内燃机的排气净化装置和内燃机的排气净化方法与流程

文档序号:14985899发布日期:2018-07-20 21:14阅读:153来源:国知局

本发明涉及内燃机的排气净化装置和内燃机的排气净化方法。



背景技术:

在内燃机的排气通路中有时具备捕集排气中的粒子状物质(以下也称为pm)的过滤器。如果被过滤器捕集到的pm量(以下也称为pm堆积量)达到一定量,则实施使pm氧化来将其除去的处理。将所述处理称为过滤器的再生。为了将被过滤器捕集到的pm氧化,需要过滤器的温度成为规定温度以上、并且向过滤器流入的排气的氧浓度成为规定浓度以上。

在此,对于柴油发动机,已知进行过滤器的再生的技术(例如参照日本特开2002-276443)。在相关技术中,将燃料喷射设为包括前期的燃料喷射和后期的燃料喷射的多段喷射,并且,将前期的燃料喷射正时设定为比通常运转的适当喷射正时早的正时来使nox的产生量增加,且将后期的燃料喷射正时设定为比通常运转的适当喷射正时晚的正时来使排气温度上升。

另外,对于汽油发动机而言,通常以理论空燃比运转,因此在过滤器内流通的排气的氧浓度较低。因此,向过滤器供给氧被限于内燃机以大于理论空燃比的空燃比运转的情况、由于减速等而进行了燃料切断的情况等。



技术实现要素:

在此,有时需要在内燃机冷起动时进行过滤器的再生。但是,在内燃机冷起动时,过滤器的温度较低,因此即使是向过滤器流入的排气的氧浓度充分高的情况,在过滤器的温度变得充分高之前不进行过滤器的再生。如果直到进行过滤器的再生为止的时间长,则例如会由于发生过滤器的堵塞而导致内燃机的输出降低。因此,希望使过滤器的温度迅速上升。

在此,已知在过滤器的上游侧设置具有氧化能力且容量小的催化剂的构成。在所述构成中,由于催化剂的容量比过滤器小,因此即使是内燃机起动时,催化剂的温度也容易上升。而且,如果催化剂的温度达到活性温度,则通过在所述催化剂中使燃料与氧反应,能够使排气的温度进一步上升。通过所述的温度较高的排气从催化剂的下游的过滤器中通过,能够使所述过滤器的温度上升到过滤器的再生所需要的温度。但是,在过滤器的再生中,催化剂的温度会进一步上升从而过热,存在催化剂热劣化的可能性。

本发明提供高效率地抑制催化剂的热劣化并且在内燃机起动后提早地实施过滤器的再生的内燃机的排气净化装置和内燃机的排气净化方法。

本发明的第1方案的内燃机的排气净化装置,具备:设置于内燃机的排气通路的第一催化剂;过滤器,其设置于所述第一催化剂的下游的排气通路,被构成为捕集排气中的粒子状物质;和电子控制单元,其被构成为在所述内燃机起动时实施所述过滤器的再生的情况下,执行使所述第一催化剂的温度上升至规定温度的第一控制。所述第一催化剂具有氧化能力和氧吸藏能力,所述过滤器担载第二催化剂,所述第二催化剂是具有氧化能力和氧吸藏能力的催化剂。所述电子控制单元被构成为在所述第一控制之后实施第二控制。所述第二控制是交替地多次实施稀控制和浓控制的控制。所述稀控制是在比从将所述内燃机的目标空燃比设定成为规定稀空燃比的时间点到从所述第一催化剂流出的排气的空燃比变得大于理论空燃比的时间点的期间长的整个期间,将所述目标空燃比设定为所述规定稀空燃比的控制,所述规定稀空燃比是大于理论空燃比的空燃比。所述浓控制是在比从将所述目标空燃比设定成为规定浓空燃比的时间点到从所述第一催化剂流出的排气的空燃比变得小于理论空燃比的时间点的期间长的整个期间,将所述目标空燃比设定为所述规定浓空燃比的控制,所述规定浓空燃比是小于理论空燃比的空燃比。

