一种稀土/碱土金属及过渡金属掺杂铁酸铋纳米多铁材料及其制备方法

文档序号:5267197阅读:272来源:国知局
专利名称:一种稀土/碱土金属及过渡金属掺杂铁酸铋纳米多铁材料及其制备方法
技术领域
本发明属于无机非金属材料的制备技术领域,涉及一种稀土/碱土金属(A位)及 过渡金属(B位)掺杂铁酸铋纳米多铁材料及其制备方法。
背景技术
随着信息技术的不断发展以及对器件的小型化、多功能化的要求,人们对集铁电 性与磁性等于一身的多功能材料研究兴趣不断高涨。多铁材料不但同时具有两种或两种以 上铁性特征(铁电性、铁弹性和铁磁性或者反铁磁性),而且通过铁性耦合协同作用能产生 一些新的功能。这种特性使其在信息存储、自旋电子器件、磁传感器以及电容_电感一体化 器件方面都有极其重要的应用前景。 铁酸铋(BiFe03)是少数室温下同时具有铁电和磁性的铁磁电材料之一。BiFe03具 有三角扭曲的钙态矿结构(ABO》,同时具有G型反铁磁有序(N6el温度657K)和铁电有序 (居里温度1083K)。然而,BiFe03材料在制备过程中容易发生价态的波动,从而产生较大的 漏导,致使很难观测到电滞回线。另一方面,BiFe03所具有的G型反铁磁有序,室温下几乎 观测不到磁滞回线。这两个问题使BiFe03难以应用。 到目前为止,针对这两个问题,人们尝试了多种方法,其中最主要的方法之一是掺 杂。掺杂可分为A位掺杂(取代Bi位)和B位掺杂(取代Fe位)。例如熊兆贤等(中 国发明专利,申请号200710144093)采用固相烧结法制备了单相B^—xYxFe03(A位掺杂)陶
瓷,减少了铁酸铋多铁材料的漏电流,提高了其绝缘性。朱金龙等(中国发明专利,申请号 200810102534)采用金属氧化物固相混合方法制备块体多铁材料BiFe1/2Cr1/203 (B位掺杂), 发现该材料在室温下为铁电材料,但在5K时才呈现弱铁磁性。韩高荣等(中国发明专利, 申请号200810059138. 3)采用水热法制备了 BiFe卜xCox03(0 < x《0. 07) (B位掺杂)块体 多铁材料,发现该材料随着Co的掺杂,多铁材料的磁性能有明显的改善。
近来,Selbach和Park等(Nano lett. 2007, 7, 766-772and Chem. Mater. 2007)发 现纳米BiFe03有着与块体不一样的铁电和磁性质,铁电存在的临界尺寸为9± lnm,而且小 粒子由于小尺寸效应,产生比块体强的自发磁化。

发明内容
本发明的目的是提供一类稀土/碱土金属(A位)及过渡金属(B位)掺杂铁酸铋 纳米多铁材料。 本发明以硝酸铁、硝酸铋、稀土 /碱土金属氧化物或硝酸盐以及过渡金属为原料, 以乙二醇为溶剂和配以特定的表面活性剂,利用简单的溶胶凝胶法过程,在较低温度下直 接制备出了 20 100nm稀土 /碱土金属A位掺杂、过渡金属B位掺杂以及稀土 /碱土金属 A位和过渡金属B位共掺杂铁酸铋纳米粒子,纳米粒子呈现近球形。上述的稀土元素包括 Dy和La.;碱土金属包括Ca、 Sr、 Ba ;过渡金属包括Cr、 Co、 Ni、 Mn。该稀土 /碱土金属及过渡金属掺杂铁酸铋纳米粒子呈现出优于块体材料的磁性能,而且可在较低磁场下获得较大 的磁介电常数。其磁化模型可以描述为反铁磁核和铁磁壳(表面)之间交换耦合,随着粒 径减小,磁化强度增大。 本发明的另一个目的是提供制备稀土/碱土金属(A位)及过渡金属(B位)掺杂 铁酸铋纳米多铁材料的方法。 其制备方法是:以Fe (N03) 3 9H20 ;Bi (N03) 3 5H20 ;C2H602 ;R (N03) 3/R203 (R为稀土 / 碱土金属元素);M(N0》3/M(N0^(M为过渡金属元素)为原料,乙二醇为溶剂,或配以特定 的表面活性剂,通过机械搅拌,形成均匀的乙二醇溶液,所得溶液蒸发干燥,在较低温度下 热处理直接制备出20 100nm稀土/碱土金属A位掺杂、过渡金属B位掺杂以及稀土/碱 土金属A位和过渡金属B位共掺杂铁酸铋纳米多铁材料。 本方法可通过调节煅烧温度和加入适当的添加剂来控制所得产品的尺寸。 上述所用乙二醇溶液中金属阳离子的总摩尔浓度为0. 2 0. 5mol/l。 上述的溶液机械搅拌温度为50 80°C ,时间3小时。 上述的溶液蒸发干燥温度为160 250°C,时间4 13小时。 上述的热处理阶段温度为500 750°C,时间为0. 5 22小时。 上述的添加剂为PVA、 NH2CH2C00H或PEG。
