一种基于压电陶瓷的MEMS微结构三轴式动态加载装置的制作方法

文档序号:14825107发布日期:2018-06-30 08:08
一种基于压电陶瓷的MEMS微结构三轴式动态加载装置的制作方法

本发明属于微型机械电子系统技术领域,特别涉及一种基于压电陶瓷的MEMS微结构三轴式动态加载装置。



背景技术:

由于MEMS微器件具有成本低、体积小和重量轻等优点,使其在汽车、航空航天、信息通讯、生物化学、医疗、自动控制和国防等诸多领域都有着广泛的应用前景。对于很多MEMS器件来说,其内部微结构的微小位移和微小变形是器件功能实现的基础,因此对这些微结构的振幅、固有频率、阻尼比等动态特性参数进行精确测试已经成为开发MEMS产品的重要内容。

为了测试微结构的动态特性参数,首先需要使微结构产生振动,也就是需要对微结构进行激励。由于MEMS微结构具有尺寸小、重量轻和固有频率高等特点,传统机械模态测试中的激励方法和激励装置无法被应用在MEMS微结构的振动激励当中。近三十年来,国内外的研究人员针对MEMS微结构的振动激励方法进行了大量的探索,研究出了一些可用于MEMS微结构的激励方法以及相应的激励装置。其中,以叠堆压电陶瓷作为激励源的底座激励装置具备激励带宽较大,装置简单、易操作,以及适用性强等优点,因此在MEMS微结构动态特性测试领域得到了广泛的应用。David等在《A base excitation test facility for dynamic testing of microsystems》一文中介绍了一种基于压电陶瓷的底座激励装置,在该装置中叠堆压电陶瓷被直接粘接在一个固定的底座上,由于叠堆压电陶瓷是一种多层粘接结构,所以叠堆压电陶瓷能够承受较大的压力,但不能承受拉力,拉力会导致叠堆压电陶瓷的损坏,当叠堆压电陶瓷在使用时,对其施压一定的预紧力有利于延长叠堆压电陶瓷的使用寿命,而该装置并未考虑上述问题;Wang等在《Dynamic characteristic testing for MEMS micro-devices with base excitation》一文中介绍了一种基于压电陶瓷的底座激励装置,在该装置中考虑到了对叠堆压电陶瓷施加一定预紧力的问题,使用了压板、底座和调节螺钉组成的机构来压紧叠堆压电陶瓷,并可通过旋拧调节螺钉来改变预紧力的大小,但该装置并未考虑到在使用上述机构对叠堆压电陶瓷施加预紧力时,由于叠堆压电陶瓷两工作表面的平行度误差,在叠堆压电陶瓷的层与层之间会产生剪切力,该剪切力会对叠堆压电陶瓷产生机械损伤,此外,该装置无法测量所施加预紧力的大小,如果调节不当,则也会对叠堆压电陶瓷造成机械损伤。

公开号为CN101476970A的中国发明专利公开了一种基于压电陶瓷的底座激励装置,在该装置中通过十字弹簧片对叠堆压电陶瓷施加预紧力,并通过将叠堆压电陶瓷底部安装在一个可动的底座结构上来减小压电陶瓷所受到的剪切力,此外,在装置中还设有压力传感器,用来检测对压电陶瓷所施加的预紧力以及叠堆压电陶瓷在工作时的输出力。但该装置仍存在下列缺点:

1、该装置的可动底座结构由上联接块、钢球和下联接块组成,钢球和上联接块、下联接块之间均为线接触,当需要补偿叠堆压电陶瓷顶面和底面两个工作表面的平行度误差而自行调节可动底座结构时,钢球无法平滑的转动,甚至会出现被卡住的状况;

2、上联接块和下联接块与套筒之间均无直接联接,而是采用间隙配合的方式依次安装到套筒之中,若叠堆压电陶瓷两个工作表面的平行度误差较大,则无足够的空间去调节可动底座结构;

