一种单双路结合的三维旋转滑动弧等离子体激励器

文档序号:25992544发布日期:2021-07-23 21:05阅读:88来源:国知局
一种单双路结合的三维旋转滑动弧等离子体激励器

本发明涉及航空动力等离子体强化燃烧技术领域,具体而言,是一种单双路结合的三维旋转滑动弧等离子体激励器。



背景技术:

目前大部分飞行器上的航空涡轮发动机燃烧室均采用电火花电嘴点火方式,这种方式点火能量小、点火范围窄、点火成功率低,不能满足燃烧室在大范围苛刻条件下的要求,制约了航空发动机性能的提高。

等离子体点火助燃技术是近年来兴起的一项新型技术,由于等离子具有热效应、化学效应和气动效应等独特性能。研究结果表明,采用等离子体点火恰好能满足燃烧室大范围点火的要求。具有如下优势:大幅扩宽点火边界、缩短点火延迟时间、提高点火可靠性、提高燃烧室燃烧效率、改善燃烧室出口的热均匀性、减少污染物排放、提高燃油雾化效果等。基于滑动弧的等离子体点火与助燃技术由于具有点火能量大、分子活性强的优点,在高空点火方面具有巨大潜力。但是目前设计的燃烧室头部滑动弧等离子体激励器均为单弧结构,在一个时刻只有一个滑动弧作用于燃气混合区。



技术实现要素:

本发明的目的在于克服上述现有技术中的不足,提供了一种单双路结合的三维旋转滑动弧等离子体激励器,其采用内外两层旋流器,内外两组电极即可单独工作保证一般工况下的点火助燃,又可同时工作保证极端恶劣工况下的点火助燃,不仅保证了混合气点火的可靠性和稳定性,而且能将混合气充分裂解燃烧,并注入活性粒子,拓宽燃烧室的点熄火边界,提高了燃烧效率。

为实现上述目的,发明采用的技术方案是:一种单双路结合的三维旋转滑动弧等离子体激励器,其包括:内层旋流器、外层旋流器、阴极燃油喷嘴、内路阳极金属环、外路阳极金属环和阴极唇形环,

所述阴极燃油喷嘴固定安装在内层旋流器上,所述内路阳极金属环和外路阳极金属环均设置在内层旋流器上,所述阴极唇形环设置在外层旋流器上;

所述内层旋流器包括燃油喷嘴接口、第一导流叶片和内环壁,所述燃油喷嘴接口设置在内环壁的内侧,所述第一导流叶片的一端与燃油喷嘴接口的外壁固定连接,所述第一导流叶片的另一端与内环壁的内壁固定连接,所述第一导流叶片的数量为多个,多个所述第一导流叶片沿内环壁内侧圆周均匀布设,所述阴极燃油喷嘴设置在燃油喷嘴接口内,所述内路阳极金属环设置在内环壁的内壁上,且在阴极燃油喷嘴与内路阳极金属环之间施加电压时,用于在阴极燃油喷嘴与内路阳极金属环之间的空间内产生等离子体电弧,所述外路阳极金属环设置在内环壁的外壁上;

