使用进气氧传感器确定发动机油中的燃料浓度的方法和系统的制作方法

文档序号:9259055阅读:571来源:国知局
使用进气氧传感器确定发动机油中的燃料浓度的方法和系统的制作方法
【技术领域】
[0001]本发明大体涉及被包括在内燃发动机的进气系统中的气体成分传感器。
【背景技术】
[0002]发动机系统可以利用来自发动机排气系统的排气到发动机进气系统(进气通道)的再循环,即称为排气再循环(EGR)的过程来减少规定的排放并改善燃料经济性。EGR系统可以包括测量和/或控制EGR的各种传感器。作为一个示例,EGR系统可以包括进气气体成分传感器(诸如氧传感器),其可以在非EGR状况期间用于确定新鲜进气空气的氧含量。在EGR状况期间,由于EGR作为稀释剂的添加,该传感器可以基于氧浓度的变化用于推测EGR。由Matsubara等人在US6742379中示出此类进气氧传感器的一个示例。EGR系统可以另外地或任选地包括联接到排气歧管的排气氧传感器,用于估计燃烧空燃比。
[0003]因此,由于高压空气引入系统中的增压空气冷却器下游的氧传感器的位置,该传感器可能对燃料蒸汽和其他还原剂以及氧化剂(诸如油雾)的存在敏感。例如,在升压发动机操作期间,吹扫空气和/或漏气(blow-by)可以被接收在压缩机入口位置处。从吹扫空气、曲轴箱强制通风(PCV)和/或浓EGR吸入的碳氢化合物能够消耗传感器催化表面上的氧气并且降低由传感器检测到的氧浓度。在一些情况下,还原剂也可以与氧传感器的感测元件发生反应。该传感器处的氧还原可以错误地理解为当使用变化的氧气估计EGR时的稀释剂。因此,传感器测量可能被各种灵敏度混淆,传感器的准确性可能降低,并且EGR的测量和/或控制可能劣化。
[0004]PCV流中的碳氢化合物可以由发动机的曲轴箱中的发动机油中增加的燃料引起。例如,燃料在发动机冷启动和预热/暖机状况期间可以积聚在发动机油中。然后,当发动机正在预热并且发动机油达到稳态操作温度时,积聚的燃料可以作为碳氢化合物释放。碳氢化合物可以影响各种发动机参数和控制,包括燃料控制和监测、发动机油粘度和进气氧传感器输出。油中过多的燃料可以降低发动机耐久性。

【发明内容】

[0005]在一个示例中,上述问题可以通过一种用于发动机的方法解决,该方法包括:基于发动机油中的燃料浓度调节发动机操作,燃料浓度基于当吹扫(purge)和EGR流禁用(disabled)时的进气氧传感器的输出、发动机油温度和燃料组分。来自发动机油的燃料蒸发也可以基于发动机油中估计的燃料浓度确定。当发动机升压时,发动机油中的燃料浓度和燃料蒸发率可以提供关于发动机油和进气空气两者中的碳氢化合物的浓度的信息。因此,发动机控制器可以基于发动机油中的燃料浓度和/或燃料蒸发率调节发动机操作。在一个示例中,控制器可以基于发动机油中的燃料浓度校正进气氧传感器的输出以用于EGR流估计。然后,控制器可以基于估计的EGR流调节EGR阀。在另一个示例中,控制器可以基于燃料蒸发率调节喷射至发动机的燃料。例如,随着燃料蒸发率增加,控制器可以减少燃料喷射的量。在又一示例中,控制器可以使用燃料蒸发率以从进气氧传感器预测随后的进气氧读数。如果预测的进气氧读数不同于进气氧传感器的实际输出,则燃料蒸发率估计可以劣化,并且进气氧传感器的输出对EGR控制的准确补偿是不可能的。因此,控制器可以指示估计方法的劣化并且触发禁用EGR流的方法直到碳氢化合物影响被减小。以这种方式,通过提供预测进气气流中的碳氢化合物的量并且随后基于气流和发动机油中的碳氢化合物调节发动机加燃料和/或EGR流的方法,基于发动机油中的燃料浓度和/或燃料蒸发率调节发动机操作可以增加发动机控制的准确性。因此,发动机寿命可以增加并且可以以所要求的水平输送EGR流。
[0006]应当理解,提供上述
【发明内容】
是为了以简化的形式介绍在【具体实施方式】中进一步描述的所选概念。这并不意味着确立所要求保护的主题的关键或基本特征,其范围由随附权利要求唯一地限定。此外,所要求保护的主题并不限于解决上述或在本公开的任何部分指出的任何缺点的实施方式。
【附图说明】
[0007]图1-2是发动机系统的示意图。
[0008]图3是描绘PCV碳氢化合物对由进气氧传感器估计的氧浓度的影响的映射图。
[0009]图4A-图4B示出用于当碳氢化合物对进气氧传感器的影响大于阈值时禁用EGR流的方法。
[0010]图5示出用于估计发动机油中的燃料浓度和来自发动机油的燃料蒸发率的方法。