3、压力传感器被安装在下联接块的底部,由于可动底座结构自行调节后,下联接块的底部与压电陶瓷的工作表面之间存在一定的倾角,因此压力传感器所测得的预紧力或压电陶瓷的输出力并不准确;另外,如果可动底座结构在调节后导致上联接块或下联接块与套筒相接触,则测量结果的误差会进一步增大;

4、装置中采用十字弹簧片的一面来压紧叠堆压电陶瓷,在十字弹簧片的另一面上则粘接测试用的微器件,当压电陶瓷工作时,十字弹簧片的变形较大会导致微器件与十字弹簧片之间的胶体开裂,致使微器件脱落;

5、该装置中通过使用不同厚度的垫片来改变施加在叠堆压电陶瓷上预紧力的大小,导致调节过程复杂,不够灵活。



技术实现要素:

本发明所要解决的技术问题是要提供一种基于压电陶瓷的MEMS微结构三轴式动态加载装置,该装置能够更加灵活的对叠堆压电陶瓷施加不同大小的预紧力,同时使所获得的预紧力测量值更加准确,可使补偿叠堆压电陶瓷两工作表面平行度误差的调节过程变得更加顺畅和平滑,大大减小了叠堆压电陶瓷各层之间的剪切力,便于测试MEMS微结构的动态特性参数。

为解决上述问题,本发明采用如下技术方案:

一种基于压电陶瓷的MEMS微结构三轴式动态加载装置,包括套筒,在套筒内设有叠堆压电陶瓷、压力传感器、上联接块和下联接块,在套筒上面设有弹性支撑件和MEMS微结构,其特征是:

在套筒上面设有环形顶板,所述MEMS微结构通过弹性支撑件安装在环形顶板上;

在套筒内下部设有支撑板,在支撑板中心沿竖直方向安装有电动丝杠传动机构,电动丝杠传动机构的丝母与下联接块连接,用于带动下联接块上下移动;

在上联接块和下联接块的相对面上分别设有相互配合的球面凸起和球面凹槽,所述球面凸起插入球面凹槽内且球面凸起的曲率半径小于球面凹槽的曲率半径,使上联接块和下联接块之间形成点接触;所述压力传感器镶装在上联接块顶面的中心孔内,叠堆压电陶瓷夹持在压力传感器与弹性支撑件之间;

在上联接块外缘圆周均布连接有连接杆,连接杆外端分别由圆周均布在套筒壁上的长孔穿出并连接有安装块,在安装块上分别安装有球头柱塞,球头柱塞外端的钢珠分别顶入到沿圆周方向均布在套筒外壁的矩形凹槽内,用于辅助上联接块补偿叠堆压电陶瓷两工作表面平行度误差的调节;

在套筒内沿圆周方向均布设有导向轴,导向轴通过间隙配合穿过设置在下联接块下端的法兰盘上均布的导向孔,用于保证下联接块上下移动时的水平度。

作为进一步优选,所述连接杆为圆周均布的三组且每组为二根,每个安装块分别通过螺钉固定在每组二根连接杆的外端。

作为进一步优选,所述球头柱塞插装在安装块中部的通孔内,并在通孔外端口内设有调节螺钉,用于将球头柱塞顶入矩形凹槽内。

作为进一步优选,所述弹性支撑件是由一个圆柱形压片和圆周均布在压片外缘的三个支撑臂构成,所述支撑臂的厚度小于压片的厚度;以减小压片的变形量,避免MEMS微结构因胶体开裂而发生脱落。

作为进一步优选,所述弹性支撑件通过三个空心支柱支撑固定在环形顶板上面。

作为进一步优选,所述上联接块外缘为不等边六边形,所述连接杆分别通过螺纹连接在上联接块外缘对应的螺孔内。

作为进一步优选,在叠堆压电陶瓷上端扣设有安装套,所述弹性支撑件压在安装套上,用于避免由于叠堆压电陶瓷顶部工作表面的粗糙不平所导致的叠堆压电陶瓷和弹性支撑件接触不良的问题。

