一种液态压缩空气储能与垃圾焚烧电站的耦合系统及方法与流程

文档序号:25992271发布日期:2021-07-23 21:04阅读:136来源:国知局
一种液态压缩空气储能与垃圾焚烧电站的耦合系统及方法与流程

本发明涉及储能综合利用技术领域,特别涉及一种液态压缩空气储能与垃圾焚烧电站的耦合系统及方法。



背景技术:

垃圾焚烧存在邻避风险,且垃圾组分复杂、热值波动率高,造成垃圾电站焚烧炉工况稳定性差,炉温变化较大,焚烧炉出口蒸汽参数也随之发生较大变化。同时汽轮机通常采用tf运行方式,频繁变化的焚烧炉工况导致难以实施调峰调频功能。随着我国垃圾分类工作的大力推进,分类后进入垃圾焚烧电站的垃圾组分和热值将继续发生显著变化,对现有垃圾焚烧电站适应性的挑战已经显现。垃圾热值超过设计热值,对热力系统优化提出了新的要求。



技术实现要素:

为了克服上述现有技术的不足,本发明的目的在于提供一种液态压缩空气储能与垃圾焚烧电站的耦合系统及方法,通过液态压缩空气储能与垃圾焚烧电站热力系统的耦合,将汽轮机将焚烧炉产生的高温高压蒸汽中的热能,通过带有行星齿液力耦合器驱动的空气压缩机进行储存,在负荷高峰期,通过空气透平将液态压缩空气储存的能量释放。使得垃圾焚烧电站热力系统能够平抑焚烧炉工况波动的同时,具备储能调峰能力,实现能量在时间和空间上的合理分布,提高热力系统热能梯级利用程度,改善储能调峰系统运行效率,增加系统整体的调峰能力。

为了实现上述目的,本发明采用的技术方案是:

一种液态压缩空气储能与垃圾焚烧电站的耦合系统,包括液态压缩空气储能系统和释能系统;

所述液态压缩空气储能系统包括垃圾焚烧炉1,垃圾焚烧炉1产生的高温高压蒸汽驱动汽轮机2做功,所述汽轮机2进汽端通过行星齿液力耦合器3与空气压缩机4相连,空气压缩机4压缩空气出口连接压缩机侧油气换热器7气侧入口,压缩机侧油气换热器7的油侧入口连接储冷罐9,油侧出口连接储热罐10,压缩机侧油气换热器7气侧出口分为两路,分别连接回冷换热器11超临界压缩空气入口和蓄冷换热器(液化侧)12超临界压缩空气侧入口,回冷换热器11超临界压缩空气出口和蓄冷换热器(液化侧)12超临界压缩空气侧出口连接低温液体膨胀机19,低温液体膨胀机19连接分离器20,分离后的低压液化空气进入低温绝热储罐21存储;

所述释能系统包括汽轮机2,汽轮机2排汽端与汽轮发电机6采用sss离合器5相连,驱动汽轮发电机6发电,低温绝热储罐21出口与低温泵22相连,经低温泵22升压后的液态压缩空气进入蓄冷换热器(气化侧)23液态压缩空气入口,经蓄冷换热器(气化侧)23回收冷量后进入空气透平侧油气换热器8超临界压缩空气入口,空气透平侧油气换热器8油侧入口与储热罐10相连,油侧出口与储冷罐9相连,空气透平侧油气换热器8超临界压缩空气出口与空气透平24相连,空气透平24驱动空气透平发电机25发电。

所述分离器20气侧分离后的气化气输入回冷换热器11内回收冷能并将另一侧的超临界空气液化,回冷换热器11出口的低压气化气则输入空气压缩机4级间重新压缩以回收压力能。

所述蓄冷换热器(液化侧)12通过中冷填充床氮气循环风机(液化侧)14连接中冷填充床13,蓄冷换热器(气化侧)23通过中冷填充床氮气循环风机(气化侧)15连接中冷填充床13。

所述蓄冷换热器(液化侧)12通过深冷填充床氮气循环风机(液化侧)17连接深冷填充床16,蓄冷换热器(气化侧)23通过深冷填充床氮气循环风机(气化侧)18连接深冷填充床16。

所述中冷填充床13和深冷填充床16采用石子或大理石作为蓄冷填充料来储存冷量,通过中冷填充床氮气循环风机(液化侧)14和深冷填充床氮气循环风机(液化侧)17实现超临界压缩空气的液化;通过中冷填充床氮气循环风机(气化侧)15和深冷填充床氮气循环风机(气化侧)18实现低温液态空气的气化。

