使用自主执行阀的高压压缩机扩张放气口的制作方法

文档序号:11231401阅读:544来源:国知局
使用自主执行阀的高压压缩机扩张放气口的制造方法与工艺

本发明大体上涉及一种燃气涡轮发动机压缩机放气口,并且确切地说,涉及一种从两个或更多个压缩机级提取两个或更多个部分的压缩机空气的放气口。



背景技术:

燃气涡轮发动机,例如飞行器旁路涡轮风扇发动机,可以在多级轴流式压缩机级之间放气或提取空气,以用于各种用途,如于2001年12月4日授予breeze-stringfellow等人的标题为“高恢复多应用放气口”的美国专利6,325,595所述。所提取的空气通常称为二次空气,并且用于涡轮冷却、热腔清洗、防止结冰、压缩机间隙控制或者涡轮间隙控制,并且由于是供发动机使用,因此通常称为机内放气。二次空气还通常用于压缩飞行器机舱以及其他飞行器用途,因此称为燃烧器放气。机内放气流含量通常是压缩机流的恒定百分数(如,2%),而客户放气要求通常不同(如,0-10%)。

典型的涡轮风扇型燃气涡轮发动机通常包括前风扇以及升压器或低压压缩机、中部核心发动机以及低压涡轮,用于为风扇以及升压器或低压压缩机提供动力。所述核心发动机包括以串行流关系连接在一起的高压压缩机(hpc)、燃烧器和高压涡轮(hpt)。所述核心发动机的高压压缩机和高压涡轮通过高压轴连接。来自高压压缩机的高压空气与燃烧器中的燃料混合并且点燃,以形成高能量气体流。所述气体流流过高压涡轮,以可旋转方式驱动该高压涡轮和高压轴,该高压轴进而以可旋转方式驱动高压压缩机。

离开高压涡轮的气体流膨胀穿过第二或低压涡轮(lpt)。所述低压涡轮提取气体流中的能量,用于经由低压轴以可旋转方式驱动风扇和升压压缩机。所述低压轴延伸穿过高压转子。所产生的大多数推力是由风扇产生的。船用或工业用燃气涡轮发动机具有低压涡轮,所述低压涡轮为发动机、船推进器、泵和其他装置提供动力,而涡轮螺旋桨发动机通常通过齿轮箱来使用低压涡轮驱动加螺旋桨。

典型的涡轮风扇飞行器发动机首先以低动力闲置模式操作,然后经历动力提升以便进行起飞和爬升操作。达到所需飞行高度下的巡航时,发动机以较低或中间动力设置操作。随着飞行器高度下降并且降落在跑道上,发动机也以较低动力操作,之后当发动机再次以高动力操作时,通常使用反推力操作。

一些发动机具有设置在hpc外径(od)壳体处的放气口,用于供应机内和客户所用的空气。该等放气口如能从最远的hpc级收集放气,将有益于减小排出高热函流体所产生的负循环效果。但是,使用来自前hpc级的放气具有二次流回路驱动压力较小的负面效应。因此,需要提高从odhpc放气口供应到二次流回路的放气的流动压力。



技术实现要素:

本发明提供一种燃气涡轮发动机压缩机放气组件(40),包括:环状放气增压室(43),所述环状放气增压室径向设置在外壳(50)与内壳(52)之间,所述外壳和内壳环绕压缩机(18)的压缩机流动通道(39);上游放气口(54)和下游放气口(56),其设置成穿过所述内壳(52)并且分别在压缩机(18)的上游级(44)和下游级(46)处,径向地位于压缩机流动通道(39)与放气增压室(43)之间;放气通道(62),所述放气通道从下游放气口(56)经由放气增压室(43)延伸到放气出口(42)之外,所述放气出口径向设置成穿过外壳(50);以及设置在放气通道(62)中的自主执行阀(60)。

