一种与风力互补以持续发电的波力供电系统的制作方法

文档序号:10623087阅读:442来源:国知局
一种与风力互补以持续发电的波力供电系统的制作方法
【专利摘要】本发明公开一种与风力互补以持续发电的波力供电系统,包括波力动能模块,其架设于海洋上,利用海水波动起伏产生的动能进行发电,并将波力发电并入风力发电设备而达成持续发电的目的,所述波力动能模块包括波力获取模块、传动轴、发电机、变速模块、自动控制模块;所述波力获取模块用于获取海水波动起伏产生的动能,所述传动轴利用所述波力获取模块的输出动能传动,所述发电机接收所述传动轴的动能并转换为电力,所述变速模块安装在所述传动轴上,用于调整所述传动轴的转矩,所述自动控制模块具有微处理器与海洋感测单元,通过感测海水波动起伏的变化,控制所述变速模块调整所述传动轴的转矩,以及控制所述发电机的动作。
【专利说明】
一种与风力互补以持续发电的波力供电系统
技术领域
[0001]本发明涉及发电相关领域,尤其涉及一种结合风力发电和波力发电以提高发电效能,稳定持续产生电能的自然能源发电系统。【背景技术】
[0002]风力发电是常见的自然能源系统,人类利用风能的历史相当悠久,技术也较为成熟,而且设置较为简易,维护成本较为低廉。因此,无论效率高低,多数国家都有鼓励建设风力发电的辅助方案。然而,风力发电也存在缺点,因为自然界的风力是人难以掌握的不稳定现象,当风力过低时将无法产生驱动风力发电的能量,导致能量输出中断;而当风力过强时,为避免机械损坏,也必须关闭风力发电系统,故无法产生电力。
[0003]而另一种常见的自然能源系统,是利用海水起伏进行的波力(wave)发电,波力是发生在海洋表面上的表面波,即沿着水与空气界面间传行的一种波动,属于重力波的一种类型。当风吹起时,风所带来的压力及摩擦力对海洋表面的平衡态产生扰动,一些能量自风转移到水上。
[0004]由于海洋占有地球表面七成的面积,且经常保持波动起伏,相对于风力发电,波力发电的效能相当强大,能够经常持久性的产生动能。故利用海水波力进行发电的技术,也成为业界重视的对象。
[0005]然而,波力发电属于较为新兴的技术,若要单独构建,需要庞大的预算。而且波力发电所设置的地点,与离岸风力发电系统有所重叠,如果要改建风力发电系统,显然不符合现实与经济考虑。
[0006]根据观察,无论是风力或波力能量,都是属于具有周期变化的能量,波力与风力的能量周期相关性系数达0.8且波力比风力更容易预测。其能量较低时,不具有发电效益,而能量过大时,则可能破坏发电设备而无法有效产生能量。故风力或波力能量在开始启动直到稳定发电的期间,都会有能量无法利用的「过渡时期」。而无论是何处海域,风力与波力的过渡时期相互具有时间间隔,若能使风力与波力互补,则可确保长时间保持有效的发电, 而增加能源收益,图5至图7所示为随着时间过程得到的波力、风力大小变化图。图5至图 7 出自:H0KIM0T0, Tsukasa.Predict1n of wave height based on the monitoring of surface wind.0ceanography, 2012, 169-188〇
[0007]为此,发明人考虑一种能与风力互补的波力供电装置,以现有的风力发电系统为基础,增加波力发电以提高电能产量。经多年悉心研究,终于研发完成本发明的自然能量发电系统。
【发明内容】

[0008]本发明的主要目的在于提供一种与风力互补以持续发电的波力供电系统,结合风力发电和波力发电以提高电能产量,减少闲置时间,因此能长期稳定的进行供电,成为最佳的自然能源替代方案。
[0009]本发明的另一目的在于提供一种与风力互补以持续发电的波力供电系统,结合现有设备,架设容易,成本较现有技术更为低廉,容易维修,且能产生实用的能量输出,有助于解决现有能源急迫的问题。
[0010]本发明所提供的与风力互补以持续发电的波力供电系统,包括有波力动能模块, 其架设于海洋上,利用海水波动起伏产生的动能进行发电,并将波力发电并入风力发电设备以持续发电;所述波力动能模块包括波力获取模块、传动轴、发电机、变速模块、自动控制模块;所述波力获取模块用于获取海水波动起伏产生的动能,所述传动轴利用所述波力获取模块的输出动能传动,所述发电机接收所述传动轴的动能并转换为电力,所述变速模块安装在所述传动轴上,用于调整所述传动轴的转矩,所述自动控制模块具有微处理器与海洋感测单元,通过感测所述海水波动的起伏变化,控制所述变速模块调整所述传动轴的转矩并控制所述发电机的动作。