作为进一步优选,所述长孔和矩形凹槽的中心线均与套筒的轴线平行,且每个矩形凹槽的中心线与相邻的导向轴轴线所夹的套筒圆心角为60度。

作为进一步优选,所述导向轴为三根且均布连接在环形顶板与支撑板之间。

本发明的有益效果是:

1、由于在上联接块和下联接块的相对面上分别设有相互配合的球面凸起和球面凹槽,所述球面凸起插入球面凹槽内且球面凸起的曲率半径小于球面凹槽的曲率半径,则上联接块和下联接块之间形成点接触,当需要补偿叠堆压电陶瓷两工作表面的平行度误差来调节由上联接块和下联接块所组成的可动底座时,上联接块会以球面凸起与球面凹槽的接触点为转动中心进行转动,调节过程顺畅、平滑,不会出现被卡住的问题,大大减小了叠堆压电陶瓷各层之间的剪切力。

2、由于在上联接块外缘圆周均布连接有连接杆,连接杆外端分别由圆周均布在套筒壁上的长孔穿出并连接有安装块,在安装块上分别安装有球头柱塞,球头柱塞外端的钢珠分别顶入到沿圆周方向均布在套筒外壁的矩形凹槽内,当需要补偿叠堆压电陶瓷两工作表面的平行度误差来调节可动底座时,可以通过球头柱塞内的弹簧和钢珠的配合来实现上联接块在不同方向上的摆动,可调节的空间更大。

3、由于所述压力传感器镶装在上联接块顶面的中心孔内,叠堆压电陶瓷夹持在压力传感器与弹性支撑件之间,因此当对叠堆压电陶瓷施加预紧力后,避免了可动底座结构对压力传感器的干扰,可以获得更准确的预紧力数据;当叠堆压电陶瓷工作时,所获得的激振力的测量值也更加准确。

4、由于在支撑板中心沿竖直方向安装有电动丝杠传动机构,电动丝杠传动机构的丝母与下联接块连接,当需要对叠堆压电陶瓷施加不同大小的预紧力时,可以通过电动丝杠传动机构带动由上联接块和下联接块所组成的可动底座移动来实现,调节过程简单、灵活。

附图说明

图1是本发明的立体结构示意图。

图2是本发明的俯视图。

图3是图2的A-A剖视图。

图4是本发明拆除掉环形顶板后的俯视图。

图5是弹性支撑件的立体结构示意图。

图中:1.套筒,101.矩形凹槽,102.长孔,2.环形顶板,3.底板,4.MEMS微结构,5.微结构安装板,6.弹性支撑件,601.压片,602.支撑臂,7.支柱,8.安装套,9.球头柱塞,10.叠堆压电陶瓷,11.压力传感器,12.安装块,13.上联接块,1301.球面凸起,14.调节螺钉,15.下联接块,1501.球面凹槽,16.丝母,17.支撑板,18.直线步进电机,19.导向轴,20.轴套,21.连接杆,22.丝杠。

具体实施方式

如图1~图5所示,本发明涉及的一种用于MEMS微结构动态特性测试的三轴式激振装置,包括一个空心套筒1,在套筒1内设有叠堆压电陶瓷10、压力传感器11以及由上联接块13和下联接块15构成的可动底座,在套筒1上面设有弹性支撑件6和MEMS微结构4。

在套筒1上面和底面分别通过螺栓固定有环形顶板2和底板3,所述MEMS微结构4通过弹性支撑件6安装在环形顶板2上。所述弹性支撑件6是由一个圆柱形压片601和圆周均布在压片601外缘的三个支撑臂602构成,其中支撑臂602的厚度小于压片601的厚度;以减小压片601的变形量,避免MEMS微结构4因胶体开裂而发生脱落。弹性支撑件6的三个支撑臂602通过三个空心支柱7使用螺钉支撑固定在环形顶板2上面,并与套筒1在同一轴线上。MEMS微结构4通过微结构安装板5粘固在弹性支撑件6的压片601上表面中心处。