所述外层旋流器包括第二导流叶片和外环壁,所述外环壁设置在内环壁的外侧,所述第二导流叶片的一端与内环壁的外壁固定连接,所述第二导流叶片的另一端与外环壁的内壁固定连接,所述第二导流叶片的数量为多个,多个所述第二导流叶片沿外环壁内侧圆周均匀布设,所述阴极唇形环固定设置在外环壁的顶部且位于外路阳极金属环的外侧,且在外路阳极金属环与阴极唇形环之间施加电压时,用于在外路阳极金属环与阴极唇形环之间的空间内产生等离子体电弧。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述内环壁包括内环壁本体和用于固定内路阳极金属环和外路阳极金属环的绝缘环,所述绝缘环包括绝缘环本体、绝缘环安装凸台、内侧环形凸台、外侧环形凸台、内路阳极环型卡槽和外路阳极环型卡槽,所述绝缘环安装凸台设置在绝缘环本体的底部且用于将绝缘环安装在内环壁本体的顶端,所述绝缘环顶部分别向内延伸形成内侧环形凸台和向外延伸形成外侧环形凸台,所述内路阳极环型卡槽开设在内侧环形凸台的底部且所述内路阳极环型卡槽的开口朝下,所述外路阳极环型卡槽开设在外侧环形凸台的底部且所述外路阳极环型卡槽的开口朝下,所述内环壁本体的上端开设有与绝缘环安装凸台相配合的环形绝缘环安装槽。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述阴极唇形环为收敛扩散状的中空回转体,其包括上段的扩散段和下段的收敛段,所述扩散段和收敛段为一体结构,所述收敛段的下部与外环壁的顶部固定连接。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述阴极唇形环的厚度为1mm~3mm,所述阴极唇形环的高度为12mm~16mm;所述收敛段下端开口的内径为28mm~32mm,所述收敛段的高度为8mm~12mm,所述收敛段的母线与中心轴线之间的夹角为α,所述α为5~15°;所述扩散段为开口逐渐变大的薄壁环形唇口,所述扩散段的扩张角为β,所述β为80°~100°,所述扩散段的下端开口内径为25mm~29mm;所述扩散段的高度为2mm~6mm。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述绝缘环为收敛形中空回转体,所述绝缘环的中心线收缩角度为ψ,所述ψ为5°~15°,所述绝缘环下端面的内径为21mm~25mm,所述绝缘环的高度为6mm~10mm,所述绝缘环本体的厚度为0.4mm~0.8mm。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述内侧环形凸台的内径为21mm~25mm,所述绝缘环顶部的厚度为1.4mm~1.8mm,所述内侧环形凸台与外侧环形凸台的高度相同且均为0.3mm~0.7mm。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述外路阳极环型卡槽为环形槽,所述外路阳极环型卡槽的外径为20mm~24mm,所述外路阳极环型卡槽的厚度为0.2mm~0.4mm,所述外路阳极环型卡槽的深度为0.2mm~0.4mm;

所述内路阳极环型卡槽为环形槽,所述内路阳极环型卡槽的内径为18mm~22mm,所述内路阳极环型卡槽的厚度为0.2mm~0.4mm,所述内路阳极环型卡槽的深度为0.2mm~0.4mm。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述内路阳极金属环为渐缩状的中空回转体,所述内路阳极金属环采用钨铜合金材料制成,所述内路阳极金属环的厚度为0.3mm~0.7mm,所述内路阳极金属环下端面的内径为20mm~24mm,所述内路阳极金属环的高度为6mm~10mm,所述内路阳极金属环的收敛角为γ,所述γ为5°~15°,所述内路阳极金属环的顶部嵌装在内路阳极环型卡槽内;

所述外路阳极金属环为渐缩状的中空回转体,所述外路阳极金属环采用钨铜合金材料制成,所述外路阳极金属环的厚度为0.3mm~0.8mm,所述外路阳极金属环下端面的内径为22mm~26mm,所述外路阳极金属环的母线与轴心轴线之间的夹角为5°~15°所述外路阳极金属环的高度为6mm~10mm,所述外路阳极金属环的顶部嵌装在外路阳极环型卡槽内。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述绝缘环安装凸台的内径为21mm~25mm,所述绝缘环安装凸台的厚度为0.4mm~0.8mm,所述绝缘环安装凸台的高度为0.3mm~0.7mm。

上述的一种单双路结合的三维旋转滑动弧等离子体激励器,其特征在于,所述单双路结合的三维旋转滑动弧等离子体激励器还包括外路阳极接线柱和内路阳极接线柱,所述外路阳极接线柱的上端通过螺纹与外路阳极金属环的底部连接,所述内路阳极接线柱的上端通过螺纹与内路阳极金属环的底部连接,所述内环壁上开设有用于外路阳极接线柱穿过的第一通孔和用于内路阳极接线柱穿过的第二通孔,所述外路阳极接线柱的下端穿过第一通孔,所述内路阳极接线柱的下端穿过第二通孔。