本发明制备方法包括以下具体步骤 第一步原料准备所用原料为Fe(N03)3 *9H20 ;Bi (N03)3 *5H20 ;C2H602 ;R(N03)3 ;R203 (R为稀土 /碱土 金属元素);M(N03)3 ;M(冊3)2(M为过渡金属元素);适当添加剂。
第二步反应液的配制 分别称取一定质量的固体Fe(N03)3 9H20 ;Bi(N03)3 5H20 ;,3)3和/或R203 ; M(N03)3或M(NO丄;溶于乙二醇,在50 8(TC下机械搅拌3小时形成金属阳离子与乙二醇 络合溶液;所述溶液中金属阳离子的总摩尔浓度为0. 2 0. 5mol/L。
第三步静置陈化 取第二步配制的溶液,倒入烧杯在室温静置陈化0 2h。
第四步蒸发干燥 取第三步得到的溶液,在160 25(TC烘箱中蒸发过多乙二醇形成凝胶,并持续干 燥4 13h形成干凝胶。
第五步热处理 把第四步获得的干凝胶用研钵磨细成粉,放入瓷坩埚,进行热处理(有两种方 式) i)在40(TC下短时间预烧三次,以排除碳化物和氮化物;然后在500 75(TC煅烧 0. 5小时得到纳米粉; ii)在600 75(TC煅烧0. 5 22h小时得到纳米粉。
本发明具有以下有益效果 (1)、本发明制备出的是20 100纳米的稀土/碱土金属(A位)及过渡金属(B 位)掺杂铁酸铋多铁粉体,与块体铁酸铋陶瓷材料相比,该粒子表现出优良的磁学性能和 磁介电常数。
(2)、本发明中的乙二醇基的溶胶凝胶方法与传统制备方法相比,具有设备简单, 工艺过程方便易操作等特点,因此能够显著降低制备的成本。
(3)、本发明的方法易于调控产品粒子的粒径和磁性能。


图1为本发明制备的纳米多铁材料的X-射线衍射(XRD)图谱,图中,横坐标为衍 射角2 e (° ),纵坐标为衍射强度Intensity (a. u.)。 图2为用本发明制备的纳米多铁材料的室温磁化曲线图,图中,横坐标为外磁场 H(T),纵坐标为磁化强度M(emu/g),插图a为在lT(100000e)外场作用下室温磁滞回线(M-H loop) , b为0场附近的磁化行为;从图中可以推断样品的磁化模型可以用公式
M(H) = MFM(H) + xAFH
来表示。
具体实施例方式
所有的实施例均按上述技术方案的操作步骤操作。
实施例1 称取一定计量比的固体Fe(N03)3 *9H20、Bi(N03)3 *51120和Dy203 ;先把Dy203溶于适 量的浓硝酸中,再把反应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒 红色的金属阳离子与乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度为0. 4mol/L,其中 Bi : Dy : Fe摩尔比为0.8 : 0.2 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把 陈化后的溶液放入16(TC蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理 先在40(TC预烧三次,接着在60(TC煅烧0. 5h得到纳米粉体。产物为34nm的Bi。.8Dy。.2Fe03 (A 位掺杂)粉体。
实施例2 称取一定计量比的固体Fe(N03)3 *9H20、Bi(N03)3 *51120和Dy203 ;先把Dy203溶于适 量的浓硝酸中,再把反应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒 红色的金属阳离子与乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度为0. 5mol/L,其中 Bi : Dy : Fe摩尔比为0.8 : 0.2 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把 陈化后的溶液放入16(TC蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理 先在40(TC预烧三次,接着在60(TC煅烧0. 5h得到纳米粉体。产物为34nm的Bi。.8Dy。.2Fe03 (A 位掺杂)粉体。