根据本发明的第1方案,第一控制例如是使温度高的气体从内燃机流出的控制。如上所述,通过使向第一催化剂流入的排气的温度上升,能够主要使第一催化剂的温度上升。在实施着第一控制时,排气的热被第一催化剂夺取,因此在第一催化剂的下游具有的过滤器的温度上升变得缓慢。再者,规定温度可以设为第一催化剂所要求的温度的下限值,也可以设为第一催化剂活化的温度。另外,也可以将规定温度设定得比前述的温度高。

而且,在实施第一控制之后实施第二控制。在第二控制中,使内燃机的目标空燃比变动成为规定浓空燃比和规定稀空燃比。在此,能够通过在第一催化剂中使未燃燃料(hc、co)氧化来使第二催化剂的温度稍微上升。但是,在从第一催化剂到第二催化剂的排气通路中,热会向排气通路的外部释放,因此为了使第二催化剂的温度上升,需要许多的未燃燃料,第二催化剂的升温需要时间。另外,如果为了实施过滤器的再生而在第一催化剂中产生热,则存在第一催化剂的温度与通常相比变得过高从而所述第一催化剂热劣化的可能性。对此,如果能够通过在第二催化剂中使未燃燃料氧化来在第二催化剂中产生热,则能够高效率地抑制第一催化剂的热劣化,并且高效率地抑制热向排气通路的外部释放。

因此,浓控制至少实施到小于理论空燃比的空燃比(以下也称为浓空燃比)的排气从第一催化剂流出之后为止,稀控制至少实施到大于理论空燃比的空燃比(以下也称为稀空燃比)的排气从第一催化剂流出之后为止。即,通过持续进行浓控制,浓空燃比的排气从第一催化剂流出,因此能够向第二催化剂主要供给未燃燃料。另外,通过持续进行稀控制,稀空燃比的排气从第一催化剂流出,因此能够向第二催化剂主要供给氧。因此,通过交替地实施浓控制和稀控制,能交替地对第二催化剂主要供给未燃燃料和主要供给氧,因此在第二催化剂中未燃燃料被氧化。由此,在第二催化剂中产生热,因此能够使第二催化剂的温度上升。而且,如果在过滤器的温度变得充分高时实施稀控制,则被过滤器捕集到的pm被氧化。

如上所述,通过交替地执行浓控制和稀控制,第二催化剂的温度迅速上升。另外,由于未燃燃料从第一催化剂流出,因此相应地由第一催化剂氧化的未燃燃料的量减少。因此,在第一催化剂中产生的热减少,因此能够高效率地抑制第一催化剂的温度上升,因此能够高效率地抑制第一催化剂的热劣化。因此,通过在利用第一控制使第一催化剂的温度迅速上升之后实施第二控制,能够高效率地抑制第一催化剂的热劣化、并且提早地实施过滤器的再生。

在本发明的第1方案中,所述电子控制单元可以被构成为:在所述第一催化剂的温度达到了所述第一催化剂所要求的温度的下限值的时间点,判定为所述第一催化剂的温度上升到了所述规定温度,使所述第一控制结束并且开始所述第二控制。

根据本发明的第1方案,第一催化剂所要求的温度的下限值,是能够在第一催化剂中氧化未燃燃料的温度,可以设为第一催化剂活化的温度。另外,第一催化剂所要求的温度的下限值,也可以设为使第一催化剂中的未燃燃料的净化率变为允许范围的温度。如果第一催化剂的温度达到第一催化剂所要求的温度的下限值,则能够通过第一催化剂来净化排气。因此,能够使过滤器的温度上升优先于第一催化剂的温度上升。通过从第一催化剂的温度容易上升的第一控制切换为过滤器的温度容易上升的第二控制,能够使过滤器的温度迅速上升。

