用于通过基部激励进行微悬臂致动的系统和方法与流程

文档序号:15068043发布日期:2018-07-31 23:04阅读:277来源:国知局

本申请要求2015年7月13日提交的标题为“baseexcitedmicro-cantilever”的美国临时申请序列号62/191,593以及2015年11月24日提交的标题为“robustdesignofresonantvibratingbase-drivenmicro-cantilever”的美国临时申请序列号62/259,162的优先权,每一个申请的全部内容出于所有目的通过引用合并于此。

本公开一般地涉及微机电系统(mems)结构和致动方法的领域,并且更具体地涉及微悬臂结构和致动方法。



背景技术:

微悬臂是微机电系统(mems)中使用最广泛的结构之一,并且被用作各种用途的致动器。一般来说,微悬臂的共振激励在工业中是常规做法,并且存在各种技术来致动mems设备以高频率振动。典型的致动方法包括热、静电、电磁和压电激活。

基于部件在加热期间的热膨胀的热激活提供了相对容易实现以及相对较大的力和位移施加到微悬臂的优点,并且可以允许大约几百mhz的高振动频率。热激活方法通常采用分层双晶微悬臂结构,以在悬臂中实现直接弯曲。然而,基部激励技术,其中附接在微悬臂基部附近的致动器的循环变形或运动引起悬臂尖端的振动,由于悬臂的实用共振激励而提供了改进致动效率的可能性,但是这种技术通常仅用于非热激活的致动方法。

因此,期望包括微悬臂致动器系统的方法和系统,该微悬臂致动器系统组合热致动和基部激励技术二者的高效和实用特征,以允许高频率微悬臂振动。这种微悬臂系统的应用包括例如晶片探测、生物传感器和成像探测。



技术实现要素:

这里描述的是用于通过基部激励进行微悬臂致动的系统和方法的变型。一个或多个变型涉及一种包括微悬臂的微机电系统,微悬臂在其基部附近耦合到由一个或多个致动器组成的阵列。在一个或多个变型中,微悬臂包括自由端或尖端,该自由端或尖端可以被基部激励诱发成高频振动,该基部激励由致动器阵列的循环激活引起。由于系统的固有频率处的共振,致动器阵列的膨胀和收缩循环在微悬臂系统中提供小的扰动,该小的扰动可能会在短时间段内累积并且导致高幅度振动。使用该技术的变型可能在致动器处的输入位移与微悬臂尖端位移的比率方面提供高放大因数。对系统的固有频率的控制通过设计和/或几何参数来促进,并且可以根据应用的需要进行设计。

在一个变型中,可以在微悬臂梁或纤维周围定位和设置或耦合致动器阵列,以允许在任何任意方向上的振动致动。

附图说明

通过参考附图详细描述示例性实施例,各特征对于本领域技术人员将变得显而易见,在附图中:

图1图示了根据实施例的基部激励的微悬臂;

图2图示了根据几个模拟实施例的在对致动器的输入功率与微悬臂梁尖端位移之间的预测关系;

图3图示了根据实施例的基部激励的微悬臂,其中微悬臂被耦合(例如,夹持)到基部基底,并且致动器在距悬臂夹持点的一定距离处附接在悬臂下方;

图4图示了根据实施例的基部激励的微悬臂,其中使用两个致动器来使微悬臂在两个方向上振动;

图5图示了根据实施例的基部激励的微悬臂,其中致动器包括附接在悬臂下方的桥;

图6图示了根据实施例的基部激励的微悬臂,其中致动器包括弯曲的微电线;

图7图示了根据实施例的基部激励的微悬臂,其中微悬臂包括附接到较厚光纤的光纤;

图8图示了根据实施例的基部激励的微悬臂,其中用于向致动器供应功率的传导材料也用作微悬臂的结构支撑;

图9图示了根据实施例的基部激励的微悬臂,其中致动器阵列包括布置在主悬臂梁周围的两对弯曲的微电线以独立地在两个方向上使梁振动;

图10图示了根据实施例的基部激励的悬臂的示意图;

图11图示了当暴露于不同环境时基部激励的微悬臂的实施例的谐波动态响应;

图12图示了作为空气压强的函数的基部激励的微悬臂系统的实施例的预测品质因数;

图13图示了微悬臂致动器的实施例对单位阶跃输入的热响应;

图14图示了根据包括一定范围的致动器长度的实施例的微悬臂致动器的温度和位移;

图15图示了根据实施例的基部激励的微悬臂配置的示意图,其中致动器包括薄结构;

