控制风力涡轮机的操作的方法

文档序号:10696886阅读:760来源:国知局
控制风力涡轮机的操作的方法
【专利摘要】本发明涉及一种控制风力涡轮机的操作的方法。测量与风有关的值以及风力涡轮机的这些操作参数:电输出功率、旋转叶片系统的参数、加速度和推力,这些操作参数影响风力涡轮机部件。使用测量值来生成相应的基于时间的统计。使用该统计来估计这些负荷中的至少一个:塔架弯曲力矩、叶片弯曲力矩和/或塔架偏摇力矩。将估计负荷与负荷阈值相比较,所述负荷阈值对于给定类型的风力涡轮机而言是预先确定的。以考虑到负荷估计来减少相应的负荷的方式来控制风力涡轮机的操作。
【专利说明】
控制风力涡轮机的操作的方法
技术领域
[0001 ]本发明涉及一种控制风力涡轮机的操作的方法。
【背景技术】
[0002] 用以控制风力涡轮机的操作的方法是众所周知的。某些控制处理了风力涡轮机部 件的负荷减少,即其处理了作用于风力涡轮机的转子的叶片上的负荷的减少。
[0003] 使用节距角的恒定调整来获得负荷减少是已知的。此调整正常地是根据风力涡轮 机的电输出功率而完成的,其也是用于风速的指示符。
[0004] 在大风情况下通过减少每分钟转数(缩写为"RPM")并通过根据正在增加的风速减 小输出功率来减少作用于风力涡轮机部件上的负荷是已知的。
[0005] 甚至减少叶片的旋转速度并基于负荷(其是估计的)来减少风力涡轮机的输出功 率是已知的。
[0006] 这些控制是相当容易的且工作起来直截了当。它们主要基于如同风速之类的单个 参数的测量结果一一因此,控制既不是尖端的,也不自适应于风力涡轮机的地点特定条件 或风力涡轮机的操作特定条件。
[0007] 如所知道的,不但负荷减少控制并未考虑到优化的年发电量(AEP),而且该控制被 以更加无意识的方式激活或去激活,在仅考虑实际负荷的情况下。

【发明内容】

[0008] 因此本发明的目的是提供一种尖端的、自适应且经改进的方法以鉴于负荷来控制 风力涡轮机的操作。
[0009] 用权利要求1的特征来解决此目的。
[0010] 用从属权利要求来提出本发明的优选配置。
[0011] 所发明的方法控制风力涡轮机的操作。测量与风有关的值以及风力涡轮机的这些 操作参数:电输出功率、旋转叶片系统的参数以及加速度和推力,这些操作参数影响风力涡 轮机部件。使用测量值来生成相应的基于时间的统计。使用该统计来估计这些负荷中的至 少一个:塔架弯曲力矩、叶片弯曲力矩和/或塔架偏摇(yawing)力矩。将估计负荷与负荷阈 值相比较,所述负荷阈值对于给定类型的风力涡轮机而言是预先确定的。以考虑到负荷估 计来减少相应的负荷的方式来控制风力涡轮机的操作。
[0012] 总结出所发明的方法关于风力涡轮机所经历的负荷且关于风力涡轮机的操作条 件来处理风力涡轮机的操作。所发明的方法以减轻或者至少减少作用于风力涡轮机的负荷 的方式来控制风力涡轮机的操作。
[0013] 更详细地描述如所发明的控制方法是基于风力涡轮机及其周围环境的特定值, 即: ?产生的电功率, ?旋转叶片的节距角, ?叶片的每分钟转数(rpm)或叶片的等价转速, ?风的特性(例如风速、湍流、气温、空气湿度等), ?吊舱经历的加速度和/或 ?风力涡轮机的相应的部件(即叶片、吊舱、轴等)所经历的推力。
[0014] 使用该特定值来生成下面给出的统计中的一个或多个,其随后被用于估计: #功率的η秒统计, ?节距的η秒统计, ? rpm的η秒统计, ?作为估计的风的η秒统计, ?作为估计的湍流的η秒统计, ?已处理吊舱左右加速度的η秒统计, ?已处理吊舱前后加速度的η秒统计, ?已处理吊舱作为结果的加速度的η秒统计,和/或 ?推力估计的η秒统计。