在本发明的第2方案的内燃机的排气净化方法中,所述内燃机包含第一催化剂和过滤器,所述第一催化剂设置于排气通路,所述过滤器设置于所述第一催化剂的下游的排气通路,被构成为捕集排气中的粒子状物质,所述第一催化剂具有氧化能力和氧吸藏能力,所述过滤器担载第二催化剂,所述第二催化剂是具有氧化能力和氧吸藏能力的催化剂,所述内燃机被构成为利用电子控制单元进行控制,所述排气净化方法具备以下步骤:在所述内燃机起动时实施所述过滤器的再生的情况下,由所述电子控制单元执行使所述第一催化剂的温度上升至规定温度的第一控制;以及,在所述第一控制之后,由所述电子控制单元实施第二控制,所述第二控制是交替地多次实施稀控制和浓控制的控制,所述稀控制是在比从将所述内燃机的目标空燃比设定成为规定稀空燃比的时间点到从所述第一催化剂流出的排气的空燃比变得大于理论空燃比的时间点的期间长的整个期间,将所述目标空燃比设定为所述规定稀空燃比的控制,所述浓控制是在比从将所述目标空燃比设定成为规定浓空燃比的时间点到从所述第一催化剂流出的排气的空燃比变得小于理论空燃比的时间点的期间长的整个期间,将所述目标空燃比设定为所述规定浓空燃比的控制,所述规定稀空燃比是大于理论空燃比的空燃比,所述规定浓空燃比是小于理论空燃比的空燃比。

在本发明的第2方案中,也可以在所述第一催化剂的温度达到了所述第一催化剂所要求的温度的下限值的时间点,判定为所述第一催化剂的温度上升到了所述规定温度,并利用所述电子控制单元来使所述第一控制结束并且开始所述第二控制。

根据本发明的方案,能够高效率地抑制催化剂的热劣化并且在内燃机起动后提早地实施过滤器的再生。

附图说明

下面,参照附图对本发明的例示性实施方式的特征、优点、以及技术上和工业上的显著意义进行说明,在所述附图中,相同的标记表示相同的要素,其中,

图1是表示实施例涉及的内燃机以及内燃机的进气系统和排气系统的概略构成的图。

图2是表示在内燃机起动后实施过滤器的再生时的内燃机转速、内燃机的目标空燃比、第一催化剂以及过滤器的温度的推移的时间图。

图3是表示实施例涉及的升温控制的流程的流程图。

图4是表示第一控制的流程的流程图。

图5是表示第二控制的流程的流程图。

具体实施方式

以下,参照附图,基于实施例来例示性地详细说明本发明的实施方式。但是,本实施例中记载的构成部件的尺寸、材质、形状、构成部件的相对配置等,只要没有特别记载,就并不将本发明的范围仅限定于此。

<实施例>

图1是表示本实施例涉及的内燃机1以及内燃机的进气系统和排气系统的概略构成的图。图1所示的内燃机1是汽油发动机。内燃机1被装载于例如车辆。排气通路2与内燃机1连接。在所述排气通路2的途中,从上游侧起依次设有作为三元催化剂的第一催化剂3、和担载作为三元催化剂的第二催化剂4的过滤器41。

第一催化剂3和第二催化剂4具有氧吸藏能力。即,在排气的空燃比大于理论空燃比时吸藏氧,在排气的空燃比小于理论空燃比时释放氧。另外,第一催化剂3和第二催化剂4具有氧化能力。过滤器41捕集排气中的pm。

在第一催化剂3的上游的排气通路2设有检测排气的温度的第一温度传感器11。另外,在第一催化剂3的下游且过滤器41的上游的排气通路2设有检测排气的温度的第二温度传感器12。能够基于第一温度传感器11或第二温度传感器12的检测值来检测第一催化剂3的温度。另外,能够基于第二温度传感器12的检测值来检测过滤器41的温度。再者,也能够基于内燃机1的运转状态来推定第一催化剂3和过滤器41的温度。