实施例3 称取一定计量比的固体Fe(N03)3 *9H20、Bi(N03)3 *51120和Dy203 ;先把Dy203溶于适 量的浓硝酸中,再把反应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒 红色的金属阳离子与乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度为0. 4mol/L,其中 Bi : Dy : Fe摩尔比为0.8 : 0.2 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把 陈化后的溶液放入16(TC蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理 先在40(TC预烧三次,接着在75(TC煅烧0. 5h得到纳米粉体。产物为75nm的Bi。.8Dy。.2Fe03 (A 位掺杂)粉体。
实施例4 称取一定计量比的固体Fe(N03)3 *9H20、Bi(N03)3 *51120和Dy203 ;先把Dy203溶于适 量的浓硝酸中,再把反应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒 红色的金属阳离子与乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度为0. 4mol/L,其中 Bi : Dy : Fe摩尔比为0.8 : 0.2 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把 陈化后的溶液放入16(TC蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理 先在400°C预烧三次,接着在500°C煅烧0. 5h得到纳米粉体。产物为2lnm的Bi。. 8Dy。. 2Fe03 (A 位掺杂)粉体。
实施例5 称取一定计量比的固体Fe (N03) 3 9H20、 Bi (N03) 3 5H20和Dy203 ;先把Dy203溶于 适量的浓硝酸中,再把反应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成 酒红色的金属阳离子与乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度为0. 4mol/L, 其中Bi : Dy : Fe摩尔比为0.8 : 0. 2 : 1。室温冷却后,倒入烧杯下静置陈化2小时, 然后把陈化后的溶液放入16(TC蒸发干燥13小时以上得到干凝胶,研磨成粉,放入马弗炉 进行热处理先在40(TC预烧三次,接着在60(TC煅烧0. 5h得到纳米粉体。产物为58nm的 Bi0.95Dy0.05Fe03 (A位掺杂)粉体。
实施例6 称取一定计量比的固体Fe(N03)3 9H20、 Bi (N03)3 5H20和La(N03)3 nH20 ;把反 应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与 乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度为0.4mol/L,其中Bi : La : Fe摩尔 比为0.8 : 0.2 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把陈化后的溶液放入 16(TC蒸发干燥13小时以上得到干凝胶,研磨成粉,放入马弗炉进行热处理先在40(TC预 烧三次,接着在60(TC煅烧0. 5h得到纳米粉体。产物为39nm的Bi。.8La。.2Fe03 (A位掺杂)粉 体。 