下游侧空燃比检测装置的异常诊断装置的制作方法

文档序号:26054474发布日期:2021-07-27 15:31阅读:95来源:国知局
下游侧空燃比检测装置的异常诊断装置的制作方法

本发明涉及下游侧空燃比检测装置的异常诊断装置。



背景技术:

以往,已知将能够吸藏氧的催化剂配置于内燃机的排气通路且将排气中的hc、co、nox等在催化剂中净化。

然而,在催化剂的氧吸藏量为最大氧吸藏量附近时,催化剂对比理论空燃比稀的空燃比的排气的净化性能下降。其结果,从催化剂流出nox,从催化剂流出的排气的空燃比比理论空燃比稀。

另一方面,在催化剂的氧吸藏量为零附近时,催化剂对比理论空燃比浓的空燃比的排气的净化性能下降。其结果,从催化剂流出hc及co,从催化剂流出的排气的空燃比比理论空燃比浓。

因而,为了抑制排气排放的恶化,优选基于配置于催化剂的下游侧的下游侧空燃比检测装置的输出来对混合气的空燃比进行反馈控制。然而,该下游侧空燃比检测装置伴随于使用而逐渐劣化,其响应特性有时恶化。

相对于此,在专利文献1所记载的劣化诊断装置中,基于实施燃料切断时的下游侧空燃比检测装置的输出来判定下游侧空燃比检测装置的劣化。另外,为了降低催化剂的氧储存作用的影响,在从燃料切断开始起到氧到达下游侧空燃比检测装置为止的吸入空气量的累计值这样的参数值小于阈值的情况下,禁止下游侧空燃比检测装置的劣化判定。

现有技术文献

专利文献

专利文献1:日本特开2012-52462号公报



技术实现要素:

发明所要解决的课题

然而,在上述的手法中,由于仅在燃料切断的实施时判定下游侧空燃比检测装置的劣化,所以无法在期望的定时下进行异常诊断。另外,在燃料切断以外时进行异常诊断的情况下,即使吸入空气量的累计值这样的参数值为阈值以上,异常诊断时的催化剂的氧吸藏量也会根据混合气的空燃比而变化。因而,在上述的手法中,难以降低催化剂的氧储存作用的影响。

而且,在上述的手法中,设想了在下游侧空燃比检测装置的上游侧配置一个催化剂。因而,完全未考虑在下游侧空燃比检测装置的上游侧配置了多个催化剂的情况下多个催化剂对下游侧空燃比检测装置的输出造成的影响。因此,在下游侧空燃比检测装置的异常诊断的手法中存在改善的余地。

鉴于上述课题,本发明的目的在于,使配置于催化剂的下游侧的下游侧空燃比检测装置的异常诊断的可靠性提高。

用于解决课题的手段

本公开的主旨如下。

(1)一种下游侧空燃比检测装置的异常诊断装置,所述下游侧空燃比检测装置在内燃机的排气通路中配置于催化剂的下游侧,所述异常诊断装置具备:空燃比控制部,控制所述内燃机的燃烧室内的混合气的空燃比;异常判定部,基于所述空燃比控制部使所述混合气的空燃比变化时的所述下游侧空燃比检测装置的输出变化特性来判定该下游侧空燃比检测装置的异常;及氧变化量计算部,算出所述空燃比控制部使所述混合气的空燃比变化时的所述催化剂的氧吸藏量的变化量,在所述氧吸藏量的变化量小于下限阈值的情况下,所述异常判定部不判定所述下游侧空燃比检测装置的异常。

(2)根据上述(1)所述的下游侧空燃比检测装置的异常诊断装置,所述下游侧空燃比检测装置配置于多个催化剂的下游侧,所述氧变化量计算部关于所述多个催化剂的各催化剂算出所述空燃比控制部使所述混合气的空燃比变化时的氧吸藏量的变化量,在所述多个催化剂中的至少一个催化剂的所述氧吸藏量的变化量小于所述下限阈值的情况下,所述异常判定部不判定所述下游侧空燃比检测装置的异常。

(3)根据上述(1)所述的下游侧空燃比检测装置的异常诊断装置,还具备在所述排气通路中配置于所述催化剂的上游侧的上游侧空燃比检测装置,所述氧变化量计算部基于所述上游侧空燃比检测装置的输出值与所述下游侧空燃比检测装置的输出值之差来算出所述氧吸藏量的变化量。

(4)根据上述(2)所述的下游侧空燃比检测装置的异常诊断装置,还具备在所述排气通路中配置于所述多个催化剂各自的上游侧的上游侧空燃比检测装置,所述氧变化量计算部关于所述多个催化剂的各催化剂,基于配置于该催化剂的两侧的空燃比检测装置的输出值之差来算出所述氧吸藏量的变化量。

(5)根据上述(2)或(4)所述的下游侧空燃比检测装置的异常诊断装置,所述多个催化剂的至少一个催化剂是具有用于捕集排气中的颗粒状物质的捕集器功能的四元催化剂,在所述四元催化剂的所述氧吸藏量的变化量比大于所述下限阈值的上限阈值大的情况下,所述异常判定部不判定所述下游侧空燃比检测装置的异常。

(6)根据上述(1)或(3)所述的下游侧空燃比检测装置的异常诊断装置,所述催化剂是具有用于捕集排气中的颗粒状物质的捕集器功能的四元催化剂,在所述氧吸藏量的变化量比大于所述下限阈值的上限阈值大的情况下,所述异常判定部不判定下游侧空燃比检测装置的异常。

(7)根据上述(5)或(6)所述的下游侧空燃比检测装置的异常诊断装置,在判定为在所述空燃比控制部使所述混合气的空燃比变化时在所述四元催化剂中颗粒状物质进行了燃烧的情况下,所述异常判定部不判定所述下游侧空燃比检测装置的异常。

