用于电解处理电绝缘箔材的表面上的相互电绝缘的可导电结构的方法和装置及该方法的应用的制作方法

文档序号:5276197阅读:296来源:国知局
专利名称:用于电解处理电绝缘箔材的表面上的相互电绝缘的可导电结构的方法和装置及该方法的应用的制作方法
说明本发明涉及一种用于电解处理电绝缘箔材的表面上的相互电绝缘的可导电结构的方法和装置以及该方法的应用。
经常使用电镀工艺用于带材的金属涂覆。多年来为此使用所谓的卷到卷处理设备(Reel-to-reel-Behandlungsanlagen),材料被输送通过该设备并且在输送过程中与处理液接触。
在US-A-3.779.877中说明了一种用于电解腐蚀铝箔的方法,其中该铝箔被引导首先通过阳极化的接触靴,然后进入电镀处理浴内。该箔材在处理浴内被引导从阴极化电极附近经过然后再离开电解液。在此,该箔材再次被引导通过阳极化的接触靴。
在EP 0 518 850 A1中说明了另一种处理金属带、金属丝或金属型材的方法,其中可导电的待处理物被引导依次通过两个装有含水电解液的容器以进行电解酸洗,在一个第一容器内进行阴极处理之后接着在第二容器内进行阳极处理。电流通过该待处理物从第一容器内的一个电极传递到第二容器内的一个电极,这样,通过该待处理物将位于顺序安置的容器内的不同极性电极间的电路封闭。在另一种实施形式中,也可将极性相反的电极安置在一个处理容器内,在附加的容器内设置另外的电极。
此外由EP 0 093 681 B1公开了一种用于连续涂覆用铝镍合金制成的金属丝、管及其它半成品的方法。在此方法中,首先将半成品输送至一个第一电解浴容器内,然后送至一个第二电解浴容器内。该半成品在该第一电解浴容器内被引导经过一个负极化电极,在该第二电解浴容器内被引导经过一个正极化电极。一个金属化电解浴处于这些电解浴容器内。由于该半成品可导电并且同时与两种金属化电解液接触,因此与一个电源连接的这两个电极之间的电路是封闭的。相对于第一电解浴容器内的负极化电极,该半成品被阳极化。相对于第二电解浴容器内的正极化电极,该半成品被阴极化,因而可以在那里沉积金属。
由EP 0 395 542 A1公开了一种用于对用石墨、铝或其合金制成的基体连续涂镀金属的方法,该基体被引导先后通过两个容器,这两个容器相互连接并且容纳一个活化电解浴或金属化电解浴,其中一个阴极安置在第一容器内,一个阳极安置在第二容器内。利用该方法可以将杆、管、线、带及其它半成品作为基体进行涂镀。
上述方法的一个根本性缺点在于,只能对整体面积的导电表面进行电解处理,而不能处理互相电绝缘的结构。
作为对于后一个问题的一种解决方法,在WO 97/37062 A1中给出一种用于对印刷电路板上的相互电绝缘的区域进行电化学处理的方法。为此,被带动与处理溶液接触的印刷电路板连续地与静止的刷式电极接触,这些电极由一个电流源供电,因而能在各个导电结构上作用一个电位。在最好用金属丝构成的这些电刷与安置在电刷之间的阳极之间作用一个电位。
该装置的缺点在于,电刷在一个极短时间内完全被金属覆盖,因为大约90%的金属沉积在电刷上而仅有10%的金属沉积在待金属化的区域上。因此必须仅在短暂的工作时间之后就再对电刷进行清除金属。为此,电刷必须再次被从装置上拆下并被清除金属,或者设置复杂地构成的装置,借助这些装置通过使待再生电刷电化学极性反转使电刷上的金属被去除。此外,电刷尖容易损坏印刷电路板上的细微结构。在此,电刷材料同样磨损很快,脱落下细微的颗粒,它们进入电解液内并在金属化过程中造成故障。特别是在待金属化的结构极小时,例如宽度或长度为0.1mm,必须使用具有极细金属丝的电刷。这种电刷磨损得特别快。来自磨损电刷的颗粒进入电解液内并且然后进入印刷电路板的孔内,造成明显干扰。