实施例7 称取一定计量比的固体Fe(N03)3 *9H20、Bi(N03)3 5H20、 La (N03) 3 nH20和甘氨酸; 把反应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子 与乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度为0.4mol/L,其中Bi : La : Fe摩尔 比为0.8 : 0.2 : 1,甘氨酸的量为金属阳离子总摩尔数的10%。搅拌溶液室温冷却后,倒 入烧杯下静置陈化2小时,然后把陈化后的溶液放入19(TC蒸发干燥13小时得到干凝胶,研 磨成粉,放入马弗炉进行热处理先在40(TC预烧三次,接着在60(TC煅烧0. 5h得到纳米粉 体。产物为28nm的Bi。.8La。.^e03(A位掺杂)粉体,而且磁性能优于不加甘氨酸时所制得的 样品。 实施例8 称取一定计量比的固体Fe (N03) 3 9H20、Bi (N03) 3 5H20、 La (N03) 3 nH20和PEG ;把 反应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与 乙二醇络合溶液。乙二醇溶液中金属阳离子的总摩尔浓度为0.4mol/L,其中Bi : La : Fe 摩尔比为0. 8 : 0. 2 : 1, PEG的量为0. 4g/ml。室温冷却后,倒入烧杯下静置陈化2小 时,然后把陈化后的溶液放入19(TC蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理先在40(TC预烧三次,接着在60(TC煅烧0. 5h得到纳米粉体。产物为34nm的 Bi。. 8La。. 2Fe03 (A位掺杂)粉体。
实施例9 称取一定计量比的固体Fe (N03) 3 9H20、 Bi (N03) 3 5H20、 Dy203和La (N03) 3 nH20 ; 先把Dy203溶于适量的浓硝酸中,再把反应原料先后加入到48ml乙二醇中,在8(TC下机械 搅拌3小时形成酒红色的金属阳离子与乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度 为0. 4mol/L,其中Bi : Dy : La : Fe摩尔比为O. 8 : 0. 1 : 0. 1 : 1。室温冷却后,倒入 烧杯下静置陈化2小时,然后把陈化后的溶液放入16(TC蒸发干燥13小时得到干凝胶,研 磨成粉,放入马弗炉进行热处理先在40(TC预烧三次,接着在60(TC煅烧0. 5h得到纳米粉 体。产物为34nm的Bi。. 8La。. !Dy。. #03 (A位掺杂)粉体。
实施例10 称取 一 定计量比的固体Fe (N03) 3 9H20、 Bi (N03) 3 5H20和Ba (N03) 2 ;把反应原 料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与乙二 醇络合溶液。溶液中金属阳离子的总摩尔浓度为0.4mol/L,其中Bi : Ba : Fe摩尔比为 0.8 : 0.2 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把陈化后的溶液放入19(TC 蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理先在40(TC预烧三次,接 着在65(TC煅烧0. 5h得到纳米粉体。产物为28nm的Bi。.8Ba。.2Fe03(A位掺杂)粉体。
实施例11 称取 一 定计量比的固体Fe (N03) 3 9H20、 Bi (N03) 3 5H20和Ba (N03) 2 ;把反应原 料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与乙二 醇络合溶液。溶液中金属阳离子的总摩尔浓度为0.4mol/L,其中Bi : Ba : Fe摩尔比为 0.95 : 0.05 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把陈化后的溶液放入 19(TC蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理先在40(TC预烧三 次,接着在65(TC煅烧0. 