另外,在第一催化剂3的上游的排气通路2设有检测排气的空燃比的第一空燃比传感器13。在第一催化剂3的下游且过滤器41的上游的排气通路2设有检测排气的空燃比的第二空燃比传感器14。再者,第一空燃比传感器13和第二空燃比传感器14也可以设为检测排气中的氧浓度的氧浓度传感器。

另外,在内燃机1上安装有向所述内燃机1供给燃料的喷射阀6。而且,在内燃机1上设有使气缸内产生电火花的火花塞9。另外,进气通路7与内燃机1连接。在进气通路7的途中设有调整内燃机1的吸入空气量的节气门8。在节气门8的上游的进气通路7安装有检测内燃机1的吸入空气量的空气流量计19。

如以上所述那样构成的内燃机1,同时设有用于控制所述内燃机1的电子控制单元ecu10。所述ecu10根据内燃机1的运转条件、驾驶员的要求来控制内燃机1。除了所述传感器以外,油门开度传感器17和曲轴位置传感器18也经由电配线与ecu10连接,所述油门开度传感器17输出与驾驶员踏下油门踏板16的量相应的电信号并检测内燃机负荷,所述曲轴位置传感器18检测内燃机转速,所述各种传感器的输出信号被输入到ecu10。另一方面,喷射阀6、节气门8、火花塞9经由电配线与ecu10连接,由所述ecu10控制所述的设备。

ecu10基于内燃机1的运转状态(例如,内燃机转速和油门开度)来设定目标空燃比。而且,控制节气门8和喷射阀6以使得实际的空燃比变为目标空燃比。在本实施例中,在提到稀空燃比的情况下,只要不特别说明,就表示大于理论空燃比的空燃比,在提到浓空燃比的情况下,只要不特别说明,就表示小于理论空燃比的空燃比。

另外,ecu10推定过滤器41的pm堆积量。pm堆积量可以基于过去的内燃机转速和内燃机负荷来推定,也可以基于过滤器41的上游和下游的排气的压力差来推定。通过使过滤器41的温度变为pm氧化的温度以上、并且向过滤器41供给氧,堆积于所述过滤器41的pm被氧化除去。

在内燃机1起动时,在pm堆积量为规定量以上的情况下,ecu10实施过滤器41的再生。在此所说的规定量,是需要过滤器41再生的pm堆积量。因此,在内燃机1起动时,在pm堆积量为规定量以上的情况下,ecu10使过滤器41的温度上升至pm氧化的温度(以下称为pm氧化温度)。此时,依次实施使第一催化剂的温度上升至规定温度的第一控制、和使过滤器41的温度上升至pm氧化温度以上的第二控制。

在第一控制中,例如,采用日本特开平11-324765或日本特开2001-182586中所记载的方法,来使温度高的气体从内燃机1排出。

例如,控制喷射阀6的燃料喷射量和燃料喷射正时以及火花塞9的点火正时来进行分层燃烧,以使得在火花塞9执行点火时在火花塞9周围不均匀地存在的混合气层的空燃比变为浓空燃比且能够着火的空燃比、而且所述混合气层变为能够着火的雾化状态。于是,使火花塞9的周围的混合气层的空燃比成为了浓空燃比,因此在主燃烧(火花塞9火花点火所引起的着火和其后的火焰蔓延所引起的燃烧)时会生成不完全燃烧物(co),在主燃烧后所述co也残留在燃烧室内。另外,在主燃烧后也在混合气层的周围残留氧。所述残留co和残留氧,通过主燃烧后的气缸内的气体流动而混合、再燃烧,由此排气的温度上升。再者,关于使温度高的气体从内燃机1排出的方法,也可采用其他的众所周知的技术。