发明效果

根据本发明,能够使配置于催化剂的下游侧的下游侧空燃比检测装置的异常诊断的可靠性提高。

附图说明

图1是概略地示出设置有本发明的第一实施方式的下游侧空燃比检测装置的异常诊断装置的内燃机的图。

图2示出三元催化剂的净化特性。

图3是示出第一空燃比传感器的电压-电流特性的图。

图4是示出传感器施加电压为0.45v时的排气的空燃比与输出电流i的关系的图。

图5是概略地示出本发明的第一实施方式的异常诊断装置的结构的框图。

图6是使混合气的目标空燃比变化时的第一空燃比传感器的输出值及第三空燃比传感器的输出值的时间图。

图7是第三空燃比传感器的异常诊断时的混合气的目标空燃比等的时间图。

图8是示出在第一实施方式中允许第三空燃比传感器的异常判定的区域的图。

图9是示出第一实施方式中的异常判定处理的控制例程的流程图。

图10是使混合气的目标空燃比变化时的第三空燃比传感器的输出值的时间图。

图11是示出在第二实施方式中允许第三空燃比传感器的异常判定的区域的图。

图12是示出第二实施方式中的异常判定处理的控制例程的流程图。

图13是使混合气的目标空燃比变化时的第一空燃比传感器的输出值及第三空燃比传感器的输出值的时间图。

图14是示出第三实施方式中的异常判定处理的控制例程的流程图。

图15是概略地示出本发明的第四实施方式的异常诊断装置的结构的框图。

图16是示出第四实施方式中的异常判定处理的控制例程的流程图。

具体实施方式

以下,参照附图对本发明的实施方式进行详细说明。需要说明的是,在以下的说明中,对同样的构成要素标注同一附图标记。

<第一实施方式>

首先,参照图1~图9对本发明的第一实施方式进行说明。

<内燃机整体的说明>

图1是概略地示出设置有本发明的第一实施方式的下游侧空燃比检测装置的异常诊断装置的内燃机的图。图1所示的内燃机是火花点火式内燃机。内燃机搭载于车辆。

参照图1,2表示缸体,3表示在缸体2内往复运动的活塞,4表示固定于缸体2上的缸盖,5表示形成于活塞3与缸盖4之间的燃烧室,6表示进气门,7表示进气口,8表示排气门,9表示排气口。进气门6开闭进气口7,排气门8开闭排气口9。

如图1所示,在缸盖4的内壁面的中央部配置有火花塞10,在缸盖4的内壁面周边部配置有燃料喷射阀11。火花塞10构成为根据点火信号而产生火花。另外,燃料喷射阀11根据喷射信号而将预定量的燃料向燃烧室5内喷射。在本实施方式中,使用理论空燃比是14.6的汽油作为燃料。

各气缸的进气口7分别经由对应的进气支管13而连结于平衡罐14,平衡罐14经由进气管15而连结于空气滤清器16。进气口7、进气支管13、平衡罐14、进气管15等形成将空气向燃烧室5引导的进气通路。另外,在进气管15内配置有由节气门驱动致动器17驱动的节气门18。通过由节气门驱动致动器17使节气门18转动,能够变更进气通路的开口面积。

另一方面,各气缸的排气口9连结于排气歧管19。排气歧管19具有连结于各排气口9的多个支部和这些支部集合而成的集合部。排气歧管19的集合部连结于内置有第一催化剂20的第一壳体21。第一壳体21经由排气管22而连结于内置有第二催化剂23的第二壳体24。排气口9、排气歧管19、第一壳体21、排气管22、第二壳体24等形成将通过燃烧室5中的混合气的燃烧而产生的排气排出的排气通路。第一催化剂20是最靠上游侧的催化剂,第二催化剂23是最靠下游侧的催化剂。

内燃机的各种控制由电子控制单元(ecu)31执行。即,ecu31作为内燃机的控制装置发挥功能。对ecu31输入设置于内燃机的各种传感器的输出,ecu31基于各种传感器的输出等来控制内燃机的各种致动器。

ecu31由数字计算机构成,具备经由双向性总线32而相互连接的ram(随机存取存储器)33、rom(只读存储器)34、cpu(微处理器)35、输入端口36及输出端口37。需要说明的是,在本实施方式中,设置有一个ecu31,但也可以针对每个功能而设置有多个ecu。

在进气管15配置有检测在进气管15内流动的空气的流量的空气流量计39,空气流量计39的输出经由对应的ad变换器38而向输入端口36输入。

另外,在第一催化剂20的上游侧的排气通路(排气歧管19的集合部)配置有检测从内燃机的燃烧室5排出并向第一催化剂20流入的排气的空燃比的第一空燃比传感器40。第一空燃比传感器40的输出经由对应的ad变换器38而向输入端口36输入。

另外,在第一催化剂20的下游侧且第二催化剂23的上游侧的排气通路(第一催化剂20与第二催化剂23之间的排气管22内)配置有检测从第一催化剂20流出并向第二催化剂23流入的排气的空燃比的第二空燃比传感器41。第二空燃比传感器41的输出经由对应的ad变换器38而向输入端口36输入。

另外,在第二催化剂23的下游侧的排气通路(第二催化剂23的下游侧的排气管22内)配置有检测从第二催化剂23流出的排气的空燃比的第三空燃比传感器42。第三空燃比传感器42的输出经由对应的ad变换器38而向输入端口36输入。

另外,在设置于搭载有内燃机的车辆的加速器踏板43上连接有产生与加速器踏板43的踩踏量成比例的输出电压的负荷传感器44,负荷传感器44的输出电压经由对应的ad变换器38而向输入端口36输入。ecu31基于负荷传感器44的输出来算出内燃机负荷。

另外,在输入端口36上连接有每当曲轴旋转预定角度(例如10°)时产生输出脉冲的曲轴角传感器45,该输出脉冲向输入端口36输入。ecu31基于曲轴角传感器45的输出来算出内燃机转速。

另一方面,输出端口37经由对应的驱动电路46而连接于内燃机的各种致动器。在本实施方式中,输出端口37连接于火花塞10、燃料喷射阀11及节气门驱动致动器17,ecu31控制它们。具体而言,ecu31控制火花塞10的点火正时、燃料喷射阀的喷射正时及喷射量以及节气门18的开度。

需要说明的是,上述的内燃机是以汽油为燃料的无增压内燃机,但内燃机的结构不限定于上述结构。因此,气缸排列、燃料的喷射形态、进排气系统的结构、气门机构的结构、增压器的有无这样的内燃机的具体结构也可以与图1所示的结构不同。例如,燃料喷射阀11也可以配置成向进气口7内喷射燃料。

<催化剂的说明>

配置于排气通路的第一催化剂20及第二催化剂23具有同样的结构。因而,以下,对第一催化剂20进行说明。第一催化剂20是能够吸藏氧且能够同时净化例如烃(hc)、一氧化碳(co)及氮氧化物(nox)的三元催化剂。第一催化剂20具有由陶瓷、金属等构成的载体、具有催化剂作用的贵金属(例如,铂(pt)、钯(pd)、铑(rh)等)及具有氧吸藏能力的助催化剂(例如二氧化铈(ceo2)等)。贵金属及助催化剂担载于载体。

图2示出三元催化剂的净化特性。如图2所示,第一催化剂20对hc、co及nox的净化率在向第一催化剂20流入的排气的空燃比处于理论空燃比附近区域(图2中的净化窗a)时变得非常高。因此,若排气的空燃比维持为理论空燃比,则第一催化剂20能够有效地净化hc、co及nox。