本发明与现有技术相比具有以下优点:

1、本发明采用内外两层旋流器,内外两组电极既可同时产生等离子体电弧,又可以单独工作,能满足航空发动机在不同状态下的点火和助燃,不仅保证了混合气点火的可靠性和稳定性,而且能将混合气充分裂解燃烧,并注入活性粒子,拓宽燃烧室的的点火边界,提高了燃烧效率。

2、本发明安装在航空发动机燃烧室火焰筒前部的旋流器位置,不改变燃烧室原本结构,基本不影响头部进气的流场场特性。

3、本发明部件安排合理,两组环形电弧放电的实现方式巧妙,内外两路等离子体点火,不仅保证了混合气点火的可靠性和稳定性,而且可以实现传统燃烧室点火装置的功能,极大简化燃烧室的结构组成。有效拓宽了发动机的稳定燃烧范围,拓宽燃烧室的点火边界,提高了燃烧效率,为解决发动机在高空不易点火等极端环境下点火问题提供了一种可靠的方案。

下面通过附图和实施例,对发明做进一步的详细描述。

附图说明

图1本发明的立体爆炸图。

图2本发明的立体剖视图。

图3本发明的正剖截面图。

图4本发明绝缘环的正剖截面图。。

附图标记说明:

10—内层旋流器;11—燃油喷嘴接口;12—第一导流叶片;

13—内环壁;13-1—内环壁本体;13-2—绝缘环;

13-21—绝缘环本体;13-22—绝缘环安装凸台;

13-23—内侧环形凸台;13-24—外侧环形凸台;

13-25—内路阳极环型卡槽;13-26—外路阳极环型卡槽;

20—外层旋流器;21—第二导流叶片;22—外环壁;

30—阴极燃油喷嘴;40—内路阳极金属环;

41—第二通孔;50—外路阳极金属环;

51—第一通孔;60—阴极唇形环;61—扩散段;

62—收敛段;70—外路阳极接线柱;

80—内路阳极接线柱。

具体实施方式

下面将参照附图更详细地描述本发明的实施例。虽然附图中显示了本发明的某些实施例,然而应当理解的是,本发明可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本发明。应当理解的是,本发明的附图及实施例仅用于示例性作用,并非用于限制本发明的保护范围。

需要注意,本发明中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。

为提高滑动弧的点火作用区域,增强点火能量,进一步提高滑动弧等离子体激励器的高空点火能力,有必要设计一种多弧结构的滑动弧等离子体激励器。经过发明人的研究和实验,多弧结构的滑动弧放电在航空发动机燃烧室点火助燃方面显现出巨大的优势,其优势在于:有效提高了电源的能量利用率,大大增加了等离子体与油气混合物的接触区域,增大了初始点火面积,有效提升滑动弧等离子体激励器的点火能力。同时也仍具有单弧等离子体促进燃油的雾化和裂解、工作条件宽泛、对燃烧室入口气流无特定要求、电极结构简单、电弧受燃烧室入口气流影响较小等诸多优点。因此结合多弧结构的滑动弧放电特点发明人设计出了一种新的基于航发燃烧室头部的双路三维旋转滑动弧激励器。如图1和图2所示,其包括:

内层旋流器10、外层旋流器20、阴极燃油喷嘴30、内路阳极金属环40、外路阳极金属环50和阴极唇形环60,

所述阴极燃油喷嘴30固定安装在内层旋流器10上,所述内路阳极金属环40和外路阳极金属环50均设置在内层旋流器10上,所述阴极唇形环60设置在外层旋流器20上;