5h得到黄色的纳米粉体。产物为63nm的Bi。.95Ba。.。5Fe03 (A位掺杂) 粉体。 实施例12 称取一定计量比的固体Fe(N03)3 9H20、 Bi(N03)3 5H20和Ca(N03)2 4H20 ;把反 应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与 乙二醇络合溶液。溶液中金属阳离子的总摩尔浓度为0.4mol/L,其中Bi : Ca : Fe摩尔 比为0.95 : 0.05 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把陈化后的溶液放 入19(TC蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理先在40(TC预烧 三次,接着在65(TC煅烧0. 5h得到黄色的纳米粉体。产物为56nm的Bi。.95Ca。.。5Fe03(A位掺
杂)粉体。 实施例13 称取 一 定计量比的固体Fe (N03) 3 9H20、 Bi (N03) 3 5H20和Sr (N03) 2 ;把反应原 料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与乙二 醇络合溶液。溶液中金属阳离子的总摩尔浓度为0.4mol/L,其中Bi : Sr : Fe摩尔比为 0.95 : 0.05 : 1。室温冷却后,倒入烧杯下静置陈化2小时,然后把陈化后的溶液放入 19(TC蒸发干燥13小时得到干凝胶,研磨成粉,放入马弗炉进行热处理先在40(TC预烧三次,接着在65(TC煅烧0. 5h得到黄色的纳米粉体。产物为60nm的Bi。jSr。.。5Fe03(A位掺杂) 粉体。 实施例14 称取一定计量比的固体Fe (N03) 3 9H20、Bi (N03) 3 5H20、Dy203和Cr (N03) 3 9H20和 PVA ;先按0. 5gPVA加入20ml —次水在机械搅拌下慢慢从室温升至80°C ,大约6_8小时完全 溶解;然后把Dy203溶于适量的浓硝酸中,再把反应原料先后加入到48ml乙二醇中,再加入 20mlPVA —次水溶液,混合溶液在8(TC下机械搅拌3小时形成酒红色的金属阳离子与乙二 醇络合溶液。乙二醇溶液中金属阳离子的摩尔浓度为0.3mol/L,其中Bi : Dy : Fe : Cr 的摩尔比为0.8 : 0.2 : 0.99 : O.Ol。室温冷却后把所得溶液倒入烧杯放入25(TC蒸发 干燥4小时以上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧0. 5h得到纳米粉体。产物 为25nm的Bi^Dy^Fe^Cr^A (A、 B位共掺杂)粉体。
实施例15 称取一定计量比的固体Fe(N03)3 *9H20、Bi(N03)3 *51120、07203和Co(N03)2 *61120和 PVA ;先按0. 5gPVA加入20ml —次水在机械搅拌下慢慢从室温升至80°C ,大约6 8小时完 全溶解;然后把Dy203溶于适量的浓硝酸中,再把反应原料先后加入到48ml乙二醇中,然后 再加入20mlPVA —次水溶液,混合溶液在8(TC下机械搅拌3小时形成酒红色的金属阳离子 与乙二醇络合溶液。溶液中金属阳离子的摩尔浓度为0.3mol/L,其中Bi : Dy : Fe : Co 的摩尔比为0.8 : 0.2 : 0.99 : O. 01室温冷却后把所得溶液倒入烧杯放入25(TC蒸发干 燥4小时以上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧0. 5h得到纳米粉体。产物为 24nm的Bi^Dy^Fe^Cc^A (A、 B位共掺杂)粉体。