另外,第一催化剂20利用助催化剂,根据排气的空燃比而吸藏或放出氧。具体而言,第一催化剂20在排气的空燃比比理论空燃比稀时,吸藏排气中的过剩的氧。另一方面,第一催化剂20在排气的空燃比比理论空燃比浓时,放出要使hc及co氧化所不足的氧。其结果,即使在排气的空燃比从理论空燃比些许偏离的情况下,第一催化剂20的表面上的空燃比也维持为理论空燃比附近,在第一催化剂20中,hc、co及nox被有效地净化。

<空燃比传感器的输出特性>

配置于排气通路的第一空燃比传感器40、第二空燃比传感器41及第三空燃比传感器42具有同样的结构。因而,以下,参照图3及图4,对第一空燃比传感器40的输出特性进行说明。

图3是示出第一空燃比传感器40的电压-电流(v-i)特性的图。从图3可知,在第一空燃比传感器40中,排气的空燃比越高(越稀),则输出电流i越大。另外,在各空燃比下的v-i线中,存在与v轴大致平行的区域,即,即使传感器施加电压变化输出电流也几乎不变化的区域。该电压区域被称作界限电流区域,此时的电流被称作界限电流。在图3中,将排气空燃比是18时的界限电流区域及界限电流分别以w18、i18表示。因此,第一空燃比传感器40是界限电流式的空燃比传感器。

图4是示出传感器施加电压为0.45v时的排气的空燃比与输出电流i的关系的图。即,在图4中,示出了图3的虚线上的点处的排气的空燃比与输出电流i的关系。从图4可知,在排气的空燃比是理论空燃比时,第一空燃比传感器40的输出电流i成为零。另外,在第一空燃比传感器40中,排气的空燃比越高,即,排气的空燃比越稀,则第一空燃比传感器40的输出电流i越大。因此,第一空燃比传感器40的输出(输出电流i)与排气的空燃比成比例地变大,第一空燃比传感器40能够连续地(线性地)检测排气的空燃比。

<下游侧空燃比检测装置的异常诊断装置>

然而,第一空燃比传感器40、第二空燃比传感器41及第三空燃比传感器42这样的空燃比检测装置伴随于使用而逐渐劣化,其响应特性有时恶化。尤其是,为了高精度地推测从催化剂流出的排气的状态,需要监视配置于催化剂的下游侧的下游侧空燃比检测装置的劣化状态。

于是,在本实施方式中,诊断下游侧空燃比检测装置的异常的下游侧空燃比检测装置的异常诊断装置(以下,简称作“异常诊断装置”)设置于内燃机。图5是概略地示出本发明的第一实施方式的异常诊断装置1的结构的框图。异常诊断装置1具备第一空燃比传感器40、第二空燃比传感器41、空燃比控制部71、异常判定部72及氧变化量计算部73,诊断第三空燃比传感器42的异常。第一空燃比传感器40及第二空燃比传感器41是上游侧空燃比检测装置的一例,第三空燃比传感器42是下游侧空燃比检测装置的一例。另外,在本实施方式中,ecu31作为空燃比控制部71、异常判定部72及氧变化量计算部73发挥功能。

空燃比控制部71控制内燃机的燃烧室5内的混合气的空燃比,即从燃烧室5向排气通路排出的排气的空燃比。具体而言,空燃比控制部71设定混合气的目标空燃比,以使混合气的空燃比与目标空燃比一致的方式控制燃料喷射阀11的燃烧喷射量。例如,空燃比控制部71以使第一空燃比传感器40的输出空燃比与目标空燃比一致的方式对燃料喷射阀11的燃烧喷射量进行反馈控制。在此,空燃比传感器的输出空燃比意味着相当于空燃比传感器的输出值的空燃比,即由空燃比传感器检测的空燃比。

需要说明的是,空燃比控制部71也可以不使用第一空燃比传感器40而以使混合气的空燃比与目标空燃比一致的方式控制燃料喷射阀11的燃烧喷射量。在该情况下,空燃比控制部71以使燃料喷射阀11的燃烧喷射量与空气的比率与目标空燃比一致的方式,将根据由空气流量计39检测到的吸入空气量和目标空燃比而算出的燃料量从燃料喷射阀11向燃烧室5供给。

在第一实施方式中,在诊断第三空燃比传感器42的异常时,空燃比控制部71使混合气的空燃比比理论空燃比稀。具体而言,空燃比控制部71将混合气的目标空燃比从理论空燃比切换为比理论空燃比稀的值。

异常判定部72基于空燃比控制部71使混合气的空燃比变化时的第三空燃比传感器42的输出变化特性来判定第三空燃比传感器42的异常。若第三空燃比传感器42的响应特性恶化,则在向第三空燃比传感器42流入的排气的空燃比变化时,第三空燃比传感器42的输出的变化变慢。因而,异常判定部72例如在第三空燃比传感器42的输出通过预定的输出区间时的时间比基准值长的情况下,判定为第三空燃比传感器42异常。预定的输出区间及基准值基于混合气的目标空燃比而设定。

如图1所示,第三空燃比传感器42在内燃机的排气通路中配置于多个催化剂(第一催化剂20及第二催化剂23)的下游侧。因而,第三空燃比传感器42的输出受到第一催化剂20及第二催化剂23中的排气净化的影响。

图6是使混合气的目标空燃比变化时的第一空燃比传感器40的输出值及第三空燃比传感器42的输出值的时间图。在图6中,混合气的目标空燃比由虚线表示,第一空燃比传感器40的输出值由实线表示。另外,在图6中,异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量多的情况下的第三空燃比传感器42的输出值由单点划线表示,异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量少的情况下的第三空燃比传感器42的输出值由双点划线表示。

在图6的例子中,在时刻t0下混合气的目标空燃比被设定为理论空燃比。因而,在时刻t0下,第一空燃比传感器40及第三空燃比传感器42的输出值成为零。之后,在时刻t1下,为了异常诊断而混合气的目标空燃比从理论空燃比被切换为比理论空燃比稀的值。伴随于此,在时刻t1之后,第一空燃比传感器40的输出值朝向目标空燃比变化。此时,由于排气调换需要时间,所以第一空燃比传感器40的输出值相对于目标空燃比的变化延迟而变化。

另一方面,通过了第一催化剂20及第二催化剂23的排气向第三空燃比传感器42流入。在第一催化剂20及第二催化剂23的氧吸藏量是合适的值时,通过氧的吸藏而催化剂20的氛围接近理论空燃比。其结果,排气中的nox在第一催化剂20及第二催化剂23中被净化,第三空燃比传感器42的输出值维持为理论空燃比。