所述自主执行阀(60)可以设置在下游放气口(56)中,并且可以是提升阀(60),并且可以设置成在起飞和/或爬升时打开。

所述上游级(44)和下游级(46)可以是压缩机(18)中的相邻级或者压缩机(18)中的隔开两级或多级的不相邻级。

放气出口(42)可以是客户和机内或发动机放气出口(72、74),其径向设置成穿过外壳(50)并且与环状放气增压室(43)放气流体连通。

环状放气增压室(43)可以是环状前放气增压室(80)和后放气增压室(82)中的一个,径向设置在径向隔开的环状外壳(50)与内壳(52)之间并且环绕压缩机流动通道(39)。放气出口(42)可以是前放气出口(84)和后放气出口(86)中的一个,所述前放气出口和后放气出口分别与所述前放气增压室(80)和后放气增压室(82)放气流体连通,并且径向设置成穿过外壳(50)。上游放气口(54)和下游放气口(56)可以设置成穿过内壳(52)并且分别在压缩机(18)的上游级(44)和下游级(46)处,径向地位于所述压缩机流动通道(46)与前放气增压室(80)和后放气增压室(82)之间。放气通道(62)可以从下游放气口(56)经由前放气增压室(80)和后放气增压室(82)延伸到前放气出口(84)之外,并且所述自主执行阀(60)可以设置在放气通道(62)中。所述自主执行阀(60)可以设置在舱壁(88)或者外壳(50)的径向向内悬垂环状法兰(90)中,轴向地分隔前放气增压室(80)与后放气增压室(82)。

附图说明

图1是截面示意图,其示出了具有高压压缩机部分的燃气涡轮发动机,所述高压压缩机部分具有位于放气通道中的自执行放气阀示例性实施例,用于流动来自末级放气口的扩张放气。

图2是截面放大示意图,其示出了图1中所示的位于放气通道中的自执行放气阀示例性实施例,用于流动来自末级放气口的扩张放气。

图3是放大截面示意图,其示出了图2中所示的放气通道的一个替代示例性实施例。

图4是放大截面示意图,其示出了图2中所示的放气通道的另一个替代示例性实施例。

图5是放大截面示意图,其示出了图2中所示的用作自执行放气阀的示例性实施例的提升阀。

具体实施方式

图1中示出了飞行器涡轮风扇燃气涡轮发动机10,该飞行器涡轮风扇燃气涡轮发动机环绕发动机中心线12并且适当地设计成安装到飞行器的机翼或机身。发动机10包括(以下游连续流连通):风扇14、多级低压压缩机或升压器16、高压压缩机18、燃烧器20、多级高压涡轮(hpt)22以及低压涡轮(lpt)24。核心发动机25包括hpt或高压涡轮22,其通过高压驱动轴23驱动地连接到高压压缩机18和燃烧器20。lpt或低压涡轮24通过低压驱动轴26驱动地连接到风扇14和升压器16。

图1和2中示意性示出的示例性涡轮风扇飞行器燃气涡轮发动机高压压缩机(hpc)18包括压缩机放气组件40,所述压缩机放气组件具有与高压压缩机(hpc)18的第一或上游级44和第二或下游级46流体连通的至少一个放气出口42。可以设置圆形排的放气出口42。上游级44和下游级46可以是hpc18中的轴向相邻级,例如低第五级5和第六级6。当然,来自上游级44的放气的压力低于下游级46的压力。

放气出口42是放气管41的入口,并且用于从上游级44与下游级46之间的压缩机流动通道39中的压缩机流38中提取压缩机放气流34。放气出口42与环状放气增压室43流体连通并且用作其出口,所述环状放气增压室周向设置在径向隔开的环状外壳50与内壳52之间。放气出口42径向设置成穿过外壳50。放气管41提供压缩机放气,以用作客户和机内放气64或者发动机放气66。

压缩机18的上游级44和下游级46的上游放气口54和下游放气口56设置成穿过内壳52。高压放气通道62从下游放气口56经由放气增压室43延伸到放气出口42之外,所述放气出口径向设置成穿过外壳50。图示成提升阀60的自主执行阀设置在高压放气通道62起点处的下游放气口56中。自主执行阀或提升阀60在高压操作或者任务或飞行期间的漂移期间,可操作地使用来自下游级46的较高压压缩机放气来增大来自上游级44的较低压压缩机放气。