[0015] 这些统计可以覆盖几秒的时间段以及更长的时间段(请注意这些统计并不以风力 涡轮机的整个寿命为目标)。
[0016] 使用该统计来估计许多负荷(即弯曲力矩)或至少其子集,即: ?第一最大绝对塔架弯曲力矩(关于塔架的底端并且关于在进来的风的方向上所经 历的塔架的前后移动), ?第二最大绝对塔架弯曲力矩(关于塔架的底端并且关于在垂直于进来的风的方向 上经历的塔架的左右移动), ?关于塔架顶部的最大绝对偏摇力矩, ?最小叶片根部襟翼(flap)弯曲力矩, ?最大绝对叶片根部边缘弯曲力矩, ?循环塔架底部前后疲劳弯曲力矩, ?循环塔架底部左右疲劳弯曲力矩,和/或 ?循环叶片根部襟翼疲劳弯曲力矩。
[0017] 将估计器的作为结果的负荷与针对每个给定的风力涡轮机类型预先确定的相应 的限制值相比较。
[0018] 根据控制方法的配置,使用下面的控制行为的全部或子集来减轻负荷。负荷减轻 是基于预先确定的策略: ?调整限制的节距角值(称为最佳节距)和/或 ?缩减旋转叶片的旋转速度,和/或 ?缩减电输出功率和/或 ?增加左右塔架阻尼器的增益,和/或 ?增加左右塔架阻尼器的饱和极限。
[0019] 可以以目标负荷被处理为单独目标负荷、作为一组目标负荷或总共的方式来控制 负荷估计器。
[0020] 负荷估计器将优选地估计η秒负荷统计而不是负荷时间序列。将每η秒更新负荷估 计,以产生η秒的最小更新周期。
[0021]所列负荷中的若干个是相关的,因此可以减少负荷估计器的数目。在优选配置中, 将估计器的相应的输入分组,因此使用作为结果的数目的四个估计器来分别地处理这些负 荷: 第一估计器处理这些负荷: ?第一最大绝对塔架弯曲力矩(底部、前后), ?最小叶片根部襟翼弯曲力矩,以及 ?最大叶片根部边缘弯曲力矩。
[0022]第二估计器处理此负荷: ?第二最大绝对塔架弯曲力矩。
[0023] 第三估计器处理此负荷: ?关于塔架的顶部的最大绝对偏摇力矩。
[0024]第四估计器处理这些负荷: ?循环塔架底部前后疲劳弯曲力矩, ?循环塔架底部左右疲劳弯曲力矩,以及 ?循环叶片根部襟翼疲劳弯曲力矩。
[0025] 通过此公式来描述相应的负荷估计器的一般结构: 其中:
Ι?作为对应于负荷组i的负荷估计, &t - 作为负荷模型1的负荷模型系数, -義;3作为负荷模型i的输入信号,以及 I.作为权重因数,其可以是1或2。
[0026] 从气动弹性模拟得到模型系数,使得每组的负荷估计与该组之内的负荷之间实现 最尚可能相关。
[0027] 因此,四个负荷估计器产生每个负荷组内的负荷水平的一般测量,并且不能转化 成特定负荷。负荷估计是负荷水平的定性指标。
[0028] 发明的方法可以被配置成减轻以上列出的主要负荷中的全部或仅子集。
[0029] 发明的方法是基于估计,该估计进而基于众所周知的风力涡轮机参数和风测量结 果。因此,发明的方法是可靠的且不需要通过经常遭受干扰的传感器来测量负荷。
[0030] 发明的方法照顾到负荷减少,这也可以根据经保证的年发电量(AEP)来完成。
[0031] 发明的方法不仅在"高负荷情况"(例如暴风雨或大风)下是积极的,其甚至在风力 涡轮机的正常操作期间也是积极的。该控制因此以风力涡轮机(同样地以及其部件)的使用 期限、负荷和优化的能量输出之间的权衡为目标。