[0011]进一步的,所述波力获取模块具有浮筒,所述浮筒连接滚珠螺杆或齿条进行上下运动、推动所述滚珠螺杆的螺杆转动,所述螺杆与主动齿轮连接,所述主动齿轮介于两同向单向齿轮之间、啮合带动有两反向的单向齿轮,所述单向齿轮连接所述传动轴,利用海水波动起伏带动所述浮筒上下运动,并在所述单向齿轮的限制下带动所述传动轴朝同一方向持续转动,再利用所述传动轴的转动驱动所述发电机。
[0012]进一步的,所述发电机包括两个同轴串接设置的发电机,每个所述的发电机具有不同的输出功率,当所述海水仅有轻微波动起伏时,所述自动控制模块首先驱动低输出功率的所述发电机,以在低转矩时获得较高发电效率;当所述海水波动起伏变大时,切换到高输出高功率的所述发电机,以在大转矩时获得较高的发电效率;而当所述海水波动起伏继续变大时,同时驱动两个所述发电机,达到最高的发电效率。
[0013]优选的,所述发电机为无铁芯盘式发电机。
[0014]优选的,两个所述发电机分别为2KW输出功率的发电机与3KW输出功率的发电机, 所述2KW输出功率的发电机在浪高低于1.5m时启动;所述3KW输出功率的发电机在浪高介于1.5m~3.0m时启动;而当浪高超过3.0m时,则同时启动两个所述发电机。
[0015]优选的,所述变速模块为增速机或无段变速机,具有降低转速、增加扭矩的效果, 所述传动轴上设置有扭力计,所述扭力计测量所述传动轴的转矩,并传输至所述的自动控制模块,通过所述自动控制模块控制所述变速模块自动调整所述传动轴达到所需的转速。
[0016]进一步的,所述自动控制模块还设置有电子调速器,所述电子调速器连接控制所述变速模块,所述电子调速器用于稳定所述变速模块的转速。
[0017]优选的,所述海洋感测单元为海洋数据浮标,通过所述海洋数据浮标以得到所述海水波动起伏变化的数据。
[0018]优选的,所述海洋感测单元为直线位移传感器,以记录所述海水波动起伏的位移量。
[0019]优选的,所述海洋感测单元为超音波波高计或雷射波高计,利用超音波或雷射信号获得所述海水波动起伏的位移量。
[0020]与现有技术相比,本发明的优点和积极效果是:本发明所提供的一种与风力互补以持续发电的波力系统,能长期稳定的进行供电,架设容易,成本较现有技术更为低廉,容易维修,且能产生实用的能量输出,有助于解决现有能源急迫的问题。【附图说明】
[0021]图1为本发明的波力动能模块与风力发电设备的结构示意图;图la为本发明的波力获取模块采取滚珠螺杆方式的结构示意图;图lb为本发明的波力获取模块采取齿条方式的结构示意图;图2为本发明的波力动能模块完整结构示意图;图3为本发明的发电机能量获取范围参考图;以及图4为一般发电机的能量获取范围参考图。
[0022]图5至图7为随着时间过程得到的波力、风力大小的一种实施例的变化图。[〇〇23] 其中,10、波力动能模块;100、波力获取模块;101、浮筒;102、滚珠螺杆;1021、螺帽;1022、螺杆;1023、连杆;103、主动齿轮;104、单向齿轮;105、齿条;110、传动轴;120、 发电机;130、变速模块;131、无段变速机;140、自动控制模块;141、微处理器;142、海洋感测单元;1421、海洋资料浮标;1422、直线位移传感器;1423、超音波波高计或雷射波高计; 143、扭力计;144、电子调速器;20、风力发电设备;30、海水。【具体实施方式】
[0024]请参阅图1、图2所示,为本发明所提供的一种与风力互补以持续发电的波力供电系统,包括有波力动能模块10,其架设于海洋上,利用海水30波动起伏产生的动能进行发电,并将所述波力发电并入风力发电设备20以持续发电。因此,所述波力动能模块10可利用现有的风力发电设备20直接架设,共享海底电缆,节省土地资源以及土木工程成本,同时可利用所述的风力发电设备20直接对所述波力动能模块10进行后期维修。
[0025]所述波力动能模块10包括有波力获取模块100、传动轴110、发电机120、变速模块 130、自动控制模块140。
[0026]所述波力获取模块100放入所述海水30中,用于获取所述海水30波动起伏产生的动能。
[0027]所述传动轴110利用所述波力获取模块100的输出的动能传动,以传输至所述发电机120进行发电。
