主体124可以是任何合适的尺寸,例如,小于70,000/hr的体积空间速度,其对应于额定工况下的排气流动除以过滤器的体积。体积空间速度可指进入发动机排气流102的体积流率除以DPF 118的体积的商。这样,空间速度可表示每单位时间内可处理的反应器体积的数量,比如例如70,000/hr。过滤器主体124可以由耐腐蚀或耐生锈的金属形成,比如不锈钢。过滤器主体124还可包括过滤器入口130,其设置在过滤器主体124的第一轴向端126处。过滤器入口130可配置成接收进入DPF 118的发动机排气流102。过滤器出口132可设置在过滤器主体124的第二轴向端128处,用于发动机排气流102离开DPF 118。

过滤器主体124可包括邻近过滤介质134设置的过滤器壁240。如本文所使用,邻近过滤器壁240可意味着过滤器壁240邻接过滤介质134或与之间隔开,或者由过滤介质134的至少一部分来限定。另外,邻近甚至可包括设置在过滤介质134和过滤器壁240之间的中间保持器或其它元件。在一个配置中,过滤器壁240可包括过滤介质134或可由过滤介质134形成。过滤器壁240可具有朝向过滤器出口132定向的出口侧244。在另一配置中,独立于过滤介质134的结构可形成过滤器壁240。限定过滤器壁240的结构可包括保持器或其它元件。保持器或其它元件可邻近过滤介质134的一端设置。在一些方面,过滤器壁240可具有朝向过滤介质134定向的入口侧242以及朝向过滤器出口132定向的出口侧244。

另一方面,过滤器主体124可容纳过滤介质134,其配置成将微粒物质从发动机排气流102中分离出去。过滤介质134可包括多孔基底246,以通过收集来自发动机排气流102的微粒物质来促进该分离。在一个实例中,多孔基底246可以是陶瓷。在又一实例中,DPF 118的过滤介质134可以是任何合适的构造,比如本领域中已知类型的沸石壁流多孔基底246。其它多孔基底246可包括,但不限于,氧化钒或二氧化钛。在本公开的某些方面,多孔基底246可包括尺寸被设计成用于收集微粒的管状元件。在一个实例中,过滤介质134可包括布置在管束中的过滤器元件的集合。每个过滤器元件可具有基本上管状形状和多边形横截面,比如例如六边形或八边形横截面。这些过滤器元件通常被一起组成较大的、圆柱形过滤介质134,例如,具有蜂窝式横截面形状。过滤器元件可提供相对大型的表面面积,而微粒物质(比如烟灰和灰烬)可收集于其上。

又一方面,如图3中所示,DPF 118可包括过滤介质334的多孔基底346,其可包括多个由可渗透通道壁350限定的邻近的轴向定向的平行通道348。这些过滤介质334的邻近通道348可在一端被阻塞,从而形成不可渗透壁349。不可渗透壁349可出现在交替的平行通道348而非邻近的平行通道348中。具有处于朝向DPF的第二轴向端128的其不可渗透壁349的通道348是入口通道351。在柴油发动机正常运行期间,入口通道351可接收进入DPF 118的过滤介质334的发动机排气流102。具有处于朝向DPF的第一轴向端126的其不可渗透壁349的通道348可被认为是出口通道353。不可渗透壁349可迫使发动机排气流102流过可渗透通道壁350而不是流过通道348本身,这转而可提供过滤机构来将微粒从发动机排气流102中分离出去。

在本公开的一个方面,DPF 118过滤流过DPF 118的发动机排气流102中的微粒。随着过滤过程的进行,微粒352可收集在过滤介质334中。也就是,在内燃机正常运行期间,发动机排气流102可流入过滤介质334的入口通道351。入口通道351的不可渗透壁349可迫使发动机排气流102流过过滤介质334的可渗透通道壁350并流入邻近出口通道353。发动机排气流102穿过可渗透通道壁350的运动会产生过滤机构,其可将任何微粒352从发动机排气流102中分离出去。这样,微粒352可在入口通道351内收集并朝向不可渗透壁349堆积,同时发动机排气流朝向过滤器出口132流入出口通道353。

