半导体结构的形成方法与流程

文档序号:11122464阅读:927来源:国知局
半导体结构的形成方法与制造工艺

本发明涉及封装领域,特别涉及一种半导体结构的形成方法。



背景技术:

随着半导体技术不断发展,目前半导体器件的特征尺寸已经变得非常小,希望在二维的封装结构中增加半导体器件的数量变得越来越困难,因此三维封装成为一种能有效提高芯片集成度的方法。目前的三维封装包括基于金线键合的芯片堆叠(Die Stacking)、封装堆叠(Package Stacking)和基于硅通孔(Through Silicon Via,TSV)的三维堆叠。其中,利用硅通孔的三维堆叠技术具有以下三个优点:(1)高密度集成;(2)大幅地缩短电互连的长度,从而可以很好地解决出现在二维系统级芯片(SOC)技术中的信号延迟等问题;(3)利用硅通孔技术,可以把具有不同功能的芯片(如射频、内存、逻辑、MEMS、图像传感器等)集成在一起来实现封装芯片的多功能。因此,所述利用硅通孔互连结构的三维堆叠技术日益成为一种较为流行的芯片封装技术。

但是采用硅通孔技术形成的半导体结构的性能仍有待提升。



技术实现要素:

本发明解决的问题是提高封装结构的集成度。

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供半导体衬底,所述半导体衬底包括第一表面和相对的第二表面,所述半导体衬底的第一表面具有至少一个焊盘;沿半导体衬底的第二表面刻蚀所述半导体衬底,在半导体衬底中形成通孔,所述通孔的底部暴露焊盘的表面;在所述半导体衬底的第二表面以及通孔的侧壁和底部表面形成种子层;在所述种子层上形成掩膜层,所述掩膜层中具有暴露出通孔以及半导体衬底第二表面上部分种子层的开口;采用电镀工艺在所述开口内的种子层表面形成再布线金属层;去除所述掩膜层;进行浸润步骤,向种子层和再布线金属层的表面 喷吐稀释液,使得通孔内保留部分稀释液;进行浸润步骤后,进行化学刻蚀步骤,向种子层和再布线金属层表面喷吐刻蚀溶液,刻蚀去除再布线金属层两侧的半导体衬底第二表面上的部分厚度的种子层;重复进行浸润步骤和化学刻蚀步骤,直至完全去除再布线金属层两侧的半导体衬底第二表面上的种子层。

可选的,所述半导体衬底的第一表面具有若干感光区、MEMS传感器或者集成电路,半导体衬底第一表面上的焊盘与图像感光区、MEMS传感器或者集成电路电连接。

可选的,所述半导体衬底的第一表面具有若干感光区,每个感光区两侧的半导体衬底第一表面具有至少一个焊盘,所述半导体衬底的第一表面上还具有若干环绕感光区的围堤结构,所述围堤结构中具有若干暴露出观光区的空腔;位于围堤结构上密封围堤结构的空腔的开口的玻璃基板。

可选的,在进行浸润步骤和化学刻蚀步骤时,刻蚀装置中的夹持单元夹持玻璃基板使得半导体衬底中形成的通孔的开口朝下。

可选的,进行浸润步骤和化学刻蚀步骤时,所述夹持单元使得半导体衬底旋转。

可选的,进行浸润步骤时,所述稀释液从下向上喷吐到种子层和再布线金属层的表面。

可选的,所述稀释液为去离子水或有机溶剂。

可选的,所述稀释液为去离子水,进行浸润步骤时,半导体衬底的转速为250~350转/分钟,浸润时间为1~2分钟,环境温度为22~24摄氏度。

可选的,进行化学刻蚀步骤时,所述刻蚀溶液从下向上喷吐到种子层和再布线金属层的表面。

可选的,进行化学刻蚀步骤时,半导体衬底的转速为250~350转/分钟,刻蚀时间为30~50秒,环境温度为22~24摄氏度。

可选的,所述浸润步骤和化学刻蚀步骤的重复次数为4~10次。

可选的,进行化学刻蚀步骤时的半导体衬底的转速与进行浸润步骤时半 导体衬底的转速相同,

可选的,所述种子层为双层堆叠结构。

可选的,所述种子层包括位于金属粘附层和位于金属粘附层上的籽晶层。

可选的,所述半导体衬底的第二表面上的种子层的厚度大于通孔的侧壁和底部的种子层的厚度。

可选的,所述金属粘附层和籽晶层的形成工艺为溅射。

可选的,所述再布线金属层的材料为铜。

可选的,所述半导体衬底第二表面上的再布线金属层的厚度大于通孔内的再布线金属层的厚度。

可选的,在完全去除再布线金属层两侧的半导体衬底第二表面上的种子层后,还包括:进行清洗步骤,采用去离子水清洗金属再布线层和半导体衬底的第二表面;进行清洗步骤后,进行氮气风干步骤,去除金属再布线层和半导体衬底的第二表面上的水分。