在另外的用于使电绝缘的结构金属化的已知方法中,使用了无电流的金属化过程。但这些方法缓慢、难以实行并且费用昂贵,因为耗用大量的化学物质。所使用的物质经常是对环境有害的并且因此使得为处理这些物质需要更大的费用。此外,不能保证只有导电结构被金属化。在这种情况下经常能观察到金属也沉积在位于其间的电绝缘表面上,从而导致产生废品。
在EP 0 838 542 A1中描述了一种用于电解酸洗金属带、特别是优质钢带、用钛、铝或镍制成的带的方法,其中在金属带与电极之间没有导电接触的情况下电流通过电解液。电极与金属带相对安置并且被阴极化或阳极化。虽然如此,在实施该方法时已经表明,电解处理时的电解效率非常低。
最后,在日本专利摘要C-315,1985年11月20日,第9卷,第293号,JP60-135600A中公开一种装置,其用于电解处理钢带。为此,该钢带在相反极性的电极之间被引导通过电解槽。为了避免在相对安置的相反极性电极之间产生电流,在钢带被引导的平面内,在电极之间设置屏蔽板。
因此,本发明要解决的问题是,避免已知电解处理方法中的缺点,特别是找出一种装置及方法,借助它们可以低成本地连续电解处理电绝缘箔材的表面上的相互电绝缘的小的可导电结构,其中还应保证设备成本低并且该方法能够以足够的效率实施。该方法及装置特别是应可用于印刷电路板技术中导电薄片的制造。
该问题通过权利要求1所述的方法、权利要求14和16所述的该方法的应用以及权利要求17所述的装置来解决。本发明的优选实施例在从属权利要求中给出。
本发明方法及装置用于电解处理电绝缘箔材的表面上的相互电绝缘的可导电结构,其中这些可导电的结构不直接电接触。因此可以电解处理相互电绝缘的具有结构的区域。不仅可以处理箔材上的外置区域,而且还可以处理材料内的孔壁。
为了实施本发明方法,将箔材从一个存储装置上卸料(例如退卷),然后在一个输送带上输送通过一个处理设备,在处理设备中与处理液接触。在通过该设备之后,最后再将该箔材装载(例如卷绕)到一个存储装置上。一种可能是,沿水平输送方向输送该材料。在这种情况下作为平面构成的输送带不仅可以垂直直立,而且可以水平定向。这种安置在所谓的卷到卷设备中实现。为此,材料被借助已知装置、如滚子或辊输送。或者可以在该设备内通过转向辊对该箔材导向并且因此在设备内一次或多次改变方向。由此达到在设备内的尽可能长的路径,使得在预先规定的材料进给速度下处理时间被加长。
本发明装置具有以下特点a.各至少一个用于存储箔材的第一装置和第二装置,例如一个卷,材料被存储在该卷上并且为了被处理而展开;及另一个卷,材料在经过处理之后再卷绕到其上;b.合适的输送装置,例如滚子、辊或其它固定元件如夹子,用于在一个输送带上输送该箔材从该至少一个第一存储装置通过处理设备到该至少一个第二存储装置;c.至少一个用于使箔材与处理液接触的装置,例如材料可被导入其中的一个处理容器;或者合适的喷嘴,借助它们将液体输送到材料表面上;
d.至少一个电极装置,其分别由至少一个阴极化电极和至少一个阳极化电极组成,其中该至少一个阴极化电极和至少一个阳极化电极可与该处理液接触;这些电极可以为了对材料进行单面处理而只安置在输送带的一侧,或者也可以为了进行双面处理而安置在两侧;一个电极装置的电极被定向在输送带的一侧;e.至少一个绝缘壁,分别位于一个电极装置的电极之间;f.至少一个电流/电压源,其与电极装置连接以产生一个通过这些电极装置的电极的电流,其中,可使用一个电流整流器或一个可比较的电流/电压源或一个用于产生单极或双极电流脉冲的电流/电压源作为所述电流/电压源;g.其中,所述至少一个阴极化电极和所述至少一个阳极化电极通过所述至少一个绝缘壁这样相互屏蔽,使得基本上不会有电流直接在相反极性的电极间流动。