如本文所指出并参照图2和图3,该微粒352可包括烟灰、灰烬以及其它有机和无机物质微粒。在正常运行状况下,发动机排气流102在第一轴向端126处进入DPF 118,穿过过滤介质134(微粒352可在此处沉积,例如沉积在入口通道351内),并在第二轴向端128处通过过滤器出口132离开DPF 118。沉积微粒352可随时间的推移而积聚,从而妨碍了过滤器的效率。一般而言,在DPF 118的过滤介质134内积聚的微粒352可通过过滤器再生过程而被定期地去除。该再生过程可经常采用热源(未示出),以氧化或燃烧微粒352。燃烧过程或过滤器再生过程能容易地去除包含烟灰的微粒352,但是包含灰烬的微粒并不能容易地经由燃烧去除。包含灰烬或其它无机物质微粒的微粒352(由于燃烧发动机中的润滑油而产生)可因此随着发动机的常规运行而继续积聚。这样,DPF 118中经由燃烧并不容易被去除的微粒352可在其自身上进行化合。该微粒352可降低用于发动机排气流102流过DPF 118的表面区域,以及最终增加发动机的排气限制和燃料消耗。本文所公开的方法的各方面因而配置成实现移除DPF 118中的残留微粒352,该残留微粒352经由燃烧方法可能尚未被容易地去除。

如图3中所示,微粒352可以引起DPF 118的过滤介质134的堵塞。随着时间的推移,微粒352可形成堆积的壁或柱,阻碍发动机排气流102通过DPF 118从第一轴向端126流至第二轴向端128。转到图4,在传统的去除方法中,DPF 118可以定位在垂直竖直位置处,且具有定向成在重力方向上向下的第一轴向端126。为了去除微粒452,在过滤器壁440的出口侧444处,可引导加压空气流454流过过滤介质134的平行通道451、453的一部分从DPF 418的第二轴向端128流至DPF 418的第一轴向端126。积聚的微粒452和空气通常被迫穿过第一轴向端126流向过滤器入口130。然而,由于在过滤介质134内形成的微粒452堆积,加压空气流454可能不能移除微粒452。进入加压空气流可围绕积聚的微粒452流动。加压空气流454可使用围绕微粒452流动的最小阻力的路径,因而其在移除微粒452方面是低效的。本文所公开的方法配置成促进去除该残留微粒452,所述残留微粒452通过燃烧或过滤器再生过程尚未被去除。

在示出了通道548的图5中的DPF 518的部分横截面的示意图中,举例说明了用于去除DPF 518的微粒552堆积的方法的示例性方面。根据本文所公开的方法,阻断剂556可设置在DPF 518的过滤介质534内。作为实例,阻断剂556可以选择性地应用于过滤介质540的一些部分而无微粒552堆积。也就是,阻断剂556可以选择性地放置在过滤介质的一些部分中,其中没有在过滤介质534中积聚的微粒552的壁或柱。作为实例,阻断剂556可以设置在过滤介质534的出口通道553内。阻断剂556可以选择性地设置,使得引入出口通道553的阻断剂556的量足以达到微粒552的量的物理距离,所述微粒552已在邻近过滤介质534的出口通道353的入口通道551中积聚。

在各个方面,可选择阻断剂556以有效地阻塞流体通过过滤介质534。因此,根据本文所公开的方法的示例性阻断剂556可包括不能容易地流过DPF 518的过滤介质534的可渗透通道壁550的材料。由于材料的固有特性,这些材料可能不能渗透过滤介质534。例如,由于材料的平均粒径,材料可能不能容易地流过过滤介质534。在另一实例中,阻断剂556可能太粘而不允许通过过滤介质534。这样,可以以适当方式将阻断剂556应用到过滤介质,以有效阻塞过滤介质534的所需部分。例如,阻断剂556可以以离散层的形式应用在过滤介质534的所需部分之上。可以采用阻断剂的多个离散层,以实现阻断流体通过过滤介质534。

在具体方面,阻断剂556可以是固体介质。固体介质可以设置在过滤介质534内,以阻塞流体通过过滤介质534。一方面,固体介质可具有可以防止流体通过过滤介质534的平均粒径。另一方面,固体介质可以一定用量被设置在过滤介质534内,使得固体介质的添加阻断流体流过过滤介质534。例如,且并不是限制性的,合适的固体介质阻断剂556可包括沙子、钢砂和玻璃珠。额外的固体介质阻断剂556可包括水溶性粉末。例如,水溶性粉末可包括小苏打和其它水溶性盐。