可选的,完全去除再布线金属层两侧的半导体衬底第二表面上的种子层之后,还包括步骤:形成覆盖所述再布线金属层且填充通孔的隔离材料层;刻蚀所述隔离材料层,在所述隔离材料层中形成暴露出半导体衬底第二表面上的部分再布线金属层的开口;在所述开口中和部分隔离材料层表面形成凸下金属层;在所述凸下金属层上形成金属凸块。

与现有技术相比,本发明的技术方案具有以下优点:

本发明的半导体结构的形成方法,采用电镀工艺在所述开口内的种子层表面形成再布线金属层后;进行浸润步骤,向种子层和再布线金属层的表面喷吐去稀释剂(比如:去离子水),使得通孔内保留部分去稀释剂(比如:去离子水);进行浸润步骤后,进行化学刻蚀步骤,向种子层和再布线金属层表面喷吐刻蚀溶液,刻蚀去除再布线金属层两侧的半导体衬底第二表面上的部分厚度的种子层;重复进行浸润步骤和化学刻蚀步骤,直至完全去除再布线金属层两侧的半导体衬底第二表面上的种子层。进行浸润步骤时,部分去稀释剂(比如:去离子水)会保留在通孔内,在进行化学刻蚀步骤时,由于 通孔内存在部分稀释剂(比如:去离子水),使得通孔内的化学刻蚀溶液被稀释,因而化学刻蚀步骤时,通孔内的被稀释的化学刻蚀溶液对通孔内形成的再布线金属层的刻蚀作用较小,因而通孔内的再布线金属层被刻蚀的量很少,从而防止了通孔内的再布线金属层被蚀穿。

进一步,在进行浸润步骤时,刻蚀装置中的夹持单元夹持玻璃基板使得半导体衬底中形成的通孔的开口朝下,所述夹持单元使得半导体衬底旋转,同时所述稀释剂(比如:去离子水)从下向上喷吐到种子层和再布线金属层的表面,喷吐到半导体衬底第二表面上的种子层表面的稀释剂(比如:去离子水)在离心力和重力的作用下被甩出,防止半导体衬底第二表面上的稀释剂(比如:去离子水)产生残留影响后续的化学刻蚀步骤,喷吐到通孔中的稀释剂(比如:去离子水),由于通孔侧壁的阻挡,在离心力的作用下,会保留在通孔中。

进一步,稀释剂为去离子水时,进行浸润步骤时,半导体衬底的转速为250~350转/分钟,浸润时间为1~2分钟,环境温度为22~24摄氏度,以使得通孔205保留足量的去离子水,同时防止半导体衬底200的第二表面上去离子水产生残留。

进一步,进行化学刻蚀步骤时,所述半导体衬底的转速为250~350转/分钟,刻蚀时间为30~50秒,环境温度为22~24摄氏度,在刻蚀去除部分厚度的种子层的同时,提高刻蚀效率,并且使得通孔内的再布线金属层被刻蚀的量很少。

附图说明

图1~图6为一实施例中半导体结构的形成过程的结构示意图;

图7~图15为本发明另一实施例中半导体结构的形成过程的结构示意图。

具体实施方式

现有技术半导体结构的性能仍有待提升,比如,现有硅通孔互连结构的电学性能仍有待提升。

对半导体结构的形成过程进行研究,请参考图1~图6。

参考图1,提供半导体衬底100,所述半导体衬底100包括第一表面和相对的第二表面,所述半导体衬底100的第一表面具有若干感光区101,每个感光区101两侧的半导体衬底100的第一表面具有至少一个焊盘102;在所述半导体衬底100的第一表面上形成覆盖包围所述感光区101的围堤结构103,围堤结构103中具有若干空腔,每个空腔暴露出相应的感光区101;在所述围堤结构103上形成玻璃层104,所述玻璃层104封闭空腔的开口。