为了实施本发明方法,箔材在被输送通过处理设备期间与处理液接触并且被引导从至少一个电极装置旁边经过,该至少一个电极装置分别由至少一个阴极化电极和至少一个阳极化电极组成。这些阴极化和阳极化电极同样与处理液接触并且与一个电流/电压源连接,这样,当材料上的一个可导电的结构同时与这两个电极相对时,一方面在阴极化电极与材料上的同一可导电结构之间流过一个电流,另一方面在阳极化电极与该结构之间流过一个电流。
如果希望对材料进行双面处理,必须将电极安置在材料的两侧。在单面处理时将电极安置在材料的一侧就已足够。分别由至少一个阳极电极和至少一个阴极电极组成的一个电极装置的电极这样安置,使得它们被定向在材料的一侧并且在电极之间安置至少一个绝缘壁。
这些电极例如与一个电流整流器电连接。如果使用多个电极装置,可以将所有电极装置与同一个电流整流器连接。在一定条件下,将各个电极装置分别与一个电流整流器连接也可以是有利的。电流整流器可以作为电流源或电压源运行。
由于在材料的同时与阴极化电极及阳极化电极相对的结构上有一个待处理的导电层而存在一个可导电的连接,由此,这些结构相对于这些电极分别被阳极化或阴极化。因此,在这些位置上发生电化学过程。材料的电接触对于在材料内产生电流并不是必须的。该材料起到中间导体的作用。一个电极和材料上与该电极相对的结构被看作为一个分电解池。该分电解池的两个电极中之一由材料本身构成,另一个由该电极装置的电极构成。由于材料与一个阴极化电极及一个阳极化电极相对安置,由此产生一个由两个这样的分电解池组成的串联电路,这些分电解池由一个电流/电压源、例如一个电流整流器供电。
本发明方法及装置相对于已知方法及装置的优点在于,用于在待处理材料内产生电流的设备成本比在许多已知方法及装置中低得多。在这种情况下不需要设置任何接触元件。材料被无接触地极化。因此,金属沉积、特别是小层厚的沉积能够非常经济地进行。此外,这种安置可以非常简单地实施。
因此,本发明方法及装置使得可以低成本地电解处理相互电绝缘的可导电金属岛(结构)。
相对于过去所提出的用于印刷电路板技术中的借助电刷装置使相互绝缘的金属岛被金属化的方法,本发明方法及装置的优点在于,只有少量金属无益地沉积在阴极化电极上。必须再从阴极化电极上去除金属的周期在从几天到几周的范围内。此外,不存在这样的问题,即电刷装置在与待金属化的表面接触时发生磨损,磨屑将处理液污染。
由于一个电极装置的相反极性的电极被相互屏蔽使得基本上没有电流能直接在这些电极间流过,因此,相对于已知方法及装置,本方法的效率提高数倍,因为电解效率大大提高。只有根据本发明在电极装置的相反极性电极之间安置绝缘壁,才能在电绝缘的结构上也达到净效率,其手段是,电极间的间距根据待处理结构的大小调整,其中保持了本方法的充分的效率在结构小的情况下要求小的间距;在结构较大的情况下该间距也可以较大。在此,通过绝缘壁阻止了相反极性电极间的直接电流(短路电流),并且同样阻止了从一个电极到待处理基体上与另一电极相对的区域的直接电流,或者相反。
还有利的是,可以将极大电流无困难地传送到待处理的材料上而不会使材料上的可导电的表面结构过热和受损或完全损坏,因为不需要任何接触装置。由于周围处理液对待镀层的材料的有效冷却,可以将待处理金属层内的单位电流负载调整得非常高,例如至100A/mm2。