在特定实例中,烟灰可以是适合的包含固体介质的阻断剂556。作为实例,烟灰可具有的平均粒径通常太大以至于不允许通过过滤介质534。该较大粒径还可解释为何烟灰可以在过滤介质534内积聚。烟灰阻断剂556可以以离散层的形式应用于过滤介质534的一些部分。在一个实例中,烟灰层的厚度可以这样配置以阻塞过滤介质534的一些部分。

又一方面,阻断剂556可包括粘性材料。正是阻断剂556的粘性可以防止阻断剂556容易地穿过过滤介质534。阻断剂556可包括粘性材料。示例性粘性材料可包括粘性树脂,比如虫胶。本领域技术人员可理解的是,虫胶以及同样的粘性材料展示出对由于材料上的应力或力造成的逐渐变形的更强的抵抗力。这样,粘性材料的抗应力性往往可防止材料流过DPF518的过滤介质534。作为实例,粘性材料可抑制通过过滤介质534的多孔基底546。

转到图6,在本公开的一些方面,一旦阻断剂656应用在过滤介质634中,可将流体流引导到过滤介质634的未阻塞区域,以移走在此积聚的微粒652。如上所述,流体流(比如空气流)的使用可以是初步措施,以在应用阻断剂656之前将微粒从DPF 618中去除或移走。然而,阻断剂656的应用可用于在已应用流体流之后促进微粒652从DPF 618中移走。在一个实例中,加压空气流654可以应用于过滤器壁640进入过滤介质634的区域的出口侧644的一些部分,在该部分中尚未应用阻断剂656。可从过滤器壁640的出口侧644处的DPF 618的第二轴向端628引导加压空气流654,以将积聚的微粒652从过滤介质634中移除。如图6中所示,将阻断剂656设置在过滤介质634的所选部分中可将加压空气流654聚集到过滤介质634的平行通道651、653,其包含积聚的微粒652。一方面,可将加压空气流654朝第一轴向端626从第二轴向端628引导到过滤介质634的一些部分中,在所述一些部分中尚未应用阻断剂656。在一个实例中,如果阻断剂556可以选择性地设置在过滤介质634的出口通道553内,那么可将加压空气流654引导到过滤介质的出口通道653中。阻断剂656可选择性地设置,使得引入到出口通道653的阻断剂656的量足以跨越对应于微粒652的量的物理距离,所述微粒652已在过滤介质534的邻近入口通道651中积聚。这样,当将加压空气流654引导到出口通道653中时,阻断剂656可聚集加压空气流554使其通过可渗透通道壁650进入过滤介质634的邻近入口通道651。加压空气流554的力可因此将积聚的微粒652从邻近入口通道651中移除。

在本公开的又一方面,加压空气流654仅代表移走包含灰烬的积聚的微粒652的装置的一个实例。其它适合的移走机构可包括DPF 618的流出物冲洗。合适的流出物可包括水,比如加压水流。

参照图7,在应用阻断剂756和加压空气流754或其它微粒移走机构之后,可以去除阻断剂756。在第二轴向端728处朝第一轴向端726进入的加压空气流754用于迫使微粒从过滤介质734的多孔基底746通过。例如,如果阻断剂756可能已经应用在过滤介质734的出口通道753,那么在移走来自入口通道751的微粒之后,可以使用垂直竖直位置处的DPF 718的流出物冲洗来将残留在出口通道753中的阻断剂756去除。流出物冲洗可包括水。一旦去除了阻断剂756,DPF 718就会被腾空并更新,以重新用于收集发动机排气流102中的微粒物质,所述发动机排气流在过滤器入口730处进入并通过过滤器出口732离开。去除阻断剂的方法可取决于应用于DPF 718的适合的阻断剂756。

一方面,待去除阻断剂756可以是固体介质。固体介质阻断剂756的去除可取决于固体介质的溶解性性质。在一个实例中,阻断剂756可包括水溶性固体介质。水溶性可指固体介质溶入水或在水性介质中形成均匀混合物的能力。如果阻断剂756可包括水溶性固体介质,那么可使用水冲洗将阻断剂756从DPF 718中去除。在水冲洗中,可引起水流过DPF 718,从而溶解水溶性固体介质。示例性但非限制性的水溶性固体介质可包括碳酸氢钠,一般称为小苏打。在另一实例中,阻断剂756可包括非水溶性固体介质,比如沙子、玻璃珠和钢砂。如果将非水溶性固体介质引入过滤介质的出口通道,那么可通过倒置DPF 718去除非水溶性固体介质,使得第二轴向端728被定向成在重力方向上向下。在该定向中,固体介质可以容易地流出过滤介质734的出口通道753。