参考图2,沿半导体衬底100的第二表面刻蚀所述半导体衬底100,在半导体衬底100中形成通孔105,所述通孔105的底部暴露焊盘102的表面。

参考图3,在所述半导体衬底100的第二表面以及通孔105的侧壁和底部表面形成种子层106。

参考图4,在所述种子层106上形成掩膜层107,所述掩膜层107中具有暴露出通孔105以及半导体衬底100第二表面上部分种子层106的开口;采用电镀工艺在所述开口内的种子层106表面形成再布线金属层108,所述种子层106作为电镀工艺时的导电层和籽晶层。

参考图5,去除所述掩膜层107(参考图4);以所述再布线金属层108为掩膜,刻蚀去除再布线金属层108两侧的半导体衬底100第二表面上的种子层106。

参考图6,形成覆盖所述再布线金属层108以及半导体衬底100的第二表面的隔离层109,所述隔离层109具有暴露出再布线金属层108部分表面的开口;在所述开口中以及隔离层109的表面形成凸下金属层110,在所述开口中的凸下金属层110上形成焊接凸起111;刻蚀去除焊接凸起111两侧的隔离层109上的凸下金属层110。

对上述半导体结构的形成过程进行进一步研究发现,参考图3,所述种子层106的形成工艺为溅射,由于通孔105的深度较深,当采用溅射工艺形成种子层106时,通孔105侧壁和底部表面形成的种子层的厚度会小于半导体衬底100第二表面上的种子层的厚度,接着参考图4,采用电镀工艺形成再布线金属层108,在形成再布线金属层108的过程中,由于通孔105空间的限制,通孔105内电镀液中铜离子的交换效率会低于半导体衬底100第二表面上的 铜离子的交换效率,因而通孔内形成的再布线金属层108的厚度会小于半导体衬底100第二表面上形成的再布线金属层108的厚度,然后请参考图5,在以再布线金属层108为掩膜,采用湿法刻蚀工艺刻蚀去除再布线金属层108两侧的种子层时,由于通孔内的再布线金属层108的厚度小于半导体衬底100第二表面上的再布线金属层108的厚度,通孔内的再布线金属层208容易被刻蚀溶液蚀穿,影响了再布线金属层108的导电性能。

为此,本发明实施例提供了一种半导体结构的形成方法,采用浸润步骤和化学刻蚀步骤交替进行的方法刻蚀去除再布线金属层两侧的半导体衬底第二表面上的种子层,进行浸润步骤时,部分稀释剂(比如:去离子水)会保留在通孔内,在进行化学刻蚀步骤时,由于通孔内存在部分稀释剂(比如:去离子水),使得通孔内的化学刻蚀溶液被稀释,因而化学刻蚀步骤时,通孔内的被稀释的化学刻蚀溶液对通孔内形成的再布线金属层的刻蚀作用较小,因而通孔内的再布线金属层被刻蚀的量很少,从而防止了通孔内的再布线金属层被蚀穿。

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。在详述本发明实施例时,为便于说明,示意图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明的保护范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。

图7~图15为本发明实施例半导体封装结构的形成过程的剖面结构示意图。

参考图7,提供半导体衬底200,所述半导体衬底200包括第一表面和相对的第二表面,所述半导体衬底200的第一表面具有至少一个焊盘202。

所述半导体衬底200的材料硅、锗、绝缘体上硅(SOI)、石英、陶瓷或玻璃。本实施例中,所述半导体衬底200的材料为硅。

本实施例中,所述半导体衬底200的第一表面具有若干感光区201,所述感光区201适于将外界光线接收并转换成电学信号,并将所述电学信号通过半导体衬底200上的晶体管电路结构或者金属互连结构传输到焊盘202。

所述焊盘202的材料为导电的金属、合金或金属化合物,比如可以为铜、钨、铝、镍、银、金、锡银合金、锡铅合金或者金属硅化物(如硅化镍等)。

所述焊盘202的数量至少为一个,所述焊盘202位于感光区201一侧的半导体衬底200第一表面上。

所述焊盘202的数量为多个(≥2个)时,所述焊盘202可以位于感光区201一个、两侧或四周。

在其他实施例中,所述半导体衬底200第一表面上还可以形成介质层、滤光层或微透镜层。

在本发明的其他实施例中,所述半导体衬底200的第一表面可以具有MEMS传感器(比如MEMS加速度传感器或者加速度传感器等)、集成电路或其他的半导体器件(比如晶体管、电容或电阻等),所述半导体衬底200的第一表面上的焊盘与MEMS传感器、集成电路或其他的半导体器件的电信号输入端或者电信号输出端电连接。