本发明方法及装置能用于进行任意电解过程电镀,腐蚀,氧化,还原,清理,电解支持其本身为非电解的过程,例如用于启动一个无电流的金属化过程。例如也可以在材料表面上产生气体,即在阴极反应中产生氢气和/或在阳极反应中产生氧气。也可以使上述各个过程与其它方法、如金属化过程或其它电化学过程同时进行。
本发明方法及装置的应用领域如下—薄金属层的沉积;—将板或箔内的金属表面层从一个牺牲区转移到另一个区域,例如以便用从牺牲区获得的金属强化表面层;—通过腐蚀减薄,例如自材料表面去除数微米的一层;—脉冲腐蚀;—借助脉冲电流沉积金属;—金属表面的电解氧化和还原;—通过阳极或阴极反应电解清理(例如在电解生成氢气或氧气的情况下);—对设置有结构、穿了孔的箔电解去毛刺;
—借助电解支持的腐蚀清理;以及电解支持对其有利的其它过程。
本发明方法及装置可以特别好地用于沉积薄的金属层,例如厚度至5μm的层。
为了进行本发明方法首先设定以下边界条件—构成侍处理材料的基础导电层的材料类型;—镀层金属的类型;—电解过程的类型和参数,例如电流密度;—处理液的成分;—处理装置的几何尺寸,例如电极空间在输送方向上的宽度。
通过优化选择上述参数的组合可以控制电解处理。例如可以通过选择一定的金属沉积电解浴使已沉积的金属不再被蚀除,因为在这种情况下金属溶解过程被阻止。同样可以通过适当选择腐蚀电解浴达到,该电解浴内的金属沉积被阻止。
为了进行用于腐蚀材料上的金属表面的方法,该材料被引导首先从至少一个阳极化电极旁边经过、然后从至少一个阴极化电极旁边经过。
本方法及装置能够用于金属化。为此,材料被引导首先从至少一个阴极化电极旁边经过、然后从至少一个阳极化电极旁边经过。为了进行电解金属化,最好使用具有在电解金属化过程中不溶解的表面的材料。例如可以借助本发明方法和装置在导电薄片上形成金属制成的最终层,如在铜上形成一个锡层。
本方法及装置的另一种应用在于,对钻孔后的导电薄片材料利用电解腐蚀去毛刺。迄今所用的对印刷电路板去毛刺的装置涉及机械方法,例如用转动的刷子去除毛刺。但这类机械方法完全不可用于箔材,因为箔材会因这种机械处理而损坏。
以下参照


本发明方法及装置的原理,图示为图1 本发明装置的示意图;图2 本发明方法的原理示意图。
在图1中示出一个处理设备1中的电解浴容器2,该电解浴容器被填充一种合适的处理液Fl直至液面Ni。具有相互电绝缘的可导电结构4的电绝缘箔材Fo通过合适的输送装置3、例如滚子或辊被沿水平方向Ri′或Ri″引导通过处理液Fl。此外,在电解浴容器2内有两个电极6和7,它们与一个电流/电压源8连接。电极6被阴极化,电极7被阳极化。在这两个电极6和7之间安置了一个绝缘壁9(例如用塑料制成),它将该两个电极垂直于输送方向彼此相对电屏蔽。壁9最好这样紧密地贴近箔带Fo,使得在箔经过时其与该箔接触或至少到达该箔上。
在箔带Fo从电极6和7旁边经过期间结构4*被极化,确切地说在与阴极化电极6相对的区域4*a内被阳极化,在与阳极7相对的区域4*k内被阴极化。
如果箔带Fo例如被沿方向Ri′引导经过电极6和7,则结构4被腐蚀此时在图1所示位置中结构4*的左边区域4*a被阳极化,使得印制导线结构上的被金属腐蚀。相反,该结构4*的右边区域4*k被朝向阳极化电极7定向因而被负极化。如果处理液Fl不含其它电化学活性氧化还原偶,则在该区域4*k内产生氢气。这样,总的来说金属从结构4上溶解。对于单个的结构4,只要该结构同时处于两个相反极性的电极6和7的作用区域内,就进行该过程。