所述空气压缩机4采用多级压缩,每一级压缩机对应一台压缩机侧油气换热器7,压缩机侧油气换热器7的数量与空气压缩机4的级数相同。

所述空气透平24采用多级透平,每一级透平对应一台空气透平侧油气换热器8,透平机侧油气换热器8的数量与空气透平机24的级数相同。

所述汽轮机2驱动汽源来自垃圾焚烧炉1的主蒸汽。

所述汽轮机2进汽端与空气压缩机4采用行星齿液力耦合器3相连,汽轮机2排汽端与汽轮发电机6采用sss离合器5相连。

一种液态压缩空气储能与垃圾焚烧电站的耦合系统的运行方法,包括储能模式和释能模式;

储能模式:

当系统以储能模式运行时,连接汽轮机2与汽轮发电机6的sss离合器5在分开状态,垃圾焚烧炉1产生的高温高压蒸汽驱动汽轮机2运行,通过操作行星齿液力耦合器3将空气压缩机4升至工作转速运行,空气压缩机4出口的超临界压缩空气进入压缩机侧油气换热器7,由来自储冷罐9的导热油冷却,将压缩热储存在储热罐10中,经过换热冷却的压缩空气大部分进入蓄冷换热器(液化侧)12,其余部分进入回冷换热器11,分别启动中冷填充床氮气循环风机(液化侧)14和深冷填充床氮气循环风机(液化侧)17将储存在中冷填充床13和深冷填充床16中的冷量通过氮气循环至蓄冷换热器(液化侧)12,在蓄冷换热器(液化侧)12中吸收来自中冷填充床13和深冷填充床16的冷量后液化成高压液化空气,与经过回冷换热器11的高压液化空气汇合后进入低温液体膨胀机19,经过绝热膨胀,形成的低压液化空气和低压气化气混合物进入分离器20,分离后的低压液化空气进入低温绝热储罐21存储,分离后的气化气输入回冷换热器11内回收冷能并将另一部分超临界空气液化,回冷换热器11出口的低压气化气则输入空气压缩机4级间重新压缩以回收压力能;

释能模式:

低温绝热储罐21存储的低压液化空气经低温泵22升压后进入蓄冷换热器(气化侧)23超临界空气流道,启动中冷填充床氮气循环风机(气化侧)15和深冷填充床氮气循环风机(气化侧)18,通过循环氮气输入蓄冷换热器(气化侧)23氮气侧流道并与超低温液化空气交换冷量,吸收冷能后的循环氮气在中冷填充床氮气循环风机(气化侧)15和深冷填充床氮气循环风机(气化侧)18的驱动下进入中冷填充床13和深冷填充床16内与蓄冷石子直接接触换热,将液化空气蒸发过程的冷能储存在中冷填充床13和深冷填充床16内,蓄冷换热器(气化侧)23氮气侧流道进口的循环氮气温度接近常温,提高了冷回收效率,经过蓄冷换热器(气化侧)23的超临界压缩空气进入空气透平侧油气换热器8,由来自储热罐10的导热油加热,加热超临界压缩空气后的导热油被冷却至常温,进入储冷罐9,经过加热的超临界压缩空气进入空气透平24驱动空气透平发电机25发电,连接汽轮机2与空气压缩机4的行星齿液力耦合器在零功率传输状态,汽轮机2与汽轮发电机6通过sss离合器5连接且保持锁定状态,来自垃圾焚烧炉1的高温高压蒸汽进入汽轮机2,驱动汽轮发电机6发电。

本发明的有益效果:

本发明将液态压缩空气储能与垃圾焚烧电站进行耦合,将垃圾焚烧炉在夜间或者过负荷工况下产生的高温高压蒸汽通过汽轮机驱动空气压缩机,把空气以液态压缩空气的形式储存起来,储能压缩过程的热量由导热油储热罐储存,释能膨胀过程的吸热由高温导热油提供。压缩空气储存和释放过程采用两级蓄冷填充床,提高换热效率,降低压缩空气液化和液态压缩空气气化过程中损失。释放出的超临界压缩空气作为空气透平的进气驱动空气透平发电机发电可以参与电网调峰调频。

本发明提出的系统运行方式,可实现液态压缩空气储能系统与垃圾焚烧发电产生能量的时空转移,有利于提升机组参与电网的调峰和调频能力,提高垃圾焚烧发电企业竞争能力。

本发明适用于垃圾焚烧发电机组,具备推广的普适性条件。

附图说明

图1为本发明的热力系统示意图。

其中:1-垃圾焚烧炉,2-汽轮机,3-行星齿液力耦合器,4-空气压缩机,5-sss离合器,6-汽轮发电机,7-压缩机侧油气换热器,8-空气透平侧油气换热器,9-储冷罐,10-储热罐,11-回冷换热器,12-蓄冷换热器(液化侧),13-中冷填充床,14-中冷填充床氮气循环风机(液化侧),15-中冷填充床氮气循环风机(气化侧),16-深冷填充床,17-深冷填充床氮气循环风机(液化侧),18-深冷填充床氮气循环风机(气化侧),19-低温液体膨胀机,20-分离器,21-低温绝热储罐,22-低温泵,23-蓄冷换热器(气化侧),24-空气透平,25-空气透平发电机。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