实施例16 称取 一 定计量比的固体Fe(N03)3 9H20、 Bi (N03)3 5H20、 La(N03)3 nH20、 Cr (N03) 3 *9H20和PVA ;先按0. 5gPVA加入20ml —次水在机械搅拌下慢慢从室温升至80°C , 大约6-8小时完全溶解;把其他反应原料先后加入到48ml乙二醇中,然后再加入20mlPVA 一次水溶液,混合溶液在8(TC下机械搅拌3小时形成酒红色的金属阳离子与乙二醇络合溶 液。其中,溶液中金属阳离子的摩尔总浓度为O. 3mol/L, Bi : La : Fe : Cr的摩尔比为 0.8 : 0.2 : 0.98 : 0.02。室温冷却后把所得溶液倒入烧杯放入25(TC蒸发干燥4小时 以上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧0. 5h得到纳米粉体。产物为26nm的 Bi0.8La。.2Fe。.98Cr。.。203(A、 B位共掺杂)粉体。
实施例17 称取 一 定计量比的固体Fe(N03)3 9H20、 Bi (N03)3 5H20、 La(N03)3 nH20、 Co (N03) 2 *6H20和PVA ;先按0. 5gPVA加入20ml —次水在机械搅拌下慢慢从室温升至80°C , 大约6 8小时完全溶解;把其他反应原料先后加入到48ml乙二醇中,然后再加入20mlPVA 一次水溶液,混合溶液在8(TC下机械搅拌3小时形成酒红色的金属阳离子与乙二醇络合溶 液。其中,溶液中金属阳离子的摩尔总浓度为O. 3mol/L, Bi : La : Fe : Co的摩尔比为 0.8 : 0.2 : 0.99 : O.Ol。室温冷却后把所得溶液倒入烧杯放入25(TC蒸发干燥蒸发干 燥4小时以上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧0. 5h得到纳米粉体。产物为 25nm的BiuLa^Fe^Co^A (A、 B位共掺杂)粉体。
实施例18
称取 一 定计量比的固体Fe(N03)3 9H20、 Bi (N03)3 5H20、 La(N03)3 nH20、 Co (N03) 2 *6H20和PVA ;先按0. 5gPVA加入20ml —次水在机械搅拌下慢慢从室温升至80°C , 大约6 8小时完全溶解;把其他反应原料先后加入到48ml乙二醇中,然后再加入20mlPVA 一次水溶液,混合溶液在8(TC下机械搅拌3小时形成酒红色的金属阳离子与乙二醇络合溶 液。其中,溶液中金属阳离子的摩尔总浓度为O. 3mol/L, Bi : La : Fe : Co的摩尔比为 0.8 : 0.2 : 0.99 : O.Ol。室温冷却后把所得溶液倒入烧杯放入25(TC蒸发干燥蒸发干 燥4小时以上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧22h得到纳米粉体。产物为 32nm的BiuLa^Fe^Co^A (A、 B位共掺杂)粉体。
实施例19 称取一定计量比的固体Fe(N03)3 9H20、 Bi (N03)3 5H20和Co(N03)2 6H20 ;把反 应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与 乙二醇络合溶液。其中,溶液中金属阳离子的摩尔总浓度为0.4mol/L, Bi : Fe : Co的摩 尔比为l : 0.99 : 0.01。室温冷却后把所得溶液倒入烧杯放入25(TC蒸发干燥4小时以 上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧0. 5h得到纳米粉体。产物为95nm的 BiFe。.99Co。.。A(B位掺杂)纳米粉体。
实施例20 称取一定计量比的固体Fe(N03)3 9H20、 Bi (N03)3 5H20和Cr(N03)3 9H20 ;把反 应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与 乙二醇络合溶液。其中,溶液中金属阳离子的摩尔总浓度为0.4mol/L, Bi : Fe : Cr的摩 尔比为l : 0.98 : 0.02。室温冷却后把所得溶液倒入烧杯放入25(TC蒸发干燥4小时以 上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧0. 5h得到纳米粉体。产物为96nm的 BiFe。.98Cr。.。203 (B位掺杂)纳米粉体。