如果要将箔带Fo金属化,则必须将其沿方向Ri″输送。在这种情况下使用一个金属化电解浴作为处理液Fl。各个结构4的每个右边缘首先进入阴极化电极6的区域内,然后进入阳极化电极7的区域内。在图1所示位置中结构4*的右部4*k处于与阳极化电极7相对,因而被阴极化。相反,结构4*的左部4*a处于与阴极化电极6相对,因而该部分被阳极化。如果例如要对一个以铜作为基础导电层制成的印制导线结构用一个含锡离子的镀锡电解浴Fl做锡处理,则在结构4*左部4*a上只产生氧气。相反,在右部4*k上沉积锡。因此总的来说锡沉积在铜结构上。
在图2中示出基本上与图1所示相同的装置,具有一个装有电解液F1的电解浴容器2。电解液Fl的液面用Ni标出。补充图1,在此示意性示出电极6和7的电场对箔带Fo的作用。一个绝缘壁9位于电极6和7之间。这些金属结构的区域4*a和4*k相互电连接。在与阴极化电极6相对的区域4*a上产生一个更加正的电位,使该区域被阳极化。在区域4*k上由于相对的阳极化电极7而产生一个更加负的电位,使该区域被阴极化。在图示的装置中,当电解液Fl为一个金属化电解浴时,结构4*k被金属化。同时在阳极化的结构4*a上发生一个阳极过程。如果电解液Fl为一个镀锡电解浴并且结构4用铜制成,则铜不溶解。代之在区域4*a上产生氧气。
在电解过程中,既可使用可溶电极、也可使用不可溶电极作为所用电极。可溶电极通常用于金属化方法中,以便通过溶解重新形成金属化溶液中的在金属化过程中消耗掉的金属。因此使用以所要沉积的金属制成的电极。不可溶的电极在处理液内在通电流的情况下也是惰性的。例如可以使用铅电极、镀铂钛电极、涂覆氧化铱的钛电极或贵金属电极。
如果将本发明方法及装置用于电解金属化,则使用一个含有金属离子的金属化电解浴。在使用可溶的阳极化电极时,通过这些电极的溶解补充提供金属离子。相反,如果使用不可溶的电极,则必须或者通过单独添加合适的化学物质补充金属离子,或者例如使用在WO9518251 A1中所说明的装置,在该装置中金属部分通过金属化电解浴中所含的氧化还原偶的附加离子溶解。在这种情况下在铜电解浴内含有Fe2+/Fe3+或另外的氧化还原偶。
在该方法及装置的另一种变型中,一个电解装置的电极可以这样安置,使得它们只被定向在材料的一侧。为了在这种情况下避免两电极间产生直接电流,有利的是,在电极之间安置至少一个绝缘壁(例如用50μm厚的聚酸亚胺薄膜制成),该绝缘壁很紧密地向该材料靠近。这些绝缘壁优选这样安置,使得在材料被输送通过电解浴时它们与材料接触或至少直接到达材料的表面上。由此达到特别好地将阳极电极与阴极电极屏蔽开。
由于小的待金属化的结构为了被电解处理必须不仅与至少一个阴极电极相对、而且与至少一个阳极电极相对,因此在结构的尺寸确定的情况下,电极间的间距不允许超过一定值。由此也为绝缘壁的厚度确定了一个上限。作为经验定律可以认为,绝缘壁的厚度应最大相当于待金属化的结构延伸尺寸的大约一半,其中最好是将分别沿材料输送方向的尺寸进行比较。对于约100μm宽的结构,绝缘壁的厚度应不超过50μm。对于更窄的结构应使用相应薄的绝缘壁。
此外可以在各个电极装置之间安置另外的绝缘壁,以避免相邻安置的电极装置的电极间产生直接电流。
如果材料不浸入处理液内,而是借助于合适的喷嘴与处理液接触,则在与各个电极接触的处理液区域相互间并不接触的情况下,可以完全放弃使用这些绝缘壁。
在本方法及装置的另一个可替代的变型中,一个电极装置的电极也可以安置成定向在材料的不同侧。在这种情况下材料本身起到电极间绝缘壁的作用,这样,在电极不突出到材料之外时,可以放弃使用一个电极装置的电极间绝缘壁。当材料两侧上的可导电区域相互电连接时可以使用此方法及装置变型。该装置例如适合用于处理一侧有功能的通孔镀敷的导电薄片。通过例如使用在与功能侧相对的另一侧面上具有整体面积的可导电层的材料,可以将阴极化电极与该可导电层相对安置并将阳极化电极与功能侧相对,以便在功能侧的导体结构上沉积金属。在此同时,自相对侧的可导电层上溶解金属。