一方面,阻断剂756可以是包含烟灰的固体介质。如上所述,由于烟灰相对较大的粒径使过滤介质734不可渗透,所以烟灰可以是合适的阻断剂756。在一个实例中,烟灰阻断剂756的阻断剂去除可以包括使用适合的外部热源将过滤介质734的烟灰烧掉。热源可以配置成提供足够高的温度以燃烧阻断剂756而不破坏过滤介质734的多孔基底746。

在另一具体方面,待去除阻断剂756可以包括粘性材料。粘性阻断剂756的去除可以包括应用配置成降低粘度的材料。配置成降低阻断剂756的粘度的材料的应用可以使阻断剂756从过滤介质734中冲刷出来,例如使用流出物。在一个实例中,如果粘性阻断剂756可包括虫胶,那么配置成降低阻断剂756的粘度的材料可以是油漆溶剂,比如涂料稀释剂。

工业实用性

本公开通常可应用于一种通过使用阻断剂来去除积聚在DPF上的微粒的方法。一般而言,该方法规定了阻断剂在DPF的过滤介质中的选择性应用,加压空气穿过过滤介质的过滤通道以移除微粒的方向,以及从DPF的过滤介质中去除阻断剂。

图8根据本公开的一个方面提供了示例性方法800。一方面,可以使用图6和图7中的DPF 618、718实施方法800的一个或多个步骤。可以理解的是,存在一些既不实施图6和图7中描绘的所有微粒去除处理,也不以不同于所描绘的顺序实施所描绘的微粒去除处理的方面。应该注意的是,尽管图8示出了步骤的具体顺序,但可以理解的是,这些步骤的顺序可以与所描绘的顺序不同。也可同时或部分地同时执行两个或多个步骤。进一步地,应该注意的是,一些步骤是任选的,并可以省略。可以理解的是,所有这些变体都在本公开的范围内。

步骤802可包括将阻断剂656应用到DPF 618的过滤介质634中。可以以适当方式应用阻断剂656以便有效地防止流体通过过滤介质634的通道651、653。阻断剂656可以选择性地应用于微粒652尚未在其内积聚的过滤介质634的一些部分。

步骤804可以包括引导流体流在尚未应用阻断剂656的过滤介质634的一些部分中通过过滤器壁640和过滤介质634。可以将流体流,比如加压空气流654,从第二轴向端628朝向DPF 618的第一轴向端626引导到过滤介质534的一些部分中,尚未在过滤介质534的一些部分处应用阻断剂656。加压空气流654可用于移除积聚的微粒652。

步骤806可以包括从过滤介质中去除阻断剂。参照图7,一旦移走微粒,就可去除阻断剂756。阻断剂756的去除可取决于已经应用的阻断剂756的性质。作为实例,可使用外部热源经由过滤介质734中的阻断剂756的燃烧来去除烟灰阻断剂756。作为另一个实例,可以通过应用配置成降低粘性阻断剂756的粘度的材料来去除粘性阻断剂756。然后,可使用适合的流出物将降低粘度的阻断剂756从过滤介质734中冲刷出去以提供腾空的DPF 718用于重复使用。在又一实例中,使用水流出物可将包含水溶性固体介质的阻断剂756从过滤介质734中冲刷出去。

应当理解的是,以上描述仅仅用于说明目的,并不旨在以任何方式限制本公开的范围。因此,本领域的技术人员将理解的是,本公开的其它方面可以从附图、公开内容和所附权利要求书的研究中获得。

可以理解的是,以上描述提供了所公开的系统和技术的实例。然而,可以预期的是,本公开的其他实施方式在细节上可不同于以上实例。所有对本公开或其实例的引用旨在参考在该点被讨论的特定实例且不旨在概括地暗示对本公开的范围的任何限制。关于某些特征的差别和贬低的所有语言旨在指出缺乏对这些特征的偏好,但不是将这些特征完全排除在本公开的范围之外,除非另外指出。

除非本文另外指出,否则本文对数值范围的叙述仅仅旨在充当一种速记方法,分别指落入范围内的各单独数值,并且每个单独数值包含在说明书内,如同本文个别列举一样。本文所述的所有方法可以任何合适的顺序进行,除非本文另外指出或者明显与上下文相抵触。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1