所述内层旋流器10包括燃油喷嘴接口11、第一导流叶片12和内环壁13,所述燃油喷嘴接口11设置在内环壁13的内侧,所述第一导流叶片12的一端与燃油喷嘴接口11的外壁固定连接,所述第一导流叶片12的另一端与内环壁13的内壁固定连接,所述第一导流叶片12的数量为多个,多个所述第一导流叶片12沿内环壁13内侧圆周均匀布设,所述阴极燃油喷嘴30设置在燃油喷嘴接口11内,所述内路阳极金属环40设置在内环壁13的内壁上,且在阴极燃油喷嘴30与内路阳极金属环40之间施加电压时,用于在阴极燃油喷嘴30与内路阳极金属环40之间的空间内产生等离子体电弧,所述外路阳极金属环50设置在内环壁13的外壁上;

所述外层旋流器20包括第二导流叶片21和外环壁22,所述外环壁22设置在内环壁13的外侧,所述第二导流叶片21的一端与内环壁13的外壁固定连接,所述第二导流叶片21的另一端与外环壁22的内壁固定连接,所述第二导流叶片21的数量为多个,多个所述第二导流叶片21沿外环壁22内侧圆周均匀布设,所述阴极唇形环60固定设置在外环壁22的顶部且位于外路阳极金属环50的外侧,且在外路阳极金属环50与阴极唇形环60之间施加电压时,用于在外路阳极金属环50与阴极唇形环60之间的空间内产生等离子体电弧。

在本实施例中,采用内外两层旋流器,即双级旋流,使燃油与空气能够更加的充分混合。内层旋流器10中,当阴极燃油喷嘴30与内路阳极金属环40之间施加电压时,阴极燃油喷嘴30与内路阳极金属环40之间产生等离子体电弧;外层旋流器20中,当外路阳极金属环50与阴极唇形环60之间施加电压时,外路阳极金属环50与阴极唇形环60之间产生等离子体电弧。两组电极,既可以单独工作,满足一般情况下的点火助燃,以较小的功率保证燃烧室中的正常燃烧;又可以同时工作,满足极端工况下燃烧室的点火与助燃,大幅度拓宽航空发动机的点熄火边界,提高飞机的飞行高度。不仅保证了混合气点火的可靠性和稳定性,而且能将混合气充分裂解燃烧,并注入活性粒子,拓宽燃烧室的的点火边界,提高了燃烧效率。

如图1至图4所示,所述内环壁13包括内环壁本体13-1和用于固定内路阳极金属环40和外路阳极金属环50的绝缘环13-2,所述绝缘环13-2包括绝缘环本体13-21、绝缘环安装凸台13-22、内侧环形凸台13-23、外侧环形凸台13-24、内路阳极环型卡槽13-25和外路阳极环型卡槽13-26,所述绝缘环安装凸台13-22设置在绝缘环本体13-21的底部且用于将绝缘环13-2安装在内环壁本体13-1的顶端,所述绝缘环13-2顶部分别向内延伸形成内侧环形凸台13-23和向外延伸形成外侧环形凸台13-24,所述内路阳极环型卡槽13-25开设在内侧环形凸台13-23的底部且所述内路阳极环型卡槽13-25的开口朝下,所述外路阳极环型卡槽13-26开设在外侧环形凸台13-24的底部且所述外路阳极环型卡槽13-26的开口朝下,所述内环壁本体13-1的上端开设有与绝缘环安装凸台13-22相配合的环形绝缘环安装槽。

本实施例中,绝缘环13-2起分隔内外两个阳极金属环并起绝缘作用,使两级放电产生等离子体的过程中互不干扰。

如图2所示,所述阴极唇形环60为收敛扩散状的中空回转体,其包括上段的扩散段61和下段的收敛段62,所述扩散段61和收敛段62为一体结构,所述收敛段62的下部与外环壁22的顶部固定连接。

本实施例中,所述阴极唇形环60的厚度为1mm~3mm,所述阴极唇形环60的高度为12mm~16mm;所述收敛段62下端开口的内径为28mm~32mm,所述收敛段62的高度为8mm~12mm,所述收敛段62的母线与中心轴线之间的夹角为α,所述α为5~15°;所述扩散段61为开口逐渐变大的薄壁环形唇口,所述扩散段61的扩张角为β,所述β为80°~100°,所述扩散段61的下端开口内径为25mm~29mm;所述扩散段61的高度为2mm~6mm。