[0032]发明的方法以一种风力涡轮机控制为目标,该风力涡轮机控制适用于管理(即在 额定风速附近或在高风速下发生的)极端负荷,并且其也适用于鉴于风力涡轮机的计划寿 命来管理疲劳负荷。
[0033] 发明的方法包含控制功能,其对风力涡轮机的操作状态施加修改,同时该控制功 能是基于许多估计负荷。
[0034] 当风力涡轮机在高负荷下或在严酷环境条件下操作时,发明的方法优选地调整风 力涡轮机的操作状态。因此,对年发电量(AEP)的影响被最小化。
[0035] 发明的方法优选地基于在线负荷和实际估计。因此,本方法对高于针对给定地点 或针对给定风力涡轮机设计所预期的负荷水平做出反应。因此增加了针对结构性故障的总 体安全性。
[0036] 发明的方法甚至允许在具有超过设计条件之外的风条件的地点处进行高效的风 力涡轮机控制。
[0037]所发明的控制方法允许保守性更小的风力涡轮机设计,因为在风力涡轮机的寿命 期间可以减轻某些负荷。
【附图说明】
[0038] 借助于附图来更详细地描述本发明。
[0039] 附图示出了本发明的优选实施例但将不限制要求保护的想法的范围。
[0040] 图1示出了用于发明方法的主结构, 图2示出了负荷估计的架构, 图3示出了基于负荷估计的控制器动作。
【具体实施方式】
[0041] 图1示出了用于发明方法的主结构。
[0042] 一组"输入信号"被馈送到单元"预处理"中。
[0043] 该输入信号可能包括风力涡轮机及其周围环境的测量值一一即产生的电功率、旋 转叶片的节距角、叶片的转数(rpm)或叶片的等价转速、风的特性(如同风速、湍流、气温、空 气湿度等)、吊舱所经历的加速度和/或推力,这些是风力涡轮机的相应的部件(即叶片、吊 舱、轴等)所经历的。
[0044] 单元"预处理"使用所谓的预处理参数。借助于这些参数对"输入信号"进行滤波和 求平均。
[0045]将一组"已处理信号"移交至单元"负荷估计器",其被用来如上所述地估计相应的 负荷。
[0046] 甚至为单元负荷估计器提供所谓的"负荷估计参数"。借助于该参数,按系数对"已 处理信号"进行加权。
[0047] 将一组"负荷估计"移交到单元"ACS控制器",其控制不同的能力或行为以减轻负 荷。通过这些可能性("控制行为")中的一个或多个来减轻负荷: ?调整限制的节距角值(称为最佳节距)和/或 ?缩减旋转叶片的旋转速度,和/或 ?缩减电输出功率和/或 ?增加左右塔架阻尼器的增益,和/或 ?增加左右塔架阻尼器的饱和极限。
[0048] 甚至为单元"ACS控制器"提供所谓的"ACS参数"。借助于该参数,如以上所描述地 完成控制器动作的调度。
[0049] 作为结果的称为"ACS动作"的控制器动作被移交给相应的单元,即经调整的节距 角值被移交给单元"最佳节距接口"以便进一步处理。
[0050] 因此,相应的缩减命令被移交给单元"减少接口"以便进一步处理,并且相应的阻 尼器命令被移交给单元"塔架左右阻尼器接口"以便进一步处理。
[0051] 图2示出了负荷估计的架构,其包括如上文更详细地描述的四个负荷估计器。
[0052] 通过目标负荷之间的相关来证明应用的负荷分组是正当的。
[0053]图3示出了基于负荷估计的控制器动作。
[0054] 曲线图的竖轴示出了负荷估计"LoadEsti"的值,而横轴示出了时间值"时间"。
[0055] 三个负荷估计导致在所谓的"死区"以下的值。用所谓的"判定点" 1、2和3来标记这 些值。