参见图1;本发明采用液态压缩空气储能与垃圾焚烧电站的耦合系统,包括液态压缩空气储能系统和释能系统。

所述液态压缩空气储能系统包括垃圾焚烧炉1,垃圾焚烧炉1产生的高温高压蒸汽驱动汽轮机2做功,汽轮机2进汽端通过行星齿液力耦合器3与空气压缩机4相连,空气压缩机4压缩空气出口连接压缩机侧油气换热器7气侧入口,压缩机侧油气换热器7的油侧入口连接储冷罐9,油侧出口连接储热罐10,压缩机侧油气换热器7气侧出口分为两路,分别连接回冷换热器11超临界压缩空气入口和蓄冷换热器(液化侧)12超临界压缩空气侧入口,回冷换热器11超临界压缩空气出口和蓄冷换热器(液化侧)12超临界压缩空气侧出口连接低温液体膨胀机19,低温液体膨胀机19连接分离器20,分离后的低压液化空气进入低温绝热储罐21存储。

所述释能系统包括汽轮机2排汽端通过sss离合器5与汽轮发电机6相连,驱动汽轮发电机6发电。低温绝热储罐21出口与低温泵22相连,经低温泵22升压后的液态压缩空气进入蓄冷换热器(气化侧)23液态压缩空气入口,经蓄冷换热器(气化侧)23回收冷量后进入空气透平侧油气换热器8超临界压缩空气入口,空气透平侧油气换热器8油侧入口与储热罐10相连,油侧出口与储冷罐9相连,空气透平侧油气换热器8超临界压缩空气出口与空气透平24相连,空气透平24驱动空气透平发电机25发电。

液态压缩空气储能具有可靠性高、经济性好、对环境影响小等优点。通过对空气深冷液化实现压缩空气的液态存储,适应垃圾焚烧电站土地集约程度高的特点,减少对储存条件的限制,提升系统储能密度。

本发明的工作原理:

储能模式:

当系统以储能模式运行时,连接汽轮机2与汽轮发电机6的sss离合器5在分开状态,垃圾焚烧炉1产生的高温高压蒸汽驱动汽轮机2运行,通过操作行星齿液力耦合器3将空气压缩机4升至工作转速运行,空气压缩机4出口的超临界压缩空气进入压缩机侧油气换热器7,由来自储冷罐9的导热油冷却,将压缩热储存在储热罐10中,经过换热冷却的压缩空气大部分进入蓄冷换热器(液化侧)12,其余部分进入回冷换热器11,分别启动中冷填充床氮气循环风机(液化侧)14和深冷填充床氮气循环风机(液化侧)17将储存在中冷填充床13和深冷填充床16中的冷量通过氮气循环至蓄冷换热器(液化侧)12,在蓄冷换热器(液化侧)12中吸收来自中冷填充床13和深冷填充床16的冷量后液化成高压液化空气,与经过回冷换热器11的高压液化空气汇合后进入低温液体膨胀机19,经过绝热膨胀,形成的低压液化空气和低压气化气混合物进入分离器20,分离后的低压液化空气进入低温绝热储罐21存储,分离后的气化气输入回冷换热器11内回收冷能并将另一部分超临界空气液化,回冷换热器11出口的低压气化气则输入空气压缩机4级间重新压缩以回收压力能;

释能模式:

低温绝热储罐21存储的低压液化空气经低温泵22升压后进入蓄冷换热器(气化侧)23超临界空气流道,启动中冷填充床氮气循环风机(气化侧)15和深冷填充床氮气循环风机(气化侧)18,通过循环氮气输入蓄冷换热器(气化侧)23氮气侧流道并与超低温液化空气交换冷量,吸收冷能后的循环氮气在中冷填充床氮气循环风机(气化侧)15和深冷填充床氮气循环风机(气化侧)18的驱动下进入中冷填充床13和深冷填充床16内与蓄冷石子直接接触换热,将液化空气蒸发过程的冷能储存在中冷填充床13和深冷填充床16内,蓄冷换热器(气化侧)23氮气侧流道进口的循环氮气温度接近常温,提高了冷回收效率,经过蓄冷换热器(气化侧)23的超临界压缩空气进入空气透平侧油气换热器8,由来自储热罐10的导热油加热,加热超临界压缩空气后的导热油被冷却至常温,进入储冷罐9,经过加热的超临界压缩空气进入空气透平24驱动空气透平发电机25发电。连接汽轮机2与空气压缩机4的行星齿液力耦合器在零功率传输状态,汽轮机2与汽轮发电机6通过sss离合器5连接且保持锁定状态,来自垃圾焚烧炉1的高温高压蒸汽进入汽轮机2,驱动汽轮发电机6发电。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1