继续参考图7,所述半导体衬底200的第一表面上还具有若干环绕感光区201的围堤结构203,所述围堤结构203中具有若干暴露出感光区201的空腔;位于围堤结构203上密封围堤结构203空腔的开口的玻璃基板204。

所述围堤结构203的材料为高分子有机材料或其他合适的材料,在一实施例中,所述高分子有机材料为环氧树脂、聚酰亚胺、苯并环丁烯或聚苯并恶唑等。

在一具体的实施例中,首先提供一玻璃基板204,在玻璃基板204的一表面上形成围堤结构203,所述围堤结构203中具有若干空腔,空腔的数量和位置与半导体衬底200的第一表面的感光区201的数量和位置对应,所述围堤结构的形成工艺为网板印刷工艺或其他合适的工艺;然后将玻璃基板201上的围堤结构203与半导体衬底200的第一表面压合。

玻璃基板204和围堤结构203使得感光区201密封起来,防止后续的工艺对感光区造成损伤。

在本发明的其他实施例中,所述半导体衬底200的第一表面可以具有 MEMS传感器(比如MEMS加速度传感器或者加速度传感器等)、集成电路或其他的半导体器件(比如晶体管、电容或电阻等)时,半导体衬底的第一表面上可以形成介质层或隔离层;介质层或隔离层上可以形成玻璃基板。

参考图8,沿半导体衬底200的第二表面刻蚀所述半导体衬底,在半导体衬底中形成通孔205,所述通孔205的底部暴露焊盘202的表面。

刻蚀所述半导体衬底200为干法刻蚀工艺,可以为等离子体刻蚀工艺或bosch刻蚀工艺。在一实施例中,采用采用bosch刻蚀工艺刻蚀所述半导体衬底200,所述bosch刻蚀工艺包括交替进行的刻蚀步骤和沉积步骤,刻蚀步骤适于刻蚀半导体衬底形成刻蚀孔,刻蚀步骤采用的刻蚀气体包括SF6,沉积步骤适于在形成的刻蚀孔的侧壁形成聚合物,沉积步骤采用气体包括C4F8。

参考图9,在所述半导体衬底200的第二表面以及通孔205的侧壁和底部表面形成种子层206。

所述种子层206为后续进行电镀工艺时的籽晶层,并作为电镀工艺时的导电层。

所述种子层206包括位于金属粘附层和位于金属粘附层上的籽晶层,所述金属粘附层的材料为Ti、Ta、TiN、TaN中的一种或几种,所述籽晶层的材料为铜。

所述金属粘附层和籽晶层的形成工艺为溅射。

参考图10,在所述种子层206上形成掩膜层207,所述掩膜层207中具有暴露出通孔205以及半导体衬底200第二表面上部分种子层206的开口;采用电镀工艺在所述开口内的种子层206表面形成再布线金属层208。

所述掩膜层207的材料为光刻胶或其他合适的材料(比如氧化硅、氮化硅等)。本实施例中,所述掩膜层207的材料为光刻胶207,采用旋涂工艺在所述种子层表面形成光刻胶层,然后通过曝光和显影工艺在光刻胶层中形成暴露出通孔205和通孔205两侧的半导体衬底200第二表面上部分种子层206的开口。

再布线金属层208的材料为铜,形成工艺为电镀,采用电镀工艺形成再 布线金属层208时,由于通孔205形貌和大小的限制,通孔205内电镀液中的铜离子的交换效率会低于通孔205外的铜离子的交换速率,使得通孔内形成的再布线金属层208的厚度会小于半导体衬底200第二表面上形成的再布线金属层208的厚度。

在本发明的其他实施例中,所述再布线金属层208可以为其他可以采用电镀工艺形成的金属材料。

参考图11,去除所述掩膜层207(参考图10)。

去除所述掩膜层207的工艺为灰化工艺或其他合适的湿法或干法刻蚀工艺。

参考图12,进行浸润步骤21,向种子层206和再布线金属层208的表面喷吐去稀释液,使得通孔205内保留部分去稀释液。

所述稀释液为去离子水或者不会腐蚀再布线金属层的有机溶液,或者还可以为其他合适的不会腐蚀再布线金属层液体、溶液或溶剂。

本实施例中,所述稀释液为去离子水。

在进行浸润步骤时,首先将半导体衬底200置于刻蚀装置中,刻蚀装置中的夹持单元夹持玻璃基板204使得半导体衬底200中形成的通孔205的开口朝下,所述夹持单元使得半导体衬底200旋转,同时所述稀释液(去离子水)从下向上喷吐到种子层和再布线金属层的表面,喷吐到半导体衬底第二表面上的种子层206表面的稀释液(去离子水)在离心力和重力的作用下被甩出,防止半导体衬底第二表面上的稀释液(去离子水)产生残留影响后续的化学刻蚀步骤,喷吐到通孔205中的稀释液(去离子水),由于通孔205侧壁的阻挡,在离心力的作用下,会保留在通孔205中。