如上所述,在第一控制中,如果内燃机1的排气的温度变高,则第一催化剂3的温度上升。此时,第一催化剂3的温度迅速上升,但由于排气的热在第一催化剂3中被夺取,从而过滤器41的温度上升变得缓慢。在第一控制实施中第一催化剂3的温度达到了规定温度(例如活化温度)的时间点,ecu10从第一控制切换成为第二控制。

在第二控制中,使内燃机1的目标空燃比交替地变动成为规定稀空燃比和规定浓空燃比,所述规定稀空燃比是大于理论空燃比的空燃比,所述规定浓空燃比是小于理论空燃比的空燃比。此时,ecu10交替地多次实施稀控制和浓控制,所述稀控制是在比从将内燃机1的目标空燃比设定成为规定稀空燃比的时间点到从第一催化剂3流出的排气的空燃比变为规定稀空燃比的时间点的期间长的整个期间,将目标空燃比设定为规定稀空燃比的控制,所述规定稀空燃比是大于理论空燃比的空燃比;所述浓控制是在比从将目标空燃比设定成为规定浓空燃比的时间点到从所述第一催化剂3流出的排气的空燃比变为规定浓空燃比的时间点的期间长的整个期间,将目标空燃比设定为规定浓空燃比的控制。再者,以下,将空燃比小于理论空燃比的排气也表示为浓气体,将空燃比大于理论空燃比的排气也表示为稀气体。

在本实施例中,也可以使内燃机1的目标空燃比变动成为规定稀空燃比和规定浓空燃比,以使得将1次浓控制的期间和与所述浓控制的期间相邻的1次稀控制的期间加起来的期间中的内燃机1的目标空燃比的平均值变为理论空燃比。第二控制可由ecu10通过调整来自喷射阀6的燃料喷射量以及节气门8的开度来实施。

在浓控制中,将内燃机1的目标空燃比设定成为规定浓空燃比的情况下,向第一催化剂3主要流入未燃燃料。另一方面,在稀控制中,将内燃机1的目标空燃比设定成为规定稀空燃比的情况下,向第一催化剂3主要流入氧。因此,通过交替地实施稀控制和浓控制,许多的氧和许多的未燃燃料交替地向第一催化剂3流入。于是,在第一催化剂3中,未燃燃料被氧氧化而产生热,因此第一催化剂3的温度上升。

在此,由于第一催化剂3具有氧吸藏能力,因此在向第一催化剂3流入的排气的空燃比为稀空燃比时,第一催化剂3吸藏氧,在向第一催化剂3流入的排气的空燃比为浓空燃比时,会从第一催化剂3释放氧。因此,即使是向第一催化剂3流入的排气的空燃比为稀空燃比的情况,通过第一催化剂3吸藏氧,从第一催化剂3流出的排气的空燃比也能变为理论空燃比。另外,如果第一催化剂3的氧吸藏量变多,则没有吸藏尽的氧从第一催化剂3流出,由此从第一催化剂3流出的排气的空燃比变为稀空燃比。另一方面,即使是向第一催化剂3流入的排气的空燃比为浓空燃比的情况,通过从第一催化剂3释放氧,从第一催化剂3流出的排气的空燃比也能变为理论空燃比。另外,如果第一催化剂3的氧吸藏量变少、所释放的氧变少,则从第一催化剂3流出的排气的空燃比变为浓空燃比。

因此,假如在从第一催化剂3流出的排气的空燃比变为理论空燃比的范围内,使内燃机1的目标空燃比变动成为规定稀空燃比和规定浓空燃比的情况下,向第一催化剂3流入的未燃燃料的大部分在第一催化剂3中被氧化,由此第一催化剂3的温度迅速上升。由此,过滤器41的温度也会上升。但是,当如上所述通过使过滤器41的温度上升来实施过滤器41的再生时,存在第一催化剂3过热的可能性。另外,在第一催化剂3中产生热的情况下,在直至第二催化剂4为止的排气通路2中释放热。