[0028]所述发电机120接收所述传动轴110的动能,并转换为电力。
[0029]所述变速模块130装置在所述传动轴110上,用于调整所述传动轴110的转矩。
[0030]所述自动控制模块140具有微处理器141与海洋感测单元142,通过感测所述海水30波动起伏的变化,控制所述变速模块130调整所述传动轴110的转矩,并控制所述发电机120的动作。
[0031]具体来说,所述波力获取模块100具有浮筒101,所述浮筒101沉入所述海水30 中,受到所述海水30波动起浮而上下运动,用于获取动能;所述浮筒101连接有滚珠螺杆 (Ballscrew) 102,所述滚珠螺杆102随着所述浮筒101进行上下运动;所述滚珠螺杆102 带动有主动齿轮103,所述主动齿轮103则啮合带动有单向齿轮104,所述单向齿轮104限制转向以保持同一方向的转动,所述单向齿轮104连接所述传动轴110 ;因此,所述浮筒101 随着所述海水30波动起浮而上下运动,并带动所述滚珠螺杆102同步运动,再经由所述主动齿轮103分配到所述单向齿轮104,由所述单向齿轮104带动所述传动轴110朝同一方向持续转动,再经由所述传动轴110转动所述发电机。由于所述海水30波动起浮为经常性的运动,故所述发电机120可以持续发电,并配合所述风力发电设备20互相补足过渡时期,故可以达成持续稳定输出可用电力的目的。
[0032]如图la所示,如前所述滚珠螺杆102,包括有螺帽1021与螺杆1022,其中所述螺帽1021通过连杆1023连接所述浮筒101,而所述螺杆1022连接所述主动齿轮103,因此, 所述螺帽1021会随着所述浮筒101而在所述螺杆1022上移动,然后带动所述螺杆1022旋转以驱动所述主动齿轮103转动。
[0033]采取所述滚珠螺杆102是考虑到其稳定性与强大的负荷力,因此可以得到最佳的发电效果。当然,也可为其它传动方式,如图lb所示,所述浮筒101连接齿条105啮合带动所述主动齿轮103转动,同样可以达成发电目的。
[0034]所述主动齿轮103与所述单向齿轮104采取斜齿轮方式带动,所以两个所述单向齿轮104同时反向设置在所述主动齿轮103两侧,无论所述浮筒101处于上浮或下沉状态, 都可带动任一个所述单向齿轮104传输动力,进而提高传输功率。
[0035]请配合图3所示,所述发电机120包括两个采取同轴串接的发电机120,分别为 200KW输出功率的发电机与300KW输出功率的发电机。当所述海水30浪高低于1.5m时而仅有轻微波动起伏时,所述自动控制模块140首先驱动200KW输出功率的所述发电机120, 可在低转矩时获得较高发电效率;当所述海水30浪高介于1.5m?3.0m时使波动起伏变大时,切换300KW输出功率的所述发电机120,以在大转矩时获得较高发电效率;而当所述海水30浪高超过3.0m时,波动起伏继续变大,同时驱动200KW与300KW输出功率的两个所述发电机120,甚至是采取一部500KW高输出功率的所述发电机120,以达成最高的发电效率。
[0036]详细比较图如图3、图4所示,其中的曲线呈现海水30的波谱密度(Wave spectral Density)与波能谱(Wave energy spectrum)的关系变化,即浪高(Wave Height)与频率 (Frequency)的关系变化图。参见图4所示,显示传统一般发电机的能量获取范围,由于无法选择发电机,所述一般发电机仅能在有限浪高范围内获取能量;反之,如图3所示,本发明具有200KW与300KW输出功率的所述发电机120,故在所述浪高发生变化时,可根据实际需求由所述自动控制模块140切换适当的发电机进行发电。因此,本发明采取积分观念,可在不同阶段的浪高变化分别获取最大的所述海水30波动起浮能量,累积成最大的能量进行输出。
[0037]为适应使用环境并方便操作,并降低维修次数,所述发电机120为无铁芯盘式发电机,可以减少磨耗而降低故障率,当然亦可为其它低转速发电机。
[0038]所述变速模块130为无段变速机131,具有降低转速、增加扭矩的效果,所述传动轴110上设置有扭力计143,所述扭力计143测量所述传动轴110的转矩并传输至所述的自动控制模块140,通过所述自动控制模块140控制所述变速模块130自动调整所述传动轴 110达到所需的转速。所述变速模块130还可以是增速机。