[0056] 由于"判定点" 1、2和3的对准估计值在给定的"死区"以下,所以风力涡轮机控制器 继续风力涡轮机的操作。原则上,可以尽可能接近于风来操作风力涡轮机以增加风力涡轮 机的功率输出,同时保持在给定负荷阈值以下。
[0057]因此(如"判定点" 1 一直到3的按时间顺序(chrono logy )所示)这样估计的负荷以 受控方式正在增加。
[0058]如果负荷估计正在变得更接近于阈值(如由"判定点"4所示)则以估计的负荷保持 在给定阈值以下的方式来控制风力涡轮机的操作。
[0059] 如果负荷估计以快速的方式(因此具有相当高的相应的梯度)正在跨过阈值(如由 "判定点"5所示)则改变风力涡轮机的操作的控制。该控制现在以负荷减少为目标,但是以 加速的方式以尽快达到允许的负荷。
[0060] 图3中的相应的段被称为"加速增加"。
[0061] 如上文所描述,可以通过执行一个多个动作来完成加速负荷减少,即限制节距角 值、缩减转速、缩减输出功率等。
[0062]如果负荷估计正在再次达到死区(如由"判定点"6所示)则可以再次地减少加速的 负荷减少动作以影响负荷。
[0063]现在以估计的负荷保持在给定"死区"内且因此在"阈值"以下(如"判定点"6-直 到9所指示的)的方式来控制风力涡轮机的操作。
[0064]原则上,可以尽可能接近于风来操作风力涡轮机以增加风力涡轮机的功率输出, 同时保持在给定负荷阈值以下。
[0065]如果负荷估计正在跨过阈值(如由"判定点"10所示)但以更缓慢的方式(因此具有 相当低的相应的梯度),则再次地改变风力涡轮机的操作的控制。控制现在以平滑的负荷减 少为目标以逐步地减少负荷直至估计负荷再次到达"死区"。这由判定点10-直到12示出。 [0066]如果负荷估计正在离开"死区"同时正在增加其对于"阈值"距离(如由"判定点"13 和14所示)则可以停止基于负荷的控制(不再认为负荷将危及风力涡轮机)。
[0067] 针对负荷估计来应用相应的操作调度策略。
[0068] 如上文所指示的,将负荷估计器的操作调度策略定义为当负荷估计超过预定义阈 值时在使用相应的负荷行为期间应用的步骤。
[0069] 因此,负荷估计器可以触发控制行为中的全部、子集或仅单个,即针对负荷估计 器,可以应用下面的操作调度策略:
[0070] ^此策略可以使风力涡轮机的操作移位至更加保守的最佳节距曲线,并将速度和功 率参考减小10%。如果请求增加,则保留塔架左右阻尼器不改变。可以使上述策略与表示塔 架如后负荷的负荷估计器相关联。
[0071] 针对塔架底部左右负荷,可以像这样
定义相关策略:
[0072] 如果控制器请求加速动作,则将定义的步长与预定义的增益相乘以便以快速方式 减小负荷水平。
[0073] 可以分别地针对每个负荷估计器设定如上文所讨论的阈值。该阈值被用作调整参 数并将确定将应用操作调度的积极程度。
【主权项】
1. 一种控制风力涡轮机的操作的方法, 一其中,测量与风有关的值以及风力祸轮机的这些操作参数:电输出功率、旋转叶片 系统的参数、加速度和推力,这些操作参数影响风力涡轮机部件, 一其中,使用测量值来生成相应的基于时间的统计, 一其中,使用所述统计来估计这些负荷中的至少一个:塔架弯曲力矩、叶片弯曲力矩 和/或塔架偏摇力矩, 一其中,将估计负荷与负荷阈值相比较,所述负荷阈值对于给定类型的风力涡轮机而 目是预先确定的,以及 一其中,以考虑到负荷估计来减少相应的负荷的方式来控制风力涡轮机的操作。2. 根据权利要求1所述的方法 其中,所述操作参数包括这些测量结果中的至少一个: ?