第一催化剂20及第二催化剂23的氧吸藏量越少,则在排气的空燃比比理论空燃比稀时能够向第一催化剂20及第二催化剂23吸藏的氧的量越多。因而,异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量越少,则第三空燃比传感器42的输出值维持为理论空燃比的时间越长。

在异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量多的情况下,直到第一催化剂20及第二催化剂23的氧吸藏量到达最大氧吸藏量为止的时间变短。其结果,在时刻t2下,第三空燃比传感器42的输出值朝向目标空燃比开始变化。此时,第一空燃比传感器40的输出值还未到达目标空燃比。因而,第三空燃比传感器42的输出值的变化变慢。

另一方面,在异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量少的情况下,直到第一催化剂20及第二催化剂23的氧吸藏量到达最大氧吸藏量为止的时间变长。其结果,在比时刻t2靠后的时刻t3下,第三空燃比传感器42的输出值朝向目标空燃比开始变化。此时,第一空燃比传感器40的输出值到达了目标空燃比。因而,第三空燃比传感器42的输出值的变化变快。

如图6所示,在异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量多的情况下,第三空燃比传感器42的输出通过预定的输出区间(在图6的例子中是ia~ib)时的时间成为t1。另一方面,在异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量少的情况下,第三空燃比传感器42的输出通过预定的输出区间时的时间成为t2。第一催化剂20及第二催化剂23的氧吸藏量多的情况下的时间t1比第一催化剂20及第二催化剂23的氧吸藏量少的情况下的时间t2长。

因而,在第一催化剂20及第二催化剂23的氧吸藏量多的情况下,即使第三空燃比传感器42正常,也可能会判定为第三空燃比传感器42的响应特性恶化。因此,在第一催化剂20及第二催化剂23的氧吸藏量多的情况下,即,在使混合气的空燃比向稀侧变化时的第一催化剂20及第二催化剂23的氧吸藏量的变化量小的情况下,可能会误判定第三空燃比传感器42的异常。

另外,有时会在内燃机的气缸间产生空燃比的不均(所谓的不平衡)。其结果,在第三空燃比传感器42强烈受到特定的气缸的排气的影响的情况下,第三空燃比传感器42的输出有时会从排气整体的平均空燃比偏离。在混合气的目标空燃比被变更为比理论空燃比稀的情况下,不平衡的影响能够通过使第一催化剂20和第二催化剂23各自吸藏排气中的氧而降低。

因而,为了使异常诊断的精度提高,需要基于在第一催化剂20和第二催化剂23各自中氧吸藏量大幅变化后的第三空燃比传感器42的输出来判定第三空燃比传感器42的异常。于是,在本实施方式中,如以下这样,算出第一催化剂20及第二催化剂23的氧吸藏量的变化量,基于氧吸藏量的变化量来判定能否进行第三空燃比传感器42的异常判定。

氧变化量计算部73算出空燃比控制部71使混合气的空燃比变化时的催化剂的氧吸藏量的变化量。在如本实施方式这样下游侧空燃比检测装置配置于多个催化剂的下游侧的情况下,氧变化量计算部73关于多个催化剂的各催化剂算出空燃比控制部71使混合气的空燃比变化时的氧吸藏量的变化量。具体而言,氧变化量计算部73关于配置于第三空燃比传感器42的上游侧的第一催化剂20及第二催化剂23的各催化剂算出空燃比控制部71使混合气的空燃比变化时的氧吸藏量的变化量。

例如,氧变化量计算部73基于配置于催化剂的两侧的空燃比传感器的输出值之差来算出催化剂的氧吸藏量的变化量。由此,能够高精度地算出催化剂的氧吸藏量的变化量。在本实施方式中,氧变化量计算部73基于第一空燃比传感器40的输出值与第二空燃比传感器41的输出值之差来算出第一催化剂20的氧吸藏量的变化量,基于第二空燃比传感器41的输出值与第三空燃比传感器42的输出值之差来算出第二催化剂23的氧吸藏量的变化量。

以下,参照图7,对催化剂的氧吸藏量的计算方法进行具体说明。图7是第三空燃比传感器42的异常诊断时的混合气的目标空燃比、第一空燃比传感器40的输出值、第二空燃比传感器41的输出值及第三空燃比传感器42的输出值的时间图。

在图7的例子中,与图6的例子同样地切换混合气的目标空燃比。即,在时刻t1下,混合气的目标空燃比从理论空燃比被切换为比理论空燃比稀的值。其结果,在时刻t2下,第一空燃比传感器40的输出值开始上升。

在时刻t2之后,排气中的氧向第一催化剂20吸藏。之后,第一催化剂20的氧吸藏量到达最大氧吸藏量附近,在时刻t3下,第二空燃比传感器41的输出值开始上升。在时刻t3之后,排气中的氧向第二催化剂23吸藏。之后,第二催化剂23的氧吸藏量到达最大氧吸藏量附近,在时刻t4下,第三空燃比传感器42的输出值开始上升。

第一催化剂20的氧吸藏量的变化量、即在混合气的目标空燃比被切换为比理论空燃比稀的值后吸藏到第一催化剂20的氧的量与从时刻t2到时刻t3为止的第一空燃比传感器40的输出值与第二空燃比传感器41的输出值之差成比例地变大。另外,比理论空燃比稀的空燃比的排气中的氧的量、即向第一催化剂20吸藏的氧的量与吸入空气量成比例地变多。

因而,氧变化量计算部73通过对向第一空燃比传感器40的输出值与第二空燃比传感器41的输出值之差乘以吸入空气量而得到的值进行累计来算出第一催化剂20的氧吸藏量的变化量。具体而言,氧变化量计算部73通过下述式(1)来算出第一催化剂20的氧吸藏量的变化量oca1。

【数学式1】

在此,i1是第一空燃比传感器40的输出值,i2是第二空燃比传感器41的输出值,ga是吸入空气量。吸入空气量ga基于空气流量计39的输出而算出。

时刻t2是第一空燃比传感器40的输出值朝向目标空燃比开始变化时的时刻,例如被设定为第一空燃比传感器40的输出值到达了相当于比理论空燃比稍稀的稀判定空燃比的值的时刻。时刻t3是第二空燃比传感器41的输出值朝向目标空燃比开始变化时的时刻,例如被设定为第二空燃比传感器41的输出值到达了相当于稀判定空燃比的值的时刻。稀判定空燃比预先确定,例如被设定为14.65。

第二催化剂23的氧吸藏量的变化量即在混合气的目标空燃比被切换为比理论空燃比稀的值后吸藏到第二催化剂23的氧的量与从时刻t3到时刻t4为止的第二空燃比传感器41的输出值与第三空燃比传感器42的输出值之差成比例地变大。另外,比理论空燃比稀的空燃比的排气中的氧的量即向第二催化剂23吸藏的氧的量与吸入空气量成比例地变多。