[0039]所述自动控制模块140还设置有电子调速器144,所述电子调速器144连接控制所述变速模块130,当所述海水30波动起浮产生非周期性的变化时,所述电子调速器144可用于稳定所述变速模块130的转速。
[0040]所述海洋感测单元142种类繁多,可以设置一种或同时多种设置,其一为海洋数据浮标1421,通过观察所述海洋数据浮标以得到所述海水30波动起伏变化的数据。
[0041]或者,所述海洋感测单元142为直线位移传感器1422,以记录所述海水30波动起伏的位移量。
[0042]或者,所述海洋感测单元142为超音波波高计或雷射波高计1423,利用超音波或雷射信号获得所述海水30波动起伏的位移量。
[0043]上列详细说明是针对本发明的一可行实施例之具体说明,惟所述实施例并非用以限制本发明的专利范围,凡未脱离本发明技艺精神所为的等效实施或变更,均应包含于本案专利范围中。
【主权项】
1.一种与风力互补以持续发电的波力供电系统,包括波力动能模块,其架设于海洋上, 利用海水波动起伏产生的动能进行发电,并将波力发电并入风力发电设备以持续发电;所 述波力动能模块包括:波力获取模块,用于获取海水波动起伏产生的动能;传动轴,利用所述波力获取模块输出的动能传动;发电机,接收所述传动轴的动能并转换为电力;变速模块,安装在所述传动轴上,用于调整所述传动轴的转矩;以及自动控制模块,具有微处理器与海洋感测单元,通过感测海水波动起伏的变化,控制所 述变速模块调整所述传动轴的转矩并控制所述发电机的动作。2.根据权利要求1所述的与风力互补以持续发电的波力供电系统,其特征在于,所述 波力获取模块具有浮筒,所述浮筒连接滚珠螺杆或齿条,所述滚珠螺杆带动主动齿轮,所述 主动齿轮啮合带动单向齿轮,所述单向齿轮连接所述传动轴,利用海水波动起伏带动所述 浮筒上下运动,并在所述单向齿轮的限制下带动所述传动轴朝同一方向持续转动,再利用 所述传动轴的转动驱动所述发电机。3.根据权利要求1所述的与风力互补以持续发电的波力供电系统,其特征在于,所述 发电机包括两个同轴串接设置的发电机,每个所述的发电机具有不同的输出功率,当所述 海水仅有轻微波动起伏时,所述自动控制模块首先驱动低输出功率的所述发电机,以在低 转矩时获得较高的发电效率;当所述海水波动起伏变大时,切换到高输出功率的所述发电 机,以在大转矩时获得较高的发电效率;而当所述海水波动起伏继续变大时,同时驱动两个 所述发电机,达到最高的发电效率。4.根据权利要求3所述的与风力互补以持续发电的波力供电系统,其特征在于,所述 发电机为无铁芯盘式发电机。5.根据权利要求3所述的与风力互补以持续发电的波力供电系统,其特征在于,两个 所述发电机分别为2KW输出功率的发电机与3KW输出功率的发电机,所述2KW输出功率的 发电机在浪高低于1.5m时启动;所述3KW输出功率的发电机在浪高介于1.5m~3.0m时启 动;而当浪高超过3.0m时,则同时启动两个所述发电机。6.根据权利要求1所述的与风力互补以持续发电的波力供电系统,其特征在于,所述 变速模块为增速机或无段变速机,所述传动轴上设置有扭力计,所述扭力计测量所述传动 轴的转矩,并传输至所述的自动控制模块,通过所述自动控制模块控制所述变速模块自动 调整所述传动轴达到所需的转速。7.根据权利要求6所述的与风力互补以持续发电的波力供电系统,其特征在于,所述 自动控制模块还设置有电子调速器,所述电子调速器连接控制所述变速模块,所述电子调 速器用于稳定所述变速模块的转速。8.根据权利要求1所述的与风力互补以持续发电的波力供电系统,其特征在于,所述 海洋感测单元为海洋数据浮标,通过所述海洋数据浮标得到所述海水波动起伏变化的数据。9.根据权利要求1所述的与风力互补以持续发电的波力供电系统,其特征在于,所述 海洋感测单元为直线位移传感器,以记录所述海水波动起伏的位移量。10.根据权利要求1所述的与风力互补以持续发电的波力供电系统,其特征在于,所述海洋感测单元为超音波波高计或雷射波高计,利用超音波或雷射信号获得所述海水波动起 伏的位移量。
【文档编号】F03D9/00GK105986965SQ201510097533
【公开日】2016年10月5日
【申请日】2015年3月5日
【发明人】翁文凯, 翁源佑, 陈建榕
【申请人】翁文凯, 翁源佑, 陈建榕
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1