在套筒1内下部的阶梯处通过螺钉固定设有支撑板17,在支撑板17中心沿竖直方向安装有电动丝杠传动机构,该电动丝杠传动机构由直线步进电机18、连接直线步进电机18输出轴的丝杠22和丝母16构成,其中直线步进电机18安装在支撑板17底面,丝杠22上端插入下联接块15底面的中心孔内,丝母16与下联接块15通过圆周均布的螺钉连接,用于带动下联接块15上下移动。

在上联接块13和下联接块15的相对面上分别设有相互配合的球面凸起1301和球面凹槽1501,所述球面凸起1301插入球面凹槽1501内且球面凸起的曲率半径小于球面凹槽的曲率半径,使上联接块和下联接块之间形成点接触,并使上联接块13底面和下联接块15顶面之间形成一个调整间隙,该调整间隙优选为2~5mm。

所述压力传感器11镶装并粘接在上联接块13顶面的中心孔内,叠堆压电陶瓷10为圆柱形且下端粘接在压力传感器11上,叠堆压电陶瓷10两端夹持在压力传感器11与弹性支撑件6的压片601之间。在叠堆压电陶瓷10上端扣设并粘接有安装套8,所述弹性支撑件6的压片601压在安装套8上,用于避免由于叠堆压电陶瓷10顶部工作表面的粗糙不平所导致的叠堆压电陶瓷10和弹性支撑件6接触不良的问题。

所述上联接块13外缘为不等边六边形,在上联接块13外缘圆周均布连接有连接杆21,连接杆21外端分别由圆周均布在套筒壁上的长孔102穿出并连接有安装块12,在安装块12上分别安装有球头柱塞9,球头柱塞9外端的钢珠分别顶入到沿圆周方向均布在套筒1外壁的矩形凹槽101内,用于辅助可动底座补偿叠堆压电陶瓷两工作表面平行度误差的调节以及测试后上联接块13的复位。所述连接杆21为圆周均布的三组且每组为二根,每个安装块12分别通过螺钉固定在每组二根连接杆21的外端,连接杆21内端分别通过螺纹连接在上联接块13外缘对应的螺孔内。所述球头柱塞9插装在安装块12中部的通孔内,并在该通孔外端口内通过螺纹安装有调节螺钉14,用于将球头柱塞9外端的钢珠顶入对应的矩形凹槽101内。所述长孔102的宽度与连接杆21的直径间隙配合,长孔102和矩形凹槽101的中心线均与套筒1的轴线平行,且每个矩形凹槽101的中心线与相邻的导向轴19轴线所夹的套筒圆心角为60度。

在套筒1内沿圆周方向均布设有三根所述导向轴19,导向轴19两端分别通过螺栓连接在环形顶板2与支撑板17之间。导向轴19分别通过间隙配合穿过均布设置在下联接块15下端法兰盘上的导向孔,用于保证下联接块15上下移动时的水平度。在下联接块15下端位于导向孔内分别镶装有轴套20。

工作时,首先控制直线步进电机18通过丝杠22和丝母16传动向上推动由上联接块13和下联接块15所组成的可动底座对叠堆压电陶瓷10施加预紧力,同时监测由压力传感器11测得的预紧力数据,当预紧力的大小达到设定值之后,控制直线步进电机18停止工作。然后,使用外部电源在叠堆压电陶瓷10的两电极间施加脉冲信号或扫频信号,利用叠堆压电陶瓷10的逆压电效应实现对MEMS微结构4的激励,同时使用外部光学非接触式的测振装置检测MEMS微结构4的振动响应,利用压力传感器11检测叠堆压电陶瓷10的输出力。最后,当完成对MEMS微结构4的激励后,控制直线步进电机18带动下联接块15向下移动,再手动下压三个安装块12带动上联接块13向下移动,使叠堆压电陶瓷10顶部安装套8与弹性支撑件6分离开,避免叠堆压电陶瓷10一直处于受力的状态。

尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1