对此,在稀控制时,使将内燃机1的目标空燃比设定在规定稀空燃比的期间较长,从而使稀气体从第一催化剂3流出。另一方面,在浓控制时,使将内燃机1的目标空燃比设定在规定浓空燃比的期间较长,从而使浓气体从第一催化剂3流出。即,在稀控制时,使比第一催化剂3能够吸藏的氧多的量的氧流入第一催化剂3,在浓控制时,使比能够用第一催化剂3所吸藏的氧氧化的未燃燃料多的量的未燃燃料流入第一催化剂3。

在此,在稀控制中,在从将内燃机1的目标空燃比设定成为规定稀空燃比的时间点到从第一催化剂3中流出稀气体为止的期间,向第一催化剂3流入的大部分的氧被第一催化剂3吸藏。另一方面,在其后继续地实施稀控制的情况下,氧几乎没有被第一催化剂3吸藏,因此氧从第一催化剂3流出。通过所述氧被供给至第二催化剂4,由此氧被第二催化剂4吸藏。

另外,在浓控制中,在从将内燃机1的目标空燃比设定成为规定浓空燃比的时间点到从第一催化剂3流出浓气体为止的期间,向第一催化剂3流入的大部分的未燃燃料被第一催化剂3所吸藏的氧氧化,因此会在第一催化剂3中产生热。另一方面,在其后继续地实施浓控制的情况下,几乎没有从第一催化剂3释放氧,因此在第一催化剂3中未燃燃料几乎没有被氧化,因此能高效率地抑制第一催化剂3的温度上升。而且,由于未燃燃料从第一催化剂3流出,因此未燃燃料被供给至第二催化剂4。所述未燃燃料被第二催化剂4所吸藏的氧氧化从而产生热。由此,过滤器41的温度上升。

通过交替地实施稀控制和浓控制,在第二催化剂4中反复产生热,所述第二催化剂4的温度效率良好地上升。另外,如果是过滤器41的温度上升到了pm氧化温度之后,则在稀控制时稀气体流入到过滤器41时,堆积于过滤器41的pm被氧化。由此,过滤器41被再生。

如上所述,通过利用第一控制使第一催化剂3的温度迅速上升之后,实施第二控制,能够高效率地抑制第一催化剂3的过热所致的热劣化,并且,能够使第二催化剂4的温度迅速上升。由此,能够高效率地抑制第一催化剂3的热劣化,并且提早地实施过滤器41的再生。

图2是表示在内燃机1起动后实施过滤器41的再生时的内燃机转速、内燃机1的目标空燃比、第一催化剂3和过滤器41的温度的推移的时间图。实线表示实施了本实施例涉及的第一控制和第二控制的情况,虚线表示在第一催化剂3的温度上升到了规定温度以上之后也假设实施了第一控制的情况(以下称为实施了比较控制的情况)。ta是第一催化剂3热劣化的温度,tb是过滤器41的再生所需要的温度的下限值(即,pm氧化温度),tc是第一催化剂3所要求的温度的下限值(即,规定温度)。

t1是内燃机1起动后、使第一催化剂3和过滤器41的温度上升的升温控制开始的时间点。在升温控制中,首先开始第一控制,在其后的第一控制结束的时间点开始第二控制。因此,从t1开始第一控制。在第一控制中,内燃机1的目标空燃比被设定为浓空燃比。而且,第一控制被实施到由t2表示的时间点为止。在从t1到t2的期间,通过第一控制,第一催化剂3的温度迅速上升,但第二催化剂4的温度上升缓慢。在t2时间点,第一催化剂3的温度达到了第一催化剂3所要求的温度的下限值tc。因此,在t2结束第一控制,开始第二控制。