因而,氧变化量计算部73通过对向第二空燃比传感器41的输出值与第三空燃比传感器42的输出值之差乘以吸入空气量而得到的值进行累计来算出第二催化剂23的氧吸藏量的变化量。具体而言,氧变化量计算部73通过下述式(2)来算出第二催化剂23的氧吸藏量的变化量oca2。

【数学式2】

在此,i2是第二空燃比传感器41的输出值,i3是第三空燃比传感器42的输出值,ga是吸入空气量。吸入空气量ga基于空气流量计39的输出而算出。

时刻t3是第二空燃比传感器41的输出值朝向目标空燃比开始变化时的时刻,例如被设定为第二空燃比传感器41的输出值到达了相当于稀判定空燃比的值的时刻。时刻t4是第三空燃比传感器42的输出值朝向目标空燃比开始变化时的时刻,例如被设定为第三空燃比传感器42的输出值到达了相当于稀判定空燃比的值的时刻。

需要说明的是,在上述式(1)、(2)中,也可以取代吸入空气量ga而使用与吸入空气量相关的其他参数。其他参数的例子是内燃机负荷、内燃机的输出转矩、缸内压、燃料喷射量等。内燃机负荷例如基于负荷传感器44的输出而算出。输出转矩例如由配置于内燃机的输出轴(曲轴)的转矩传感器检测,或者基于内燃机负荷、节气门18的开度、缸内压等而算出。缸内压例如由配置于气缸内的缸内压传感器检测。燃料喷射量例如基于从ecu31向燃料喷射阀11的指令值而算出。

另外,作为第一空燃比传感器40的输出值i1、第二空燃比传感器41的输出值i2及第三空燃比传感器42的输出值i3,也可以取代输出电流的值而使用相当于输出电流的空燃比的值、即输出空燃比。

另外,在上述式(1)中,也可以取代时刻t2而使用混合气的目标空燃比从理论空燃比被切换为目标空燃比的时刻t1。在该情况下,在上述式(1)中,也可以取代第一空燃比传感器40的输出值i1而使用相当于混合气的目标空燃比的输出电流的值或混合气的目标空燃比。在该情况下,第一空燃比传感器40也可以从异常诊断装置1省略。

另外,在上述式(2)中,也可以取代时刻t3而使用混合气的目标空燃比从理论空燃比被切换为目标空燃比的时刻t1。

在多个催化剂(在本实施方式中是第一催化剂20及第二催化剂23)中的至少一个催化剂的氧吸藏量的变化量小于下限阈值的情况下,异常判定部72不判定下游侧空燃比检测装置(在本实施方式中是第三空燃比传感器42)的异常。另一方面,在多个催化剂的氧吸藏量的变化量为下限阈值以上的情况下,异常判定部72判定下游侧空燃比检测装置的异常。由此,能够使下游侧空燃比检测装置的异常诊断的可靠性提高。

图8是示出在第一实施方式中允许第三空燃比传感器42的异常判定的区域的图。在图8中,thl1是关于第一催化剂20的下限阈值,thl2是关于第二催化剂23的下限阈值。如图8所示,在第一催化剂20的氧吸藏量的变化量为下限值thl1以上且第二催化剂23的氧吸藏量的变化量为下限阈值thl2以上时允许第三空燃比传感器42的异常判定。

<异常判定处理>

以下,参照图9的流程图,对在本实施方式中用于判定第三空燃比传感器42的异常的控制进行说明。图9是示出第一实施方式中的异常判定处理的控制例程的流程图。本控制例程在内燃机启动后由ecu31反复执行。

首先,在步骤s101中,空燃比控制部71判定异常判定条件是否成立。异常判定例如在内燃机启动后经过了预定时间且在内燃机启动后还未进行第三空燃比传感器42的异常判定的情况下成立。需要说明的是,在异常判定条件中也可以包括第一催化剂20及第二催化剂23的温度为预先确定的活性温度以上、第一空燃比传感器40、第二空燃比传感器41及第三空燃比传感器42的温度为预先确定的活性温度以上、内燃机转速为预定范围内、内燃机负荷为预定范围内等。

在步骤s101中判定为异常判定条件不成立的情况下,本控制例程结束。另一方面,在步骤s101中判定为异常判定条件成立的情况下,本控制例程进入步骤s102。

在步骤s102中,空燃比控制部71使混合气的空燃比比理论空燃比稀。具体而言,空燃比控制部71将混合气的目标空燃比设定为比理论空燃比稀的稀设定空燃比,以使混合气的空燃比与目标空燃比一致的方式控制燃料喷射阀11的燃烧喷射量。稀设定空燃比预先确定,例如被设定为14.8~16.6。

接着,在步骤s103中,氧变化量计算部73算出第一催化剂20的氧吸藏量的变化量oca1。

接着,在步骤s104中,异常判定部72判定第一催化剂20的氧吸藏量的变化量oca1是否为下限阈值thl1以上。下限阈值thl1预先确定,例如被设定为未使用(新品)的第一催化剂20的最大氧吸藏量的1/5以上的值。

在步骤s104中判定为第一催化剂20的氧吸藏量的变化量oca1小于下限阈值thl1的情况下,本控制例程结束。在该情况下,不判定第三空燃比传感器42的异常。换言之,禁止第三空燃比传感器42的异常判定。

另一方面,在步骤s104中判定为第一催化剂20的氧吸藏量的变化量oca1为下限阈值thl1以上的情况下,本控制例程进入步骤s105。在步骤s105中,氧变化量计算部73算出第二催化剂23的氧吸藏量的变化量oca2。

接着,在步骤s106中,异常判定部72判定第二催化剂23的氧吸藏量的变化量oca2是否为下限阈值thl2以上。下限阈值thl2预先确定,例如被设定为未使用(新品)的第二催化剂23的最大氧吸藏量的1/5以上的值。下限阈值thl2可以与上限阈值thl1相同也可以不同。

在步骤s106中判定为第二催化剂23的氧吸藏量的变化量oca2小于下限阈值thl2的情况下,本控制例程结束。在该情况下,不判定第三空燃比传感器42的异常。换言之,禁止第三空燃比传感器42的异常判定。

另一方面,在步骤s106中判定为第二催化剂23的氧吸藏量的变化量oca2为下限阈值thl2以上的情况下,本控制例程进入步骤s107。在步骤s107中,异常判定部72取得响应时间t作为第三空燃比传感器42的输出经过预定的输出区间时的时间。预定的输出区间预先确定,被设定为比理论空燃比稀的范围。