一个电极装置可以垂直或倾斜于材料在处理设备内的输送方向最好在该平面的整个处理宽度上延伸。电极装置在输送方向上看的空间延伸尺寸对电解处理的持续时间起决定性作用。对于材料上的大的结构可以使用长的电极装置。相反,在处理非常细微的结构时则必须使用很短的电极装置。
参照图1可以对此作详细说明如果材料Fo自左向右移动(输送方向Ri″;状态电镀),一个结构4*的处于前面的右边缘比该结构的处于后面的区域电镀时间更长。因此得到一个不均匀的层厚。该层的最大厚度主要取决于电极装置在输送方向Ri′和Ri″上的长度,此外取决于输送速度、电流密度和结构4在输送方向Ri′和Ri″上的尺寸。如果绝对衡量,在输送方向Ri′和Ri″上长的电极装置和同时长的结构4在起始层厚大的情况下导致大的层厚差异。随着电极装置在输送方向Ri′和Ri″上的长度减小,层厚差异也变得较小。同时处理时间缩短。因此电极装置的尺寸应与需求相适应。对于极细微的印制导线结构,例如0.1mm大的焊点或50μm宽的导线组,电极装置的长度应在低的毫米范围(unteren Millimeter-Bereich)内。
为了使本方法的效果增倍,可以在一个处理设备内设置至少两个电极装置,材料被引导先后从这两个电极装置旁边经过。这些电极装置的电极可以纵长延伸地构成并且基本上平行于输送平面安置。这些电极可以基本上垂直于输送方向定向或者与输送方向成一个α≠90°的角度。这些电极最好在由材料所占据的输送平面的整个宽度上延伸。
借助电极与输送方向成一角度α≠90°的安置可达到,平行于输送方向定向和垂直于输送方向定向的电绝缘金属结构都比在α≈90°(±25°)时更长时间承受所期望的电解反应。如果角度α≈90°,则在给定的输送速度和给定的电极长度下,沿输送方向定向的导线组被电解处理充分长的时间,而垂直于输送方向定向的导线组仅在电极装置内被短时间处理。这是因为,只有在该结构同时与一个电极装置的阳极化电极和阴极化电极相对时才可能进行电解处理。对于平行于电极装置从而朝向电极定向的结构,该接触时间是短昝的。当电极装置平行于输送方向定向时(α≈0°(±25°)),情况相反。
本发明装置也可以具有多个带有纵长延伸电极的电极装置,其中不同电极装置的电极与输送方向成不同角度。特别有利的是,安置至少两个纵长延伸的电极装置,其中,这些电极装置与材料在处理设备内的输送方向之间的角度为α≠90°,并且,这些电极装置大致相互垂直地安置。最好是α1≈45°(第一电极装置)、特别是20°至70°,α2≈135°(第二电极装置)、特别是110°至160°。
在一种特别优选的方式中,电极基本上平行于输送平面振荡式运动。
此外,也可以设置多个相互平行安置的相邻的电极装置,它们具有纵长延伸地构成的电极及分别安置在电极间的绝缘壁,相邻的电极分别由一个单独的电流/电压源供电。在这种情况下,如果例如使用一种金属化溶液,首先在材料的绝缘的结构上沉积金属。由于该结构在输送过程中处于前面的区域比后面的结构更长时间处于金属化区域内,在前者上的金属层厚度较大。如果材料然后经过第二电极装置,该电极装置在第一种装置中由第二电极组成或在第二种装置中由一个第三电极与另一个相反极性电极组成,则材料前部区域上的许多金属又溶解,在后部结构上则沉积的金属比溶解的多。因此总的来说,在两个电极装置内处理时这些结构上的金属层厚度得以均匀化。