图16图示了作为致动器位置的函数的基部激励的微悬臂的实施例的预测响应;

图17a图示了根据实施例的基部激励的微悬臂系统的可变尺寸;

图17b图示了根据基部激励的微悬臂系统的实施例的对系统尺寸的制造偏差的灵敏度分析的结果;

图18图示了用于基部激励的微悬臂系统的稳健设计的算法;以及

图19图示了基部激励的微悬臂的实施例的设计稳健性的改进。

具体实施方式

现在将详细参考本发明的各个方面和变型的实现和实施例,其示例在附图中图示。

在本说明书中,“品质因数”是指用于量化系统的能量损失和效率的度量,并且通常可以被定义为2*pi*u_s/u_d,其中u_s是在不存在损失时可以存储的最大能量,并且u_d是一个振荡周期的能量损失。

如图1中所示,用于微悬臂致动的系统1a的示例可以包括设置在致动器16的顶部的微悬臂10,该致动器16可以通过例如连接连接器14(例如电线/线路)被耦合到电源(未示出)。系统1a被放置在基底材料12的顶部。致动器16可以由信号来激励,该信号通过电线14传输。例如,可以选择两个不同的方法用于致动:(1)热致动;(2)压电效应。后者的实现取决于对热量、信号干扰等的设计和限制的特定情况。在使用热生成作为致动的主要机制的情况下,导线14用作散热器,以促进致动器16材料的相对较高频率的加热/冷却循环。已经证明,mems设备中的加热和冷却循环的频率可以高达几十或几百mhz。在一些变型中,该设计不仅使用基部致动技术,而且在致动器材料和连接到致动器的梁的层之间的层间力的效应也引起一些双晶片效应。来自双晶片效应的沿着梁的长度的该张力可能对该弯曲具有显著效果。

图2图示了经由图1中描绘的系统1a的数值建模计算的示例性性能曲线。致动器16的热加热是该分析中的致动源,并且针对大约8khz的振动优化尺寸。使用ansys商业有限元软件包来创建模型并提取输出。该图形示出了针对不同输入功率量值的尖端位移的幅度。输入功率以半正弦时间相关性(即,仅使用正弦函数的正部分并且负部分被零替换)作为焦耳热生成效应施加在致动器层上。在该图形中研究致动器厚度和长度的效果。图解示出了针对恒定宽度值的致动器的厚度(t)及其沿着微悬臂的长度(l),。该图形证明了本发明及其优化方法的理论可行性。

图3示出了示例性系统1b,其中在不同变型中应用致动方法。与图1中的系统1a中的直接安装在致动器16的顶部的微悬臂10相比,在图3的系统1b中,致动器20在距微悬臂22的夹持点26一定距离处被布置到基底18。可以经由连接路径24提供用于致动的所需能量和信号。在系统1b中,致动器20包括用于经由焦耳效应进行热致动的电阻器或用于压电致动的压电材料。主悬臂22的架构可以变化,并且不限于矩形横截面和诸如圆形梯形等的一般形状。此外,出于如下目的考虑了连续变化的横截面:在沿跨度的指定点处提供较小的刚度以便促进/阻碍弯曲。上述双晶片效应仍然存在于该实施例中,并且可以帮助梁在其连接到致动器20的位置处弯曲。

图4描绘了又另一变型,用于微悬臂致动的系统1c,其中悬臂22a在两个方向上(例如,水平地和竖直地)被致动。基部附接和夹持点可以类似于图3中的对应元件。可以分别通过致动器32的两侧的多个连接器(例如,连接线路或电线)并且通过用于致动器28的第三连接器(例如,电线)34供应两个独立的电流。两个电流共享相同的连接器(例如,电线)30作为其信号供应电路的一部分。虽然在该变型中,电流直接经过致动器32以提供加热和/或压电效应,但是致动器28不直接处于该电路中。然而,在瓶颈横截面36处生成的热通过传导现象来加热致动器28。因此,致动器28可以仅使用热效应,而致动器32可以是热或压电的。通常,在可以实现多于一个致动器的实施例(诸如图4)中,基于设计准则的不同致动技术和频率可以同时存在于系统中。梁的尺寸和所施加的激励频率可以允许独立的致动具有不同的振动频率和响应模式。

在又另一变型中,图5图示了用于最大化热致动方法中的能量效率的系统id。在该配置中,代替使用致动器38作为微悬臂22b下方的材料块,致动器38在微悬臂22b下方形成狭窄电流通道和桥状结构。用于电传导的减小的横截面增加了电阻和加热,而桥38两侧的较长腿部40增加了热膨胀/收缩量值并且因此增加了梁处的整体位移。腿部40可以被设计成是压电材料,而连接桥38是用于完成电路的常规传导材料。