接着,在步骤s108中,异常判定部72判定响应时间t是否为基准值tref以下。基准值tref通过实验、计算等而预先确定。

在步骤s108中判定为响应时间t为基准值tref以下的情况下,本控制例程进入步骤s109。在步骤s109中,异常判定部72判定为第三空燃比传感器42的响应特性正常。在步骤s109之后,本控制例程结束。

另一方面,在步骤s108中判定为响应时间t比基准值t长的情况下,本控制例程进入步骤s110。在步骤s110中,异常判定部72判定为第三空燃比传感器42的响应特性异常,使设置于搭载有内燃机的车辆的警告灯点亮。在步骤s110之后,本控制例程结束。

需要说明的是,也可以在步骤s107中取得第三空燃比传感器42的输出经过预定的输出区间时的输出的斜率,在步骤s108中判定输出的斜率是否为基准值以上。

另外,在执行了停止燃料喷射阀11的燃料喷射的燃料切断控制的情况下,空气向排气通路供给,混合气的空燃比变得比理论空燃比稀。因而,异常判定部72也可以基于空燃比控制部71利用燃料切断控制使混合气的空燃比变化时的第三空燃比传感器42的输出变化特性来判定第三空燃比传感器42的异常。在该情况下,在步骤s102中,异常判定部72判定是否正在执行燃料切断控制,在判定为正在执行燃料切断控制的情况下,本控制例程进入步骤s103。

另外,在步骤s104或步骤s106的判定为否定的情况下,空燃比控制部71也可以为了使第一催化剂20及第二催化剂23的氧吸藏量减少而使混合气的空燃比暂时比理论空燃比浓。

<第二实施方式>

第二实施方式的异常诊断装置除了以下说明的点之外,基本上与第一实施方式的异常诊断装置的结构及控制是同样的。因而,以下,关于本发明的第二实施方式,以与第一实施方式不同的部分为中心进行说明。

在第二实施方式中,第二催化剂23构成为具有用于捕集排气中的颗粒状物质(pm)的捕集器功能的四元催化剂。四元催化剂能够通过催化剂作用而同时净化hc、co及nox,并且能够通过捕集器功能而捕集pm。

本申请的发明人进行了锐意研究,结果发现了:在四元催化剂中,pm向催化剂的堆积状态会对第三空燃比传感器42的输出变化造成影响。图10是使混合气的目标空燃比变化时的第三空燃比传感器42的输出值的时间图。在图10中,在异常诊断开始时第二催化剂23的氧吸藏量少且pm未堆积于第二催化剂23的情况下的第三空燃比传感器42的输出值由实线表示。另外,在异常诊断开始时第二催化剂23的氧吸藏量少且pm堆积于第二催化剂23的情况下的第三空燃比传感器42的输出值由虚线表示。

在图10的例子中,与图6的例子同样地切换混合气的目标空燃比。如图10所示,在pm堆积于第二催化剂23的情况下,与pm未堆积于第二催化剂23的情况相比,第三空燃比传感器42的输出值的变化变慢。其结果,pm堆积于第二催化剂23的情况下的响应时间t4比pm未堆积于第二催化剂23的情况下的响应时间t3长。

可认为这是因为,pm的局部的堆积对在氧的吸藏后从第二催化剂23流出的排气的空燃比造成了影响。需要说明的是,在异常诊断开始时第二催化剂23的氧吸藏量多的情况下,不会产生这样的现象。

因而,在作为四元催化剂的第二催化剂23的氧吸藏量少的情况下,即使第三空燃比传感器42正常,也可能会判定为第三空燃比传感器42的响应特性恶化。即,在作为四元催化剂的第二催化剂23的氧吸藏量少的情况下,可能会误判定第三空燃比传感器42的异常。

因而,在第二实施方式中,在第二催化剂23的氧吸藏量的变化量比上限阈值大的情况下,异常判定部72不判定第三空燃比传感器42的异常。由此,能够在第二催化剂23是四元催化剂的情况下抑制第三空燃比传感器42的异常诊断的可靠性下降。

图11是示出在第二实施方式中允许第三空燃比传感器42的异常判定的区域的图。在图11中,thl1是关于第一催化剂20的下限阈值,thl2是关于第二催化剂23的下限阈值,thu是关于第二催化剂23的上限阈值。如图11所示,在第一催化剂20的氧吸藏量的变化量为下限值thl1以上且第二催化剂23的氧吸藏量的变化量为下限阈值thl以上且上限阈值thu以下时允许第三空燃比传感器42的异常判定。

另外,若在第二催化剂23中产生pm的燃烧,则会在从第二催化剂23流出的排气中混入燃烧气体,第三空燃比传感器42的输出值下降(变浓)。因而,在产生着pm的燃烧的情况下,也可能会误判定第三空燃比传感器42的异常。

于是,在第二实施方式中,在判定为在空燃比控制部71使混合气的空燃比变化时在第二催化剂23中pm进行了燃烧的情况下,异常判定部72不判定第三空燃比传感器42的异常。由此,能够在第二催化剂23是四元催化剂的情况下进一步抑制第三空燃比传感器42的异常诊断的可靠性下降。

<异常判定处理>

图12是示出第二实施方式中的异常判定处理的控制例程的流程图。本控制例程在内燃机启动后由ecu31反复执行。

步骤s201~步骤s205与图9的步骤s101~步骤s105同样地执行。在步骤s205之后,在步骤s206中,异常判定部72判定第二催化剂23的氧吸藏量的变化量oca2是否为下限阈值thl2以上且上限阈值thu以下。上限阈值thu预先确定,被设定为比下限阈值thl2大的值。上限阈值thu例如被设定为未使用(新品)的第二催化剂23的最大氧吸藏量的1/2以上的值。

在步骤s206中判定为第二催化剂23的氧吸藏量的变化量oca2小于下限阈值thl2或比上限值thu大的情况下,本控制例程结束。在该情况下,不判定第三空燃比传感器42的异常。换言之,禁止第三空燃比传感器42的异常判定。

另一方面,在步骤s206中判定为第二催化剂23的氧吸藏量的变化量oca2为下限阈值thl2以上且上限阈值thu以下的情况下,本控制例程进入步骤s207。在步骤s207中,与图9的步骤s107同样,异常判定部72取得响应时间t。

接着,在步骤s208中,异常判定部72判定在空燃比控制部71使混合气的空燃比变化时在第二催化剂23中pm是否进行了燃烧。例如,异常判定部72在从混合气的目标空燃比被设定为稀设定空燃比taflean起到第三空燃比传感器42的输出通过预定的输出区间为止的期间的第二催化剂23的平均温度为预定温度以上的情况下,判定为在第二催化剂23中pm进行了燃烧。