本发明实施例中,在进行浸润步骤和化学刻蚀步骤时,将半导体衬底200中形成的通孔205的开口朝下的目的是:一方面,浸润步骤时,一方面,喷吐到半导体衬底第二表面上的种子层206表面的稀释液(去离子水)在离心力和重力双重作用下被甩出,第二半导体衬底200第二表面上不会产生残留;另一方面,在整个浸润步骤和化学刻蚀步骤结束时,通过减小半导体衬底的转速,通孔内刻蚀残留液容易流出,方便后续的清洗,防止通孔中刻蚀液的 残留;再一方面,在浸润步骤和化学刻蚀步骤交替进行时,在某一步化学刻蚀步骤之后,通过减小半导体衬底的转速,使得通孔内的刻蚀溶液可以流出,在进行下一步浸润步骤时,可以在通孔中保留新的去离子水,从而使得通孔内的刻蚀溶液始终是被稀释的,使得通孔内的再布线金属层208不被刻蚀的效果更佳。

所述夹持单元对玻璃基板204的夹持可以为机械夹持或者真空吸力夹持。

所述去离子水通过去离子水喷嘴喷出,去离子水喷嘴在喷吐过程中也可以旋转,使得喷吐的去离子水更有效的覆盖整个半导体衬底的第二表面。

研究发现,进行浸润步骤时,半导体衬底的转速不能太快,太快的话通孔205内已保留的稀释液(去离子水)也容易甩出,或者稀释液(去离子水)还未与通孔接触就被甩出,通孔内保留的稀释液(去离子水)较少,太慢的话,通孔内的稀释液(去离子水)容易在重力的作用下流出,通孔内保留的稀释液(去离子水)较少,同时半导体衬底的第二表面容易产生稀释液(去离子水)的残留;浸润时间不能太短,太短的话,通孔内保留的稀释液(去离子水)很有限,太长的话,浪费工艺的时间,提高了成本。在一实施例中,进行浸润步骤时,半导体衬底的转速为250~350转/分钟,浸润时间为1~2分钟,环境温度为22~24摄氏度,以使得通孔205保留足量的去离子水,同时防止半导体衬底200的第二表面上去离子水产生残留。

在本发明的其他实施例中,进行浸润步骤和后续的化学刻蚀步骤时,所述半导体衬底中形成的开口可以向上。

需要说明的是,后续重复进行浸润步骤和化学刻蚀步骤时,本次浸润步骤作为第一浸润步骤。进行完一步浸润步骤时,停止稀释液的喷吐。

参考图13,进行浸润步骤21(参考图12)后,进行化学刻蚀步骤22,向种子层206和再布线金属层208表面喷吐刻蚀溶液,刻蚀去除再布线金属层208两侧的半导体衬底第二表面上的部分厚度的种子层206。

进行化学刻蚀步骤22时,部分刻蚀溶液进入通孔205中后被通孔205中保留的稀释液稀释,因而对通孔205中的再布线金属层208的刻蚀作用减弱,而对半导体衬底200第二表面上的种子层的刻蚀则照常进行。本实施例中, 进入通孔内的刻蚀溶液被去离子水稀释。

化学刻蚀步骤22和浸润步骤21在同一刻蚀腔室中进行,进行化学刻蚀步骤22时,半导体衬底200中形成的通孔205的开口仍旧朝下,半导体衬底200仍是旋转的。

进行化学刻蚀步骤时,刻蚀溶液通过刻蚀溶液喷嘴喷吐到半导体衬底200的第二表面上,在喷吐化学溶液的过程中,化学刻蚀溶液喷嘴可以旋转。

研究发现,化学刻蚀步骤时的时间不能太长,太长的话通孔内被稀释的刻蚀溶液的浓度会上升,对通孔内的再布线金属层208产生刻蚀,太短的话,种子层被去除的厚度会较小,刻蚀效率较低;化学刻蚀步骤时的半导体衬底的转速与浸润步骤时半导体衬底的转速差异不能太太,浸润步骤过度到化学刻蚀步骤时,半导体衬底加速或减速的值太大的话,容易使得通孔内暴露的去离子水的量产生变化。在一实施例中,进行化学刻蚀步骤时,半导体衬底的转速与浸润步骤时半导体衬底的转速相同,所述半导体衬底的转速为250~350转/分钟,刻蚀时间为30~50秒,环境温度为22~24摄氏度,在刻蚀去除部分厚度的种子层的同时,提高刻蚀效率,并且使得通孔内的再布线金属层被刻蚀的量很少。