在图6所示的另一变型中,在系统1e中,致动器44由设置在微悬臂42下方的弯曲电线形成。这样的配置可以消除使用洁净室进行材料沉积并降低制造成本。微悬臂42可以被单独制造,并且可以被放置在保持支架50的顶部。粘合剂可以被施加在致动器42的下方以及致动器42的基部46以固定它。尽管在该实施例中使用基底材料和mems沉积是可行的选项,但是可以制造印刷板电路(pcb)48以在其上设置系统,这可以避免清洁室的成本并且提高制造原型和少量振动悬臂的效率。

在图7中所示的变型中,系统1f可以用于(一个或多个)光纤52的振动。光纤可以是具有圆形横截面的长连续纤维。在该实施例中,纤维可以在未被致动以振动或拼接成较粗纤维54的端部上可以相当长。可以在纤维52和致动器44a之间施加粘合剂以进行适当的接触,以在微悬臂纤维52中诱发振动。

图8示出了传导材料还具有结构目的的系统1g。在该变型中,例如,使用两个弯曲电线56来为微悬臂52提供结构支撑并且为其致动提供所需能量。经由例如微焊接、焊接等在58处将致动器附接到这些导体。替代地,可以使用例如微制造技术来将整个系统1g制造为整体。

图9图示了用于微悬臂60的双侧振动的致动方法。图9被简化为仅示出致动器66和68以及微悬臂60,并且诸如连接电线和基底之类的所有其他重复的细节没有被描绘,虽然它们存在于物理系统中。该实施例使用彼此相对放置的两组致动器66和68。在热致动中,当可以仅施加信号的正部分(加热)并且缺乏信号作为冷却(反转信号不会诱发冷却)时,在相对侧施加具有半正弦信号的两个致动可以提高振动的对称性和效率。在一侧的信号与其相对信号62和64之间分别施加π相位的移位。而且,这不限于沿着一个轴的致动。如图8中所描绘的,多于一个的致动器对在该特定设计中共存。多种致动有助于在各种方向上的振动,以及使用叠加运动以具有设备运动的较高灵活性。致动器大小和梁尺寸可以基于特定设计被优化以实现设计要求。技术人员将会理解,半正弦信号是示例,并且不限制所公开的方法和系统。包括但不限于脉冲和矩形波的任何类型的周期性循环可以在所公开的方法和系统中应用。

为了提高整体性能,具有高热膨胀系数(例如,铝、钛等)或高热收缩系数的材料可以用于各种变型中的致动器。

热致动包括使用经历相变的材料,诸如形状记忆合金(例如,niti、femnsi、cuznal等)。

除了热膨胀/收缩和压电效应外,还可以使用其他现象或技术。这包括电活性聚合物、凝胶致动器、聚合人造肌肉(例如尼龙致动器)、纳米碳管、石墨烷、石墨烯、碳基致动器或其组合。

对于热激励的情况,根据实施例,致动器内的温度上升可以经由包括以下各项的各种方法中的任何一个或多个来提供:电热加热(焦耳效应)、来自邻近介质的传导、辐射(例如,激光束加热)。

致动方法不限于线性横向或纵向(前后)运动。可以激励微悬臂的致动器处的任何旋转和/或弯曲运动都可以被算作基部激励。根据实施例,致动器阵列可以包括用于在微悬臂中提供任何任意运动激励的致动器配置的任何组合。

在一个变型中,可以在微悬臂梁或纤维周围定位和附接致动器阵列,以允许在任何任意方向上的振动致动。

考虑到微悬臂上的d’alembert效应,使系统处于非惯性系或情况中(例如,使整个系统振动)也可以用作基部激励。根据实施例,这种整个系统振动可以被单独使用或者与任何上述用于微悬臂基部激励的方法组合使用。

稳健设计方法

图10示出了结合各种公开的方法和系统的微悬臂的总体示意图。微悬臂的振动区段的主跨度/长度在图10中被指示为“100”。致动器120的长度和高度分别以“140”和“160”示出,致动器120用作弹性基部/连接件。弹性致动器在与梁的连接点处也具有旋转刚度180。由热循环120生成的竖直位移提供了竖直位移,该竖直位移是系统中的致动源。基于这种示意图的数学表达可以用于模拟和预测微悬臂系统行为和对不同状况的响应。替代地,可以在计算机软件中实现系统的有限元建模以模拟和预测微悬臂系统行为和响应。

