用于发电机的转子的制作方法

文档序号:12286116阅读:791来源:国知局
用于发电机的转子的制作方法与工艺

本发明涉及用于发电机的转子。

本发明主要开发用于水利发电机的转子。此类发电机用来将诸如水和风等流动流体的动能转换成电力。



背景技术:

诸如水和风等流动流体中的动能是用于发电的能源,诸如生物燃料和化石燃料的已知替代物。例如,不同于生物燃料和化石燃料在用于发电的同时会将有害的燃烧气体排放到大气中,通过使用流动流体发电对大气没有不利的影响或影响很小。

用于收获风能的已知装置通常具有较低的运行成本,然而它们的安装比较昂贵并且发电能力相对较低。另一方面,用于收获水能(例如,潮汐能)的已知装置具有相对较高的发电能力。

已知的水力发电机通常具有转子,该转子包括中心轮毂,两个或更多向外延伸的叶片附接到中心轮毂。转子由驱动轴连接到旋转式功到电力转换器(即,发电机)。流经转子叶片的流体导致叶片旋转,继而导致转换器旋转并且发电。

已知的转子具有相对较小直径的轮毂和相对细长的叶片。叶片还具有相对较高的长宽比(即,叶片长度与叶片宽度之比)。此类叶片易产生较高的工作负载并且经受湍流流体流中的极限弯矩。这一般会导致叶片断裂。

发明目标

本发明的目标是大体上克服或至少改善上述缺点。



技术实现要素:

在第一方面,本发明提供用于水力发电机的转子,包括:

轮毂,其具有圆形截面形状和纵向旋转轴,

多个叶片,每个叶片都具有近端叶根和远端叶尖,叶片叶根中的每个都安装到轮毂的最宽部分,

其中叶片的叶尖的直径与轮毂的最宽部分的直径之比小于约2:1。

优选地,叶片的叶尖的直径与轮毂的最宽部分的直径之比在约1.2:1与2:1之间。

优选地,叶片的叶尖的直径与轮毂的最宽部分的直径之比是约1.5:1或1.6:1。

在一个实施例中,叶片的叶尖的直径在约3.6与4.8米之间,并且轮毂的最宽部分的直径是2.4米。

在另一实施例中,叶片的叶尖的直径在约30与32米之间,并且轮毂的最宽部分的直径是20米。

在叶片叶根中的每个安装到轮毂的区域中,轮毂表面的剖面半径优选介于轮毂的最宽部分的半径的1/6与相等之间。

附图说明

现在将参考附图仅通过实例的方式来描述本发明的优选实施例,在附图中:

图1是转子的第一实施例的正视图;

图2是带有流线的图1所示转子的立体图;以及

图3是具有第二实施例的转子的水力发电机的截面侧视图。

具体实施方式

图1和图2示出用于适合安装在潮汐流环境中的水力发电机的转子10。转子10包括轮毂12,所述轮毂具有圆形截面形状和纵向旋转轴14。转子10还包括7个等角度间隔开的叶片16。轮毂10由玻璃强化塑料(GRP)或金属表皮形成,并且叶片16由碳纤维金属复合材料形成。

叶片16中的每个都具有近端叶根16a和远端叶尖16b。叶片16中的每个都在叶根16a处安装到轮毂14,安装在轮毂14的最宽部分。轮毂14的最宽部分的直径示为直径D1。叶片16的叶尖16b的直径示为直径D2。在所示实施例中,直径D2:D1之比是约1.4:1。

图2示出相对于流体流的流线18的转子10,说明当流体在轮毂12周围流动时,其速度增加。随着流体加速和局部速度增加,局部压力减少。这种压力减少导致流体保持集中在轮毂12的周围。因此,流体的自由流中的能量集中在叶片16的区域中。

描述上述D2:D1比例的另一种方式是:与叶片16的长度相比,轮毂12的直径相对较大。相对较大的轮毂直径D1有利地起到双重功能:1.集中流过的水流中的能量;以及2.支持相对更大数量的更小且更坚固的、各自具有较低的长宽比的叶片16。