用于使用压缩机放气组件40的示例性方法可供应图示为提升阀60的一个或多个自主执行阀,所述自主执行阀在巡航时保持关闭,并且使巡航放气处于较低级,以实现巡航优化。提升阀60设置成在起飞和/或爬升时打开,以使用来自下游级46的较高压压缩机空气增大压缩机放气流34的压力。

可以使用多个放气出口42,例如客户和机内或发动机放气出口72、74,如图3中所示。客户和机内或发动机放气出口72、74与放气增压室43流体连通并且用作其出口,所述放气增压室周向设置在径向隔开的环状外壳50与内壳52之间。客户和机内或发动机放气出口72、74径向设置成穿过外壳50。可以围绕并且穿过外壳50设置多个客户或发动机放气出口72以及多个机内或发动机放气出口74。

客户或发动机放气出口72和客户或发动机为放气出口74可以成排地设置成围绕并且穿过外壳50。图3中示出了压缩机放气组件40的一个实施例,所述压缩机放气组件具有客户和机内或发动机放气出口72、74,所述客户和机内或发动机放气出口径向设置成穿过外壳50,以使其能够用于客户和机内空气供应。

客户和机内或发动机放气出口72、74用于客户和机内空气供应。该等放气如果是从最远的hpc级收集的,将有益于减小排出高热函流体所产生的负循环影响。但是,使用来自更前方的hpc级的放气具有二次流回路驱动压力较小的负面效应。本说明书中所用的自主执行阀或提升阀60解决了提高从odhpc放气口供应到二次流回路的空气的流动压力的问题。性能优势包括使用较低压压缩机级使巡航放气满足增压室加压要求。由于能够将法兰置于良好的位置以进行间隙控制,因而可以减轻重量。还能够缩短压缩机轴向长度。

图4中示出了压缩机放气组件40的一个实施例,所述压缩机放气组件具有分别与前放气出口84和后放气出口86流体放气连通的环状前放气增压室80和后放气增压室82。前放气出口84和后放气出口86径向设置成穿过外壳50。前放气增压室80和后放气增压室82对应于用作客户和机内或发动机放气出口72、74的前放气出口84和后放气出口86。前放气增压室80和后放气增压室82由舱壁88轴向隔开,该舱壁在本说明书中图示为外壳50的径向向内悬垂的环状法兰90。分别从压缩机18的上游级44和下游级46通向前放气增压室80和后放气增压室82的上游放气口54和下游放气口56设置成穿过内壳52。

一个高压放气通道62从下游放气口56延伸穿过后放气增压室82,然后穿过环状法兰90中的孔87进入前放气增压室80中。图示为提升阀60的自主执行阀设置成穿过孔87,以允许来自后放气增压室82的较高压放气流入前放气增压室80中并且在提升阀60打开时,升高来自上游放气口54的放气的压力。在此操作期间,来自上游级44的较低压压缩机放气与来自下游级46的较高压压缩机放气混合,通常是在高压操作或者任务或飞行期间的漂移期间。

示例性提升阀60适当地设计用于图5中所述的压缩机放气组件40中。提升阀60包括中空主体91,所述中空主体具有其内设置了提升阀94的筒体92。提升阀94的第一端95固定在上端98的球座96或者中空主体91的出口104中,并且通过弹簧99相对于中空主体91受弹簧力作用。中空主体91具有带螺纹的下端100,用于将提升阀60安装在环状法兰90或外壳50的带螺纹孔102中。中空主体91的入口101包括受控孔106。孔106设计成作为用于控制流量的节流点工作,即便是在提升阀出现故障的情况下。

尽管本说明书中所描述内容视作本发明的优选和示例性实施例,但是所属领域中的技术人员可根据本说明书的教示显而易见地了解到本发明的其他修改,因此,由于所有该等修改均落在本发明的实际精神和范围内,因此也包括在随附权利要求书中。因此,美国专利证所保护的是由随附权利要求书所限定和区分的本发明。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1