具体的,本实施例中阴极唇形环60的整体薄壁厚度为1.2mm,整体高度距离为14mm。收敛段62下端开口的内径取值为30.5mm,壁厚为1.2mm,高度为10.4mm,收敛段62母线与中心轴线之间的夹角α为10°,扩散段61内径为27mm,高度为3.6mm,扩张角β为90°。

所述阴极唇形环60通过底端的阴极唇形环安装凸台与外环壁22上端加工的阴极唇形环安装槽嵌装在一起,与旋流器后部的收缩段连接构成收敛通道,所述阴极唇形环安装凸台为环状,内径为29.00mm~33.00mm,厚度为0.4mm~0.8mm,高度为0.3mm~0.7mm。

具体的,本实施例中阴极唇形环安装凸台的内径为31mm,厚度为0.6mm,高度为0.5mm。

如图2和图3所示,所述绝缘环13-2为收敛形中空回转体,所述绝缘环13-2的中心线收缩角度为ψ,所述ψ为5°~15°,所述绝缘环13-2下端面的内径为21mm~25mm,所述绝缘环13-2的高度为6mm~10mm,所述绝缘环本体13-21的厚度为0.4mm~0.8mm。

具体的,本实施例中绝缘环13-2的中心线收缩角度ψ在10°,绝缘环13-2下端面的内径为23.4mm,厚度为0.65mm,高度在8.5mm。

本实施例中,所述内侧环形凸台13-23的内径为21mm~25mm,所述绝缘环13-2顶部的厚度为1.4mm~1.8mm,所述内侧环形凸台13-23与外侧环形凸台13-24的高度相同且均为0.3mm~0.7mm。

具体的,本实施例中外侧环形凸台13-24的外径为22.7mm,厚度为1.65mm,高度在0.5mm。

本实施例中,所述外路阳极环型卡槽13-26为环形槽,所述外路阳极环型卡槽13-26的外径为20mm~24mm,所述外路阳极环型卡槽13-26的厚度为0.2mm~0.4mm,所述外路阳极环型卡槽13-26的深度为0.2mm~0.4mm;

具体的,本实施例中外路阳极安装槽21内径外21.7mm,厚度为0.3mm,深度为0.3mm,

所述内路阳极环型卡槽13-25为环形槽,所述内路阳极环型卡槽13-25的内径为18mm~22mm,所述内路阳极环型卡槽13-25的厚度为0.2mm~0.4mm,所述内路阳极环型卡槽13-25的深度为0.2mm~0.4mm。

具体的,本实施例中内路阳极安装槽22内径为19.8mm,厚度为0.3mm,深度为0.3mm。

本实施例中,所述内路阳极金属环40为渐缩状的中空回转体,所述内路阳极金属环40采用钨铜合金材料制成,所述内路阳极金属环40的厚度为0.3mm~0.7mm,所述内路阳极金属环40下端面的内径为20mm~24mm,所述内路阳极金属环40的高度为6mm~10mm,所述内路阳极金属环40的收敛角为γ,所述γ为5°~15°,所述内路阳极金属环40的顶部嵌装在内路阳极环型卡槽13-25内。

所述内路阳极金属环40的顶端为一个凸台环形结构,尺寸与内路阳极环型卡槽13-25相配合。

所述外路阳极金属环50为渐缩状的中空回转体,所述外路阳极金属环50采用钨铜合金材料制成,所述外路阳极金属环50的厚度为0.3mm~0.8mm,所述外路阳极金属环50下端面的内径为22mm~26mm,所述外路阳极金属环50的母线与轴心轴线之间的夹角为5°~15°所述外路阳极金属环50的高度为6mm~10mm,所述外路阳极金属环50的顶部嵌装在外路阳极环型卡槽13-26内。