第二催化剂23的温度例如由配置于第二催化剂23的温度传感器检测。需要说明的是,第二催化剂23的温度也可以基于检测向第二催化剂23流入的排气的温度或从第二催化剂23流出的排气的温度的温度传感器的输出而算出。另外,第二催化剂23的温度还可以基于内燃机的预定的运转参数(累计吸入空气量等)而算出。

在步骤s208中判定为在第二催化剂23中pm进行了燃烧的情况下,本控制例程结束。在该情况下,不判定第三空燃比传感器42的异常。换言之,禁止第三空燃比传感器42的异常判定。

另一方面,在步骤s208中判定为在第二催化剂23中pm未进行燃烧的情况下,本控制例程进入步骤s209。步骤s209~步骤s211与图9的步骤s108~步骤s110同样地执行。需要说明的是,本控制例程能够与图9的控制例程同样地变形。

另外,在第二实施方式中,也可以在第二催化剂23的基础上或取代第二催化剂23而将第一催化剂20构成为四元催化剂。在该情况下,在步骤s204中,异常判定部72判定第一催化剂20的氧吸藏量的变化量oca1是否为下限阈值thl1以上且上限阈值thu以下。上限阈值thu预先确定,被设定为比下限阈值thl1大的值。

<第三实施方式>

第三实施方式的异常诊断装置除了以下说明的点之外,基本上与第一实施方式的异常诊断装置的结构及控制是同样的。因而,以下,关于本发明的第三实施方式,以与第一实施方式不同的部分为中心进行说明。

在第三实施方式中,空燃比控制部71在诊断第三空燃比传感器42的异常时,空燃比控制部71使混合气的空燃比比理论空燃比浓。具体而言,空燃比控制部71将混合气的目标空燃比从理论空燃比切换为比理论空燃比浓的值。

图13是使混合气的目标空燃比变化时的第一空燃比传感器40的输出值及第三空燃比传感器42的输出值的时间图。在图13中,混合气的目标空燃比由虚线表示,第一空燃比传感器40的输出值由实线表示。另外,在图13中,异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量少的情况下的第三空燃比传感器42的输出值由单点划线表示,异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量多的情况下的第三空燃比传感器42的输出值由双点划线表示。

在图13的例子中,与图6的例子不同,在时刻t1下,为了异常诊断而混合气的目标空燃比从理论空燃比被切换为比理论空燃比浓的值。伴随于此,在时刻t1之后,第一空燃比传感器40的输出值朝向目标空燃比变化。此时,由于排气调换需要时间,所以第一空燃比传感器40的输出值相对于目标空燃比的变化延迟而变化。

另一方面,通过了第一催化剂20及第二催化剂23的排气向第三空燃比传感器42流入。在第一催化剂20及第二催化剂23的氧吸藏量是合适的值时,通过氧的放出而催化剂20的氛围接近理论空燃比。其结果,排气中的hc及co在第一催化剂20及第二催化剂23中被净化,第三空燃比传感器42的输出值维持为理论空燃比。

第一催化剂20及第二催化剂23的氧吸藏量越多,则在排气的空燃比比理论空燃比浓时能够从第一催化剂20及第二催化剂23放出的氧的量越多。因而,异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量越多,则第三空燃比传感器42的输出值维持为理论空燃比的时间越长。

在异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量少的情况下,直到第一催化剂20及第二催化剂23的氧吸藏量到达零为止的时间变短。其结果,在时刻t2下,第三空燃比传感器42的输出值朝向目标空燃比开始变化。此时,第一空燃比传感器40的输出值还未到达目标空燃比。因而,第三空燃比传感器42的输出值的变化变慢。

另一方面,在异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量多的情况下,直到第一催化剂20及第二催化剂23的氧吸藏量到达零为止的时间变长。其结果,在比时刻t2靠后的时刻t3下,第三空燃比传感器42的输出值朝向目标空燃比开始变化。此时,第一空燃比传感器40的输出值到达了目标空燃比。因而,第三空燃比传感器42的输出值的变化变快。

如图13所示,在异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量少的情况下,第三空燃比传感器42的输出通过预定的输出区间(在图13的例子中是ic~id)时的时间成为t5。另一方面,在异常诊断开始时的第一催化剂20及第二催化剂23的氧吸藏量多的情况下,第三空燃比传感器42的输出通过预定的输出区间时的时间成为t6。第一催化剂20及第二催化剂23的氧吸藏量少的情况下的时间t5比第一催化剂20及第二催化剂23的氧吸藏量多的情况下的时间t6长。

因而,在第一催化剂20及第二催化剂23的氧吸藏量少的情况下,即使第三空燃比传感器42正常,也可能会判定为第三空燃比传感器42的响应特性恶化。因此,在第一催化剂20及第二催化剂23的氧吸藏量少的情况下,即,在使混合气的空燃比向浓侧变化时的第一催化剂20及第二催化剂23的氧吸藏量的变化量小的情况下,可能会误判定第三空燃比传感器42的异常。另外,在混合气的目标空燃比被变更为比理论空燃比浓的情况下,不平衡的影响能够通过从第一催化剂20和第二催化剂23各自放出排气中的氧而降低。

因而,与第一实施方式同样,在多个催化剂(在本实施方式中是第一催化剂20及第二催化剂23)中的至少一个催化剂的氧吸藏量的变化量小于下限阈值的情况下,异常判定部72不判定下游侧空燃比检测装置(在本实施方式中是第三空燃比传感器42)的异常。另一方面,在关于多个催化剂的氧吸藏量的变化量为下限阈值以上的情况下,异常判定部72判定下游侧空燃比检测装置的异常。由此,能够使下游侧空燃比检测装置的异常诊断的可靠性提高。

在第三实施方式中,也能够通过上述式(1)来算出第一催化剂20的氧吸藏量的变化量oca1,通过上述式(2)来算出第二催化剂23的氧吸藏量的变化量oca2。需要说明的是,在第一实施方式中,催化剂的氧吸藏量的变化量相当于向催化剂吸藏的氧的量,在第三实施方式中,催化剂的氧吸藏量的变化量相当于从催化剂放出的氧的量。

在第三实施方式中,在上述式(1)中,时刻t2例如被设定为第一空燃比传感器40的输出值到达了相当于比理论空燃比稍浓的浓判定空燃比的值的时刻。另外,在上述式(1)、(2)中,时刻t3例如被设定为第二空燃比传感器41的输出值到达了相当于浓判定空燃比的值的时刻。另外,在上述式(2)中,时刻t4例如被设定为第三空燃比传感器42的输出值到达了相当于浓判定空燃比的值的时刻。浓判定空燃比预先确定,例如被设定为14.55。