在其他实施例中,在每进行完一步化学刻蚀步骤后,减小半导体衬底的转速(相对于化学刻蚀步骤时减小),使得通孔内被稀释的刻蚀溶液流出,后续进行浸润步骤时可以在通孔中暴露新的刻蚀容易,从而防止浸润步骤和化学刻蚀步骤交替过程中,通孔205中的刻蚀溶液浓度在被稀释后重新上升。

本实施例中,化学刻蚀步骤22采用的刻蚀溶液包括以硫酸为基础的刻蚀液和氢氟酸溶液,硫酸为基础的刻蚀液用于刻蚀种子层中的籽晶层,氢氟酸溶液用于刻蚀种子层中的金属粘附层。需要说明的是,化学刻蚀步骤22可以采用其他合适的刻蚀溶液。需要说明的是,后续重复进行浸润步骤和化学刻蚀步骤时,本次化学刻蚀步骤作为第一化学刻蚀步骤。进行完一步化学刻蚀步骤时,停止刻蚀容易的喷吐。

参考图14,重复进行浸润步骤和化学刻蚀步骤,直至完全去除再布线金属层208两侧的半导体衬底200第二表面上的种子层。

所述浸润步骤和化学刻蚀步骤的重复次数为4~10次。以浸润步骤和化学刻蚀步骤的重复4次为例,包括依次进行:第一浸润步骤、第一化学刻蚀步骤、第二浸润步骤、第二化学刻蚀步骤、第三浸润步骤、第三化学刻蚀步骤、第四浸润步骤、第四化学刻蚀步骤,每一步浸润步骤和每一步化学刻蚀步骤与前述的浸润步骤和化学刻蚀步骤相同或类似,在此不再赘述。

在完全去除再布线金属层208两侧的半导体衬底200第二表面上的种子层后,还包括:进行清洗步骤,采用去离子水清洗金属再布线层208和半导体衬底的第二表面;进行清洗步骤后,进行氮气风干步骤,去除金属再布线层和半导体衬底的第二表面上的水分。

参考图15,形成覆盖所述再布线金属层208且填充通孔的隔离材料层209;刻蚀所述隔离材料层209,在所述隔离材料层209中形成暴露出半导体衬底200第二表面上的部分再布线金属层208的开口;在所述开口中和部分隔离材料层209表面形成凸下金属层210;在所述凸下金属层210上形成金属凸块211。

所述隔离材料层209的材料可以为氧化硅、氮化硅或其他合适的隔离材料。本实施例中,所述隔离材料层209的材料为氧化硅,通过光刻和刻蚀工艺在所述隔离材料层中形成开口。

所述凸下金属层210和金属凸块211的形成工艺为:在所述开口中以及隔离材料层209表面上形成凸下金属层,凸下金属层的形成工艺为溅射;在所述凸下金属层上形成掩膜层,所述掩膜层中具有暴露出隔离层中的开口以及开口两侧部分凸下金属层表面的第二开口;采用电镀工艺在所述第二开口中形成金属凸块211;去除所述掩膜层;以所述金属凸块211为掩膜,刻蚀去除金属凸块两侧的隔离材料层209表面上的凸下金属层,金属凸块211底部剩余的凸下金属层的凸下金属层211。

所述金属凸块211可以为焊球,在去除金属凸块两侧的隔离材料层209表面上的凸下金属层后,对电镀形成的金属凸块进行回流工艺,使得金属凸块的表面呈弧形。

在其他实施例中,所述金属凸块包括金属柱和位于金属柱上的焊球,进 行电镀工艺时,在第二开口中形成金属柱以及位于金属柱上的焊料层,在去除金属凸块两侧的隔离材料层209表面上的凸下金属层后,对焊料层进行回流工艺,使得焊料层的表面呈弧形。

所述金属柱的材料乐意为铝、镍、锡、钨、铂、铜、钛、铬、钽、金、银中的一种或几种;所述焊球或焊料层的材料可以为锡、锡银、锡铅、锡银铜、锡银锌、锡锌、锡铋铟、锡铟、锡金、锡铜、锡锌铟或者锡银锑等金属中的一种或者多种

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1