在自t2之后的期间,实施了比较控制的情况下,与实施了本实施例涉及的第二控制的情况相比,第一催化剂3的温度上升率变大。但是,在从第一催化剂3到过滤器41的排气通路2中,排气的热向外部释放,因此过滤器41的温度上升率相对地变小。因此,在实施了比较控制的情况下,过滤器41的温度上升至过滤器41的再生所需要的温度的下限值tb会花费时间。而且,也有第一催化剂3的温度与通常相比变得过高从而第一催化剂3发生热劣化的可能性。因此,在实施了比较控制的情况下,通过在第一催化剂3的温度达到热劣化的温度ta之前使内燃机转速降低,就高效率地抑制了第一催化剂3的温度上升。由此,过滤器41的温度上升变得更加缓慢。再者,在不使内燃机转速降低的情况下,如单点划线所示,存在第一催化剂3的温度变得高于热劣化的温度ta的可能性。

另一方面,在实施了本实施例涉及的第二控制的情况下,由于能够使第一催化剂3的温度上升率降低、并且使过滤器41的温度上升率增加,因此能够高效率地抑制第一催化剂3的温度达到热劣化的温度ta、并且使过滤器41的温度迅速上升至过滤器41的再生所需要的温度的下限值tb。

图3是表示本实施例涉及的升温控制的流程的流程图。本流程由ecu10在内燃机1起动时执行。

在步骤s101中,判定是否为内燃机1冷起动时。在本步骤s101中,例如,判定是否为在第一催化剂3和第二催化剂4中不能够净化排气的状态。例如,在内燃机1的冷却水的温度为被认为是冷起动时的温度的情况下,在步骤s101中作出肯定的判定。再者,在步骤s101中,也可以判定是否需要使第一催化剂3和第二催化剂4的温度上升,来代替判定是否为内燃机1冷起动时。在步骤s101中作出了肯定的判定的情况下,向步骤s102推进,另一方面,在作出了否定的判定的情况下,结束本流程。

在步骤s102中,取得过滤器41的pm堆积量。过滤器41的pm堆积量由ecu10另行算出。

在步骤s103中,判定过滤器41的pm堆积量是否为规定量以上。在本步骤s103中,判定是否需要进行过滤器41的再生。在步骤s103中作出了肯定的判定的情况下,向步骤s104推进,另一方面,在作出了否定的判定的情况下向步骤s106推进。

在步骤s104中实施第一控制。关于所述第一控制会在后面描述。在步骤s105中实施第二控制。关于所述第二控制会在后面描述。在步骤s106中实施通常升温控制。在此所说的通常升温控制,是不实施过滤器41的再生的情况下的控制,是用于使第一催化剂3迅速升温的控制。例如,可以实施与第一控制相同的控制直到第一催化剂3的温度变为规定温度以上,也可以实施其它的众所周知的控制。另外,例如,即使在通常升温控制中也可以首先实施第一控制,在其后,使内燃机1的目标空燃比以较短的间隔变动成为稀空燃比和浓空燃比,以使得从第一催化剂3流出的排气的空燃比变为理论空燃比。通过如上述那样使目标空燃比以较短的间隔变动成为浓空燃比和稀空燃比,从而在目标空燃比为稀空燃比时向第一催化剂3主要供给氧,在目标空燃比为浓空燃比时向第一催化剂3主要供给未燃燃料。因此,在第一催化剂3中未燃燃料被氧化而产生热,从而第一催化剂3的温度迅速上升。再者,ecu10通过处理步骤s104和步骤s105,作为本申请发明中的控制装置发挥作用。

接着,对第一控制进行说明。图4是表示第一控制的流程的流程图。图4所示的流程在图3所示的流程的步骤s104中被执行。

在步骤s201中,开始第一控制。通过开始所述第一控制,使温度高的气体从内燃机1排出。

在步骤s202中取得第一催化剂3的温度。ecu10基于第一温度传感器11或第二温度传感器12的检测值来检测第一催化剂3的温度,或者,基于内燃机1的运转状态来推定第一催化剂3的温度。