实施例21 称取一定计量比的固体Fe(N03)3 *9H20、Bi (N03)3 *5H20 ;量取一定量的Mn(N03)2溶 液;把反应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳 离子与乙二醇络合溶液。其中,溶液中金属阳离子的摩尔总浓度为0.4mol/L,Bi : Fe : Mn 的摩尔比为l : 0.98 : 0.02。室温冷却后把所得溶液倒入烧杯放入25(TC蒸发干燥4 小时以上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧0.5h得到纳米粉体。产物为 96nmBiFe。.98Mn。.。203 (B位掺杂)纳米粉体。
实施例22 称取一定计量比的固体Fe(N03)3 9H20、 Bi (N03)3 5H20和Ni (N03)2 6H20 ;把反 应原料先后加入到48ml乙二醇中,在8(TC下机械搅拌3小时形成酒红色的金属阳离子与 乙二醇络合溶液。其中,溶液中金属阳离子的总摩尔浓度为0.4mol/L, Bi : Fe : Mn的 摩尔比为l : 0.99 : 0.01。室温冷却后把所得溶液倒入烧杯放入25(TC蒸发干燥4小时 以上得到干凝胶,研磨成粉,放入马弗炉在60(TC煅烧0.5h得到纳米粉体。产物为96nm BiFe0.99Ni0.0103(B位掺杂)纳米粉体。
9
权利要求
一种稀土/碱土金属及过渡金属掺杂铁酸铋纳米多铁材料,其特征在于该材料化学式为Bi1-xRxFe1-yMyO3,式中R为稀土/碱土金属元素,M为过渡金属元素,0≤x≤0.30;0≤y≤0.02。
2. 根据权利要求1所述的纳米多铁材料,其特征在于所述稀土金属元素为Dy和La ;碱 土金属元素为Ca、 Sr和Ba ;过渡金属元素为Cr、 Co、 Ni和Mn。
3. —种权利要求1所述纳米多铁材料的制备方法,其特征在于该方法包括以下具体步骤第一步原料准备所用原料为:Fe(N03)3 9H20 ;Bi (N03)3 5H20 ;C2H602 ;R(N03)3 ;R203 ;M(N03)3 ;M(N03)2 ;添 加剂;其中R为稀土/碱土金属元素;M为过渡金属元素;添加剂为PVA、NH2CH2C00I^P PEG ; 第二步反应液的配制分别称取一定质量的固体Fe (N03) 3 9H20 ;Bi (N03) 3 5H20 ;R(N03) 3或/和R203 ;M(N03) 3 或M(NO丄溶于乙二醇,或配以添加剂,在50 8(TC下机械搅拌3小时形成金属阳离子与 乙二醇络合溶液;所述溶液中金属阳离子的总摩尔浓度为0. 2 0. 5mol/L ;第三步静置陈化取第二步配制的溶液,倒入烧杯在室温静置陈化0 2h ; 第四步蒸发干燥取第三步得到的溶液,在160 25(TC烘箱中蒸发过多乙二醇形成凝胶,并持续干燥 4 13h形成干凝胶; 第五步热处理把第四步获得的干凝胶用研钵磨细成粉,放入瓷坩埚,按下述任一种方式进行热处理(1) 、在40(TC下短时间预烧三次,以排除碳化物和氮化物;然后在500 75(TC煅烧 0. 5小时得到纳米多铁材料;(2) 、在600 75(TC煅烧0. 5 22小时得到纳米多铁材料。
全文摘要
本发明公开的一种稀土/碱土金属及过渡金属掺杂铁酸铋纳米多铁材料,其化学式为Bi1-xRxFe1-yMyO3,R为稀土金属和碱土金属,M为过渡金属,0≤x≤0.30;0≤y≤0.02。制备方法以硝酸铁、硝酸铋、稀土/碱土金属氧化物或硝酸盐以及过渡金属硝酸盐为原料,以乙二醇为溶剂,或配以特定的添加剂,通过机械搅拌,形成均匀的乙二醇溶液,然后室温陈化,所得溶液在160~250℃蒸发干燥,在较低温度下热处理得到20~100nm稀土/碱土金属A位掺杂、过渡金属B位掺杂以及稀土/碱土金属A位和过渡金属B位共掺杂的铁酸铋纳米粒子。本发明所得纳米多铁材料结晶质量稳定,在信息存储、自旋电子器件磁传感器、电容-电感一体化器件等领域有着广泛的应用前景。
文档编号B82B3/00GK101734725SQ20091019990
公开日2010年6月16日 申请日期2009年12月4日 优先权日2009年12月4日
发明者姜继森, 杨惆, 钱方针 申请人:华东师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1