风力涡轮机的产生的电输出功率, ?风力涡轮机的旋转叶片的节距角, ?风力涡轮机的叶片的每分钟转数(rpm)或叶片的旋转速度, ?吊舱经历的加速度,和/或 ?风力涡轮机的相应的部件所经历的推力。3. 根据权利要求1所述的方法 其中,所述与风有关的值包括风的特性,如同风速、风湍流、气温和/或空气湿度。4. 根据前述权利要求中的一项所述的方法,其中所述相应的基于时间的统计包括这些 中的至少一个: #功率的η秒统计, ?节距的η秒统计, ? rpm的η秒统计, ?作为估计的风的η秒统计, ?作为估计的湍流的η秒统计, ?已处理吊舱左右加速度的η秒统计, ?已处理吊舱前后加速度的η秒统计, ?已处理吊舱作为结果的加速度的η秒统计,和/或 ?推力估计的η秒统计。5. 根据权利要求4所述的方法,其中,所述统计覆盖几秒的时间段一直到几小时的时间 段。6. 根据前述权利要求中的一项所述的方法,其中使用所述统计来估计这些负荷中的至 少一个或子集: ?第一最大绝对塔架弯曲力矩,而所述力矩与塔架的底端有关并且与在进来的风的 方向上所经历的塔架的前后移动有关, ?第二最大绝对塔架弯曲力矩,而所述力矩与塔架的底端有关并且与垂直于进来的 风的方向上所经历的塔架的左右移动有关, ?关于塔架顶部的最大绝对偏摇力矩, ?最小叶片根部襟翼弯曲力矩, ?最大绝对叶片根部边缘弯曲力矩, ?循环塔架底部前后疲劳弯曲力矩, ?循环塔架底部左右疲劳弯曲力矩,和/或 ?循环叶片根部襟翼疲劳弯曲力矩。7. 根据前述权利要求中的一项所述的方法,其中使用所有下面的控制行为或下面的控 制行为的子集来减少负荷: ?调整限制的节距角值,和/或 ?缩减旋转叶片的旋转速度,和/或 ?缩减风力涡轮机的电输出功率和/或 ?增加左右塔架阻尼器的增益,和/或 ?增加左右塔架阻尼器的饱和极限。8. 根据前述权利要求中的一项所述的方法,其中将负荷估计器分组以用于负荷估计: 一其中,使用第一估计器来估计这些负荷: ?第一最大绝对塔架弯曲力矩, ?最小叶片根部襟翼弯曲力矩,以及 ?最大叶片根部边缘弯曲力矩,同时 一其中,使用第二估计器来估计第二最大绝对塔架弯曲力矩,同时 一其中,使用第三估计器来估计关于塔架的顶部的最大绝对偏摇力矩,以及 一其中,使用第四估计器来估计这些负荷: ?循环塔架底部前后疲劳弯曲力矩, ?循环塔架底部左右疲劳弯曲力矩,以及 ?循环叶片根部襟翼疲劳弯曲力矩。9. 根据权利要求8所述的方法,其中,通过此公式来描述相应的负荷估计器: 其中:作为对应于负荷组i的负荷估计, %:?…餘3作为负荷模型i的负荷模型系数, 作为负荷模型i的输入信号,以及 作为权重因数,1〈= k〈= 2。10. 并且其中通过气动弹性模拟来确定模型系数,使得在每组的负荷估计与该组之内 的负荷之间实现最高可能相关。
【文档编号】F03D7/00GK106065848SQ201610246022
【公开日】2016年11月2日
【申请日】2016年4月20日 公开号201610246022.5, CN 106065848 A, CN 106065848A, CN 201610246022, CN-A-106065848, CN106065848 A, CN106065848A, CN201610246022, CN201610246022.5
【发明人】T.埃斯本森, K.A.克拉格, L.马德森
【申请人】西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1