关于后一个问题,叶片的弯矩是叶片的长宽比的函数。例如,具有8:1长宽比的叶片将导致叶根中的应力值比具有4:1长宽比的相同叶片高16倍。在具有相对较小直径的轮毂的已知3叶片转子中,由于轮毂的直径限制,叶片在叶根处可只具有有限的弦长。弦长的这种限制意味着否则当需要理想翼面时,叶片叶根厚度必须增加,以提供足够的强度。

安装到相对较小轮毂的相对较长叶片还导致在给定的转数/分钟(RPM)下出现较低的表观速度和较小的转矩半径。

较厚的叶根(尤其是在叶片的下部1/3中)与较低的表观速度和较小的转矩半径相结合,导致对此类(已知)3叶片转子的总功率贡献降低。这是因为在较小轮毂/较大3叶片配置中的叶片外部1/3做了功的63%。这是构成总表面积的56%的叶片外部30%的扫掠面积和产生可忽略的功率的叶片内部30%的组合。

相比之下,转子10的配置(即,相对较大的轮毂14、相对较短的叶片16、数量相对多的叶片16)将流体流重新引导并且集中在内部2/3区域,并且通过可提取100%功率的外部1/3区域来使其加速。有利的是,这意味着叶片16以最大能力操作的同时经历较低的应力负载。

换言之,转子10的D2:D1比例将叶片16放在具有理想叶片长度的轮毂12周围的加速区以在该区中操作。如果叶片相对于轮毂的直径太长,那么叶片叶尖反而在没有流体加速的区域中操作,并且因此不贡献正转矩。

图3示出具有第二实施例的转子32的水力发电机30。转子32具有轮毂34和十个叶片36。图3还示出叶片叶根安装梁38、叶片安装轮毂40、固定主轴42、驱动轴44、齿轮箱46、支撑梁48、水封50、轴承52以及旋转发电机54。梁48用来将发电机30连接到浮动的部署装备(未示出)。

图3中还示出半径R,该半径是轮毂34的在轮毂34和叶片36相连接的区域中的剖面半径。在所示优选配置中,半径R是轮毂34的半径的1/6。这个特定的比例将流的加速度最大化,同时避免湍流。

发电机30的一种优选形式具有下列规格:

轮毂直径D1:2.4米

叶片叶尖直径D2:4.8至3.6米

发电范围:50至300kW

流速范围:1.2至4.2m/sec

叶片叶尖直径与轮毂直径之比:2:1到1.5:1

发电机30的另一优选形式具有下列规格:

轮毂直径D1:20米

叶片叶尖直径D2:32至30米

发电范围:0.5至5MW

流速范围:1.2至4.0m/sec

叶片叶尖直径与轮毂直径之比:1.6:1至1.5:1

由于上述(相对较大)轮毂直径与(相对较小)叶片直径之比,水力发电机具有若干优点。

第一,流体流中的能量在一组小叶片上集中并且加速,从而提高转子的效率。

第二,多个(例如,7个)较小叶片的总体积小于少量(例如,3个)较大叶片的体积,从而降低制造成本。

第三,较小叶片具有较低的长宽比,等同于叶片叶根中的较低弯矩和较低的叶片断裂概率。

第四,流在较小叶片上的入流速度和入射角更接近叶片跨度上的统一值。这等同于叶片在跨度上的扭转几乎为零,并且允许叶片在桨距控制下铰接,而不产生任何叶片扭转导致的性能损失。此外,在操作期间调节桨距的能力意味着转子可在独立于流速的恒定rpm下运行。这允许发电机在直接连接到电网的恒定rpm下运行,从而消除电频率逆变器驱动系统的成本。

第五,在快速流动潮汐流中操作的转子经受流中较高的湍流强度。在较大轮毂周围的水的流动加速度的作用会降低进入叶片区域的湍流的强度。这提高了叶片在高度湍流环境中的抗毁性。

尽管已参考优选实施例描述了本发明,但所属领域的技术人员将了解,本发明可体现在其他形式中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1