[0011]图6示出基于PCV碳氢化合物对进气氧传感器的输出的影响的估计对EGR流的示例调节的图形。
【具体实施方式】
[0012]以下描述涉及用于估计PCV碳氢化合物对进气氧传感器的输出的影响以及估计发动机油中的燃料浓度的系统和方法。图1-图2示出示例性发动机,该发动机包括低压排气再循环(EGR)通道、PCV系统和进气氧传感器,该进气氧传感器定位在通向进气通道的LP-EGR通道的入口和PCV系统(在升压操作期间)的入口的下游的进气通道中。在升压发动机操作期间,来自发动机曲轴箱的碳氢化合物(HC)可以经由进气氧传感器上游的PCV流进入进气通道。因此,由进气氧传感器测量的进气氧的减少可以由PCV流HC和进气气流(例如,EGR流或吹扫流)中任何附加的稀释剂引起。该影响在图3处示出。然而,进气氧传感器可以假设进气氧的减少仅由于EGR,并且使用该测量估计EGR流并且调节发动机的LP-EGR流。因此,EGR流不可以调节到期望的水平(例如,可以比必要的减少更多)。图4A-图4B示出用于当吹扫禁用时估计PCV HC对进气氧传感器输出的影响(例如,在进气氧传感器处的PCV噪音)的方法。如果PCV HC对进气氧传感器的影响大于阈值,则发动机控制器可以禁用LP-EGR —持续时间直到PCV噪音降低回到阈值以下。PCV流中的HC来源可以由曲轴箱中的发动机油中的燃料所引起。随着发动机油温度增加,较大量的HC可以释放到空气中并且经由PCV流进入进气通道。基于PCV噪音对EGR的示例性调节在图6处示出。另外,用于估计发动机油中的燃料浓度和来自发动机油的燃料蒸发率的方法在图5处示出。控制器可以响应于燃料浓度和燃料蒸发率调节发动机操作。例如,可以基于发动机油中估计的燃料浓度针对PCV流调节和校正进气氧传感器输出。另外,响应于相对于进气氧传感器输出的燃料蒸发率,可以产生指示需要经由图4所呈现的方法禁用吹扫的标记。以这种方式,可以减少由于来自受PCV流HC所影响的进气氧传感器的不准确的EGR流估计所致的EGR调节。
[0013]图1示出示例性涡轮增压发动机系统100的示意图,该发动机系统100包括多缸内燃发动机10和可以是相同的双涡轮增压器120和130。作为一个非限制性示例,发动机系统100能够作为客运车辆的推进系统的一部分而被包括。虽然本文未示出,但是在不脱离本公开的范围的情况下,可以使用其他发动机配置(诸如具有单涡轮增压器的发动机)。
[0014]通过控制器12并且通过车辆操作员190经由输入装置192的输入,可以至少部分地控制发动机系统100。在该示例中,输入装置192包括加速器踏板和用于生成比例踏板位置信号PP的踏板位置传感器194。控制器12可以是微型计算机,其包括以下项:微处理器单元、输入/输出端口、用于可执行程序和校准值的电子存储介质(例如,只读存储器芯片)、随机存取存储器、保活存储器以及数据总线。存储介质只读存储器可以用表示由微处理器执行的非临时性指令的计算机可读数据进行编程,该指令用于执行本文所述的程序以及预期但没有具体列出的其他变体。控制器12可以经配置以接收来自多个传感器165的信息并且将控制信号发送到多个致动器175(本文描述了多个致动器175的各种示例)。其他致动器(诸如各种附加阀和节气门)可以联接到发动机系统100中的各种位置。基于对应于一个或多个程序的指令或编程到其中的代码,控制器12可以接收来自各种传感器的输入数据、处理输入数据并且响应于处理后的输入数据触发致动器。本文关于图4-图6描述了示例性控制程序。
[0015]发动机系统100可以经由进气通道140接收进气空气。如图1所示,进气通道140可以包括空气滤清器156和空气引入系统(AIS)节气门115。AIS节气门115的位置可以通过控制系统经由可通信地联接到控制器12的节气门致动器117来调节。
[0016]进气空气的至少一部分可以经由进气通道140的第一分支(如142处所指示)引导至涡轮增压器120的压缩机122,并且进气空气的至少一部分可以经由进气通道140的第二分支(如144处所指示)引导至涡轮增压器130的压缩机132。因此,发动机系统100包括压缩机122和132上游的低压AIS系统(LP AIS) 191以及压缩机122和132下游的高压 AIS 系统(HP AIS) 193。