图11图示了暴露于各种环境的图1中所描绘的微悬臂的谐波响应(尖端位移)。所生成的数学表达用于预测响应。

图12示出了由处于不同压强的空气包围的基部激励微悬臂系统的实施例的品质因数。根据观察到的趋势,在一些变型中,可以使用加压空气来提高品质因数,并且因此提高系统效率。然而,这可能减小整体尖端位移,如图11中所示。在一个实施例中,基部激励微悬臂系统可以被放置在加压气体环境中以便提高系统效率。

图13示出了致动器层对单位阶跃输入功率的热响应。沿着致动器的归一化长度(0-1)的温度示出了在各种实施例中描述的微级致动器的反应时间。

图14示出了在稳定状态下增加致动器的长度对220中的温度变化和240中的致动量值的效果。在一般的时间相关输入下所需的热模型被构想为本发明的一部分。

图15示出了本发明的系统的所选择的变型。微悬臂260连同与其连接的细长结构(例如电线)280被固定在夹持点300处。280的延伸/收缩导致位移320和斜坡340。在280处产生的与系统的固有频率相匹配的周期性激励诱发共振。

图16示出了对图6中28的放置及其对尖端位移的影响的研究。该表达由发明人提取并帮助优化系统中的性能。

图17示出了对微悬臂的配置的灵敏度分析。这里研究了由于制造过程中的容限而导致的变化。灵敏度研究可以对固有频率和尖端位移二者进行。

图18示出了用于微悬臂的稳健设计的示例性算法。这种通用算法可能可用于减少最终产品的变化。根据该方法,作为灵敏度分析(图8)的结果而检测到的灵敏参数被允许较小的容限以减少其不利效果。

图19示出了在执行上述稳健设计算法并且对基部激励微悬臂的实施例的尺寸设计施加改变之前(初始)和之后(修改)在模型中固有频率的百分比变化(f1)和微悬臂尖端位移(u1)之间的比较。在初始设计配置中,基于具有约+/-0.5微米的假定制造容限的14微米微悬臂梁直径以及具有约+/-2微米的假定容限的约20微米的致动器偏移距离,固有频率示出约+/-5%的变化,并且尖端位移示出约+/-9%的变化。例如,在针对梁直径要求约为+/-0.2微米的更严格容限并且拒绝偏移距离的负偏差(因此要求约+2/-0的容限)的设计修改后,固有频率的变化降低到大约+/-3%,并且尖端位移的变化降低到大约+/-5%。

公开了用于基部激励微悬臂的中等高度振动的系统和方法的各种实施例。在这些实施例中,将微悬臂附接到邻近或靠近其基部或固定(例如夹持)端的致动器。在其基部处,微悬臂可以被直接附接或固定到基部基底,或者替代地仅附接到致动器。致动器可以包括块状材料、桥或成形的电线,由于电热加热的效应或者由于压电效应,他们通过施加电流而膨胀和收缩。单个致动器或致动器阵列可以被放置在微悬臂周围以使其振荡并施加致动脉冲。致动器的各种架构被实现为刺激梁的不同频率并诱发不同方向和幅度的位移。此外,用于具有热基部激励致动的微悬臂系统的稳健设计的框架可以包括标称尺寸设计的规定、制造容限的检测或估计、用于预测结果(诸如固有频率和尖端位移)的变化性的实验模拟的设计,以及直至取得满意结果的容限的迭代修改和变化性预测的设计。

尽管已经结合详细描述和示出的各种实施例说明和描述了本公开,但是本公开并不意图限于所示的细节,因为可以在决不脱离本公开的范围的情况下进行各种修改和结构改变。在决不脱离本公开的范围的情况下,可以对所说明的实施例以及本公开的其他实施例的形式、部件的布置、步骤、细节和操作顺序进行各种修改,并且在参考本描述时,这些各种修改对于本领域技术人员将是显而易见的。因此,设想所附权利要求将覆盖这些修改和实施例,因为他们落入本公开的真实范围内。为了清楚和简洁描述的目的,本文将特征描述为相同或分开实施例的部分,然而,将理解,本公开的范围包括具有所描述的全部或一些特征的组合的实施例。对于术语“例如”和“诸如”及其语法等价物,短语“并且非限制性”应理解为遵循,除非另有明确说明。如本文所使用的,单数形式“一”、“一个”和“该”包括复数指代物,除非上下文另有明确规定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1