<异常判定处理>

图14是示出第三实施方式中的异常判定处理的控制例程的流程图。本控制例程在内燃机启动后由ecu31反复执行。

首先,在步骤s301中,与图9的步骤s101同样,空燃比控制部71判定异常判定条件是否成立。在判定为异常判定条件不成立的情况下,本控制例程结束。另一方面,在步骤s301中判定为异常判定条件成立的情况下,本控制例程进入步骤s302。

在步骤s302中,空燃比控制部71使混合气的空燃比比理论空燃比浓。具体而言,空燃比控制部71将混合气的目标空燃比设定为比理论空燃比浓的浓设定空燃比tafrich,以使混合气的空燃比与目标空燃比一致的方式控制燃料喷射阀11的燃烧喷射量。浓设定空燃比预先确定,例如被设定为12.6~14.4。

步骤s303~步骤s310与图9的步骤s103~步骤s110同样地执行。此时,在步骤s307中取得响应时间t时的预定的输出区间被设定为比理论空燃比浓的范围。

需要说明的是,也可以在步骤305中取得第三空燃比传感器42的输出经过预定的输出区间时的输出的斜率,在步骤s308中判定输出的斜率的绝对值是否为基准值以上。

另外,在步骤s304或步骤s306的判定为否定的情况下,空燃比控制部71也可以为了使第一催化剂20及第二催化剂23的氧吸藏量增加而使混合气的空燃比暂时比理论空燃比稀。

<第四实施方式>

第四实施方式的异常诊断装置除了以下说明的点之外,基本上与第一实施方式的异常诊断装置的结构及控制是同样的。因而,以下,关于本发明的第四实施方式,以与第一实施方式不同的部分为中心进行说明。

图15是概略地示出本发明的第四实施方式的异常诊断装置1’的结构的框图。异常诊断装置1’具备第一空燃比传感器40、空燃比控制部71、异常判定部72及氧变化量计算部73,诊断第二空燃比传感器41的异常。第一空燃比传感器40是上游侧空燃比检测装置的一例,第二空燃比传感器41是下游侧空燃比检测装置的一例。

如图1所示,第二空燃比传感器41在内燃机的排气通路中配置于第一催化剂20的下游侧且第二催化剂23的上游侧。因而,第二空燃比传感器41受到第一催化剂20的排气净化的影响。因此,若在第一催化剂20的氧吸藏量多时进行第二空燃比传感器41的异常诊断,则会产生与第三空燃比传感器42的异常诊断同样的问题。

于是,在第四实施方式中,氧变化量计算部73算出空燃比控制部71使混合气的空燃比变化时的第一催化剂20的氧吸藏量的变化量,在空燃比控制部71使混合气的空燃比变化时的第一催化剂20的氧吸藏量的变化量小于下限阈值的情况下,异常判定部72不判定第二空燃比传感器41的异常。另一方面,在第一催化剂20的氧吸藏量的变化量为下限阈值以上的情况下,异常判定部72判定第二空燃比传感器41的异常。由此,能够使第二空燃比传感器41的异常诊断的可靠性提高。

<异常判定处理>

以下,参照图16的流程图,对在第四实施方式中用于判定第二空燃比传感器41的异常的控制进行说明。图16是示出第四实施方式中的异常判定处理的控制例程的流程图。本控制例程在内燃机启动后由ecu31反复执行。

步骤s401~步骤s404与图9的步骤s101~步骤s104同样地执行。在步骤s404中判定为第一催化剂20的氧吸藏量的变化量oca1为下限阈值thl1以上的情况下,本控制例程进入步骤s405。

在步骤s405中,异常判定部72取得响应时间t作为第二空燃比传感器41的输出经过预定的输出区间时的时间。预定的输出区间预先确定,被设定为比理论空燃比稀的范围。

接着,在步骤s406中,异常判定部72判定响应时间t是否为基准值tref以下。基准值tref通过实验、计算等而预先确定。

在步骤s406中判定为响应时间t为基准值tref以下的情况下,本控制例程进入步骤s407。在步骤s407中,异常判定部72判定为第二空燃比传感器41的响应特性正常。在步骤s407之后,本控制例程结束。

另一方面,在步骤s406中判定为响应时间t比基准值t长的情况下,本控制例程进入步骤s408。在步骤s408中,异常判定部72判定为第三空燃比传感器42的响应特性异常,使设置于搭载有内燃机的车辆的警告灯点亮。在步骤s408之后,本控制例程结束。

需要说明的是,本控制例程能够与图9的控制例程同样地变形。另外,在第四实施方式中,第二催化剂23及第三空燃比传感器42也可以从内燃机省略。

以上,虽然说明了本发明的优选的实施方式,但本发明不限定于这些实施方式,能够在权利要求书的记载内实施各种各样的修正及变更。例如,第一空燃比传感器40、第二空燃比传感器41及第三空燃比传感器42也可以是检测排气的空燃比为浓或稀的氧传感器。在该情况下,在上述式(1)、(2)中,作为第一空燃比传感器40的输出值i1、第二空燃比传感器41的输出值i2及第三空燃比传感器42的输出值i3,也可以使用输出电压的值、相当于输出电压的空燃比的值等。

另外,也可以在内燃机的排气通路配置三个以上的催化剂,如上述那样进行配置于最靠下游侧的催化剂的下游侧的下游侧空燃比检测装置的异常诊断。

另外,上述的实施方式能够任意组合而实施。在第二实施方式与第三实施方式组合的情况下,在图12的控制例程中,取代步骤s202而执行图14的步骤s302。

另外,在第二实施方式与第四实施方式组合的情况下,第一催化剂20构成为四元催化剂,在图16的步骤s404中,异常判定部72判定第一催化剂20的氧吸藏量的变化量oca1是否为下限阈值thl1以上且上限阈值thu以下。上限阈值thu预先确定,被设定为比下限阈值thl1大的值。另外,在图16的控制例程中,在步骤s405与步骤s406之间执行图12的步骤s208。

另外,在第三实施方式与第四实施方式组合的情况下,在图16的控制例程中,取代步骤s402而执行图14的步骤s302。

另外,也可以连续地执行第一实施方式中的图9的步骤s102~步骤s110和第三实施方式中的图14的步骤s302~步骤s310。即,异常判定部72也可以基于空燃比控制部71使混合气的空燃比变化为比理论空燃比稀时的下游侧空燃比检测装置的输出特性和空燃比控制部71使混合气的空燃比变化为比理论空燃比浓时的下游侧空燃比检测装置的输出特性来判定下游侧空燃比检测装置的异常。

附图标记说明

1、1’异常诊断装置

5燃烧室

20第一催化剂

22排气管

23第二催化剂

31电子控制单元(ecu)

40第一空燃比传感器

41第二空燃比传感器

42第三空燃比传感器42

71空燃比控制部

72异常判定部

73氧变化量计算部。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1