所述外路阳极金属环50通过顶端的外路阳极金属环安装凸台嵌装在绝缘环13-2外壁面的外路阳极环型卡槽13-26内,外路阳极金属环安装凸台为环状,外径为20mm~24mm,厚度为0.2mm~0.4mm,高度为0.2mm~0.4mm。

具体的,本实施例中外路阳极金属环50的厚度为0.5mm,下端面的内径为24.7mm,高度为8.5mm,外路阳极金属环50母线与轴心轴线之间的夹角为10°,外路阳极金属环安装凸台的外径外为22.3mm,厚度为0.3mm,高度为0.3mm。外路阳极金属环50底部与外路阳极接线柱70连接的螺纹孔的直径为0.3mm,深度为0.5mm,螺纹孔圆心距外路阳极金属环外壁面0.2mm。

所述外路阳极金属环50的顶端也为一个凸台环形结构,尺寸与外路阳极环型卡槽13-26相配合。

本实施例中,所述绝缘环安装凸台13-22的内径为21mm~25mm,所述绝缘环安装凸台13-22的厚度为0.4mm~0.8mm,所述绝缘环安装凸台13-22的高度为0.3mm~0.7mm。

具体的,本实施例中绝缘环安装凸台13-22内径为23.4mm,厚度为0.65,高度为0.5mm。

如图3所示,所述单双路结合的三维旋转滑动弧等离子体激励器还包括外路阳极接线柱70和内路阳极接线柱80,所述外路阳极接线柱70的上端通过螺纹与外路阳极金属环50的底部连接,所述内路阳极接线柱80的上端通过螺纹与内路阳极金属环40的底部连接,所述内环壁13上开设有用于外路阳极接线柱70穿过的第一通孔51和用于内路阳极接线柱80穿过的第二通孔41,所述外路阳极接线柱70的下端穿过第一通孔51,所述内路阳极接线柱80的下端穿过第二通孔41。所述第一通孔51与第二通孔41均匀布设在内环壁13上,所述第一通孔51和第二通孔41的直径均为0.2mm~0.4mm,开孔方向与内环壁13母线方向平行,其中第一通孔51圆心距内环壁13底端外壁面的距离为0.2mm~0.4mm,第二通孔41圆心距内环壁13底端内壁面的距离为0.2mm~0.4mm。

本发明的工作原理为:内路阳极金属环40和外路阳极金属环50分别通过内路阳极接线柱80和外路阳极接线柱70与高压线连接,阴极唇形环60和阴极燃油喷嘴30与机匣共地,因此在阴极唇形环60与外路阳极金属环50、阴极燃油喷嘴30与内路阳极金属环40之间分别形成两组环形等离子体滑动弧。阴极燃油喷嘴30喷射的燃油与流经内层旋流器10第一导流叶片12的空气掺混,形成混合气,混合气接触阴极燃油喷嘴30与内路阳极金属环40之间形成的第一组环形等离子体电弧后被点燃;在被点燃的混合气继续向后运动时,流经外层旋流器20第一导流叶片12的空气掺混到未充分燃烧的混合气中,加入二股旋流空气的混合气在接触阴极唇形环60与外路阳极金属环50之间形成的第二组环形等离子体电弧时被再次点燃,强化燃烧,混合气充分燃烧,形成稳定的高温高压燃气。本发明采用双级旋流掺混与两组环形电弧放电的方式,使燃油与空气充分混合的同时,又能将混合气充分裂解燃烧,并注入活性粒子,提高了点火的可靠性,拥有更高的稳定点火范围,极大程度上为燃烧室稳定工作提供了保障。同时,本发明结构简单,实用性强,极大的改善了发动机的点火性能,符合国家发展先进航空发动机的重大需求,不仅推进我国军民用飞机向更高层次发展,而且本发明的结构也可应用到其他涉及到滑动弧等离子体放电的领域。

以上所述,仅是发明的较佳实施例,并非对发明作任何限制,凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变换,均仍属于发明技术方案的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1