在步骤s203中,判定第一催化剂3的温度是否为规定温度以上。在本步骤s203中,根据第一催化剂3的温度是否达到第一催化剂3所要求的温度的下限值,来判定第一控制的结束条件是否成立。在步骤s203中作出了肯定的判定的情况下,向步骤s204推进,结束第一控制。另一方面,在步骤s203中作出了否定的判定的情况下,返回到步骤s202,继续进行第一控制。

接着,对第二控制进行说明。图5是表示第二控制的流程的流程图。图5所示的流程在图3所示的流程的步骤s105中被执行。

在步骤s301中开始第二控制。由此,例如,开始所述浓控制或稀控制。

在步骤s302中,判定是否是浓控制实施中。在步骤s302中作出了肯定的判定的情况下向步骤s303推进,另一方面,在作出了否定的判定的情况下向步骤s306推进。

在步骤s303中,判定从第一催化剂3流出浓气体后是否经过了第一规定期间。在没有从第一催化剂3流出浓气体的情况下、以及虽然从第一催化剂3流出了浓气体但没有经过第一规定期间的情况下,作出否定的判定。在本步骤s303中,判定将内燃机1的目标空燃比从规定浓空燃比切换为规定稀空燃比的条件是否成立。第一规定期间、规定浓空燃比、规定稀空燃比,是考虑第一催化剂3的过热抑制和过滤器41的升温促进、油耗的恶化抑制等,预先通过实验或模拟等来求出。在步骤s303中作出了肯定的判定的情况下,向步骤s304推进,将内燃机1的目标空燃比设定为稀空燃比。由此,从浓控制切换为稀控制。另一方面,在步骤s303中作出了否定的判定的情况下,向步骤s305推进,将内燃机1的目标空燃比设定为浓空燃比。由此,继续进行浓控制。

另一方面,在步骤s306中,判定从第一催化剂3流出稀气体后是否经过了第二规定期间。在没有从第一催化剂3流出稀气体的情况下、以及虽然从第一催化剂3流出了稀气体但是没有经过第二规定期间的情况下,作出否定的判定。在本步骤s306中,判定将内燃机1的目标空燃比从稀空燃比切换为浓空燃比的条件是否成立。第二规定期间,是考虑第一催化剂3的过热抑制和过滤器41的升温促进、油耗的恶化抑制等,预先通过实验或模拟等来求出。在步骤s306中作出了肯定的判定的情况下,向步骤s307推进,将内燃机1的目标空燃比设定为浓空燃比。由此,从稀控制切换为浓控制。另一方面,在步骤s306中作出了否定的判定的情况下,向步骤s308推进,将内燃机1的目标空燃比设定为稀空燃比。由此,继续进行稀控制。

在步骤s309中,判定从第二控制开始的时间点起是否经过了第三规定期间。第三规定期间是过滤器41的温度上升至pm氧化温度所需要的期间。第三规定期间预先通过实验或模拟等来求出。再者,取得过滤器41的温度,在所述过滤器41的温度上升到了pm氧化温度的情况下,可以判定为经过了第三规定期间。在步骤s309中作出了肯定的判定的情况下,向步骤s310推进,结束第二控制。由此,内燃机1的目标空燃比被设定为与运转状态相应的值。另一方面,在步骤s309中作出了否定的判定的情况下,返回到步骤s302,继续进行第二控制。

通过如上述那样,在内燃机1冷起动时实施第一控制,能够使第一催化剂3的温度迅速上升。另外,通过在第一控制结束后实施第二控制,交替地反复进行浓控制和稀控制,能够高效率地抑制第一催化剂3的温度上升、并且在第二催化剂4中使未燃燃料氧化,因此能够使第二催化剂4的温度效率良好地迅速上升。由此,能够高效率地抑制第一催化剂3的热劣化、并且提早地实施过滤器41的再生。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1