[0017]曲轴箱强制通风(PCV)管道198(例如,推动侧管)可以将曲轴箱(未示出)联接到进气通道的第二分支144,使得曲轴箱中的气体可以以受控的方式从曲轴箱被排放。进一步,来自燃料蒸汽罐(未示出)的蒸发排放物可以通过将燃料蒸汽罐联接到进气通道的第二分支144的燃料蒸汽吹扫管道195被排放到进气通道中。
[0018]总进气空气的第一部分能够经由压缩机122压缩,其中总进气空气的第一部分可以经由进气空气通道146供应到进气歧管160。因此,进气通道142和146形成发动机的空气进气系统的第一分支。类似地,总进气空气的第二部分能够经由压缩机132压缩,其中总进气空气的第二部分可以经由进气空气通道148供应到进气歧管160。因此,进气通道144和148形成发动机的空气进气系统的第二分支。如图1所示,来自进气通道146和148的进气空气在到达进气歧管160之前能够经由公共进气通道149被重新结合,在此进气空气可以提供给发动机。在一些示例中,进气歧管160可以包括用于估计歧管压力(MAP)的进气歧管压力传感器182和/或用于估计歧管空气温度(MCT)的进气歧管温度传感器183,每个传感器均与控制器12通信。在所描绘的示例中,进气通道149也包括增压空气冷却器(CAC) 154和节气门158。节气门158的位置可以通过控制系统经由可通信地联接到控制器12的节气门致动器157来调节。如图所示,节气门158可以布置在CAC 154下游的进气通道149中,并且可以经配置以调节进入发动机10的进气流的流量。
[0019]如图1所示,压缩机旁通阀(CBV) 152可以布置在CBV通道150中,并且CBV 155可以布置在CBV通道151中。在一个示例中,CBV 152和155可以是电子气动CBV(EPCBV)。CBV 152和155可以经控制以在发动机升压时使进气系统中的压力能够释放。CBV通道150的上游端可以与压缩机132下游的进气通道148联接,并且CBV通道150的下游端可以与压缩机132上游的进气通道144联接。类似地,CBV通道151的上游端可以与压缩机122下游的进气通道146联接,并且CBV通道151的下游端可以与压缩机122上游的进气通道142联接。根据每个CBV的位置,由对应压缩机压缩的空气可以再循环到压缩机上游的进气通道(例如,压缩机132的进气通道144和压缩机122的进气通道142)中。例如,CBV 152可以打开以再循环压缩机132上游的压缩空气,且/或CBV155可以打开以再循环压缩机122上游的压缩空气,以在选定的状况期间释放进气系统中的压力,从而减小压缩机喘振负荷的影响。CBV 155和152可以由控制系统主动地或被动地控制。
[0020]如图所示,压缩机入口压力(CIP)传感器196布置在进气通道142中,并且HP AIS压力传感器169布置在进气通道149中。然而,在另一些预期的实施例中,传感器196和169可以分别布置在LP AIS和HP AIS内的其他位置处。除了其他功能之外,CIP传感器196可以用于确定EGR阀121下游的压力。
[0021]发动机10可以包括多个汽缸14。在所描绘的示例中,发动机10包括以V配置布置的六个汽缸。具体地,六个汽缸布置在两个汽缸组13和15上,其中每个汽缸组包括三个汽缸。在可替代示例中,发动机10能够包括两个或更多个汽缸,诸如3个、4个、5个、8个、10个或更多个汽缸。这些不同汽缸能够被均等地分开并且按可替代配置(诸如V型、直列式、箱形等)布置。每个汽缸14可以配置有燃料喷射器166。在所描绘的示例中,燃料喷射器166是直接缸内喷射器。然而,在另一些示例中,燃料喷射器166能够配置为基于端口的燃料喷射器。
[0022]经由公共进气通道149供应到每个汽缸14 (本文也称为燃烧室14)的进气空气可以用于燃料燃烧,并且燃烧产物然后可以经由具体汽缸组的排气通道排出。在所描绘的示例中,发动机10的第一汽缸组13能够经由公共排气通道17排出燃烧产物,并且第二汽缸组15能够经由公共排气通道19排出燃烧产物。
[0023]经由联接到阀推杆的液压致动提升器或经由其中使用凸轮凸角的机械斗(bucket)可以调整每个汽缸14的进气门和排气门的位置。在该示例中,每个汽缸14的至少进气门可以使用凸轮致动系统通过凸轮致动来控制。具体地,进气门凸轮致动系统25可以包括一个或多个凸轮,并且可
当前第1页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1