为了借助这种装置达到特别均匀的金属层厚度,可以将与第一电极装置相对的结构上的电流密度调整为大约等于与第二电极装置相对的结构上的电流密度的两倍的值。
在另一种优选的方式中,电极装置此外可以被绝缘壁包围。如果使用多个相邻的电极装置,这些绝缘壁安置在电极装置之间。通过这些包围电极装置的绝缘壁和安置在电极之间的绝缘壁形成朝输送平面指向的开口。
这些开口可以根据所提出的要求具有不同大小的宽度。例如在输送方向上看这些开口分别具有一个这样的宽度,使得在将该方法用于向材料上沉积金属时,与阴极化电极对应的开口小于与阳极化电极对应的开口,或者在将该方法用于腐蚀材料上的金属表面时,与阴极化电极对应的开口大于与阳极化电极对应的开口。
借助这种实施形式可以达到,待处理的材料块上与阴极化电极相对的区域上的电流密度不同于与阳极化电极相对的区域上的电流密度。通过这种差异可以在这些区域上调整成不同大小的电位,以有利于一定的电解过程并抑制其它电解过程。因此例如有可能使金属的沉积相对于竞争的金属溶解被加速,以便也能够以此方式在材料上沉积较大厚度的金属。由于在这种情况下与阴极化电极相对的材料区域上的电流密度及电位被提高,在那里作为竞争反应发生水分解(产生氧气)。因此,和在与阳极化电极相应的材料表面上的金属沉积相比,金属溶解较少。当然在用于腐蚀金属时情况相反。
为了避免金属沉积在阴极化电极上,可以借助对离子敏感的薄膜将这些电极屏蔽,这样,形成包围阴极化电极的电解空间。如果不使用对离子敏感的薄膜,则必须按日或按周有规律地再去除沉积在阴极化电极上的金属。为此例如可以安置一个阴极化扁平电极以去除这些电极的金属,在这种情况下被金属化的电极被阳极化。这些除金属电极可以在生产停顿当中代替待处理的材料被装入电极装置内。与阴极化电极的外部去除金属的循环交替也非常简单。
此外,对于处理材料有利的可以是,这样调制作用在电极装置的电极上的电压,使得在电极上流过一个单极的或双极的电流脉冲序列。
下面的附图用于进一步解释本发明。图中详细示出图3 一个电极装置的构造示意图;图4 一个结构在图3所示装置中处理后的金属层厚度变化曲线;图5 一个电极装置的两个电极的示意图;图6 从属于不同电极装置的多个电极的示意图;图7 多个电极装置沿材料在连续式设备内输送路径的一种特殊安置;图8a 连续式设备的一个剖面图;图8b 连续式设备的俯视图;图9 一个连续式设备的侧剖视图,其中材料在一个水平的输送平面内输送;图10 具有铜结构的箔和多个电极装置的电极的投影的俯视图;图11 多个电极装置沿材料在连续式设备内输送路径的另一种特殊安置;图12 一个用于电解处理箔材的卷到卷设备示意图。
图1和2所示的电极装置特别适合用于处理大的金属结构。电极在输送方向上的长度与输送速度一起决定用电极装置进行电解处理的持续时间。对于大的待处理结构,选择在输送方向上大的电极长度,至少对决定处理过程的电极而言如此。
如果要通过合适的过程参数使得起先在第一电极上达到的处理效果不由于在电极装置的第二电极上的处理而再被降低或至少不在实质范围内降低,可以将多个本发明电极装置沿输送方向前后安置,也就是说,一个箔被引导先后从多个电极装置旁边经过。借助各个电极装置所达到的各个处理结果相互累积。电极装置在输送方向上的长度必须与待处理结构的大小适应。在处理小的结构时,该长度也必须选择得小。对于所要求的处理结果,电极装置的数量必须相应地选择得较大。先决条件永远是,处理结果不由于电极装置的相应后继电极而再被降低。例如一个已涂覆的金属层在经过一个后继的阴极化电极时不应再被去除。
对于很小的待处理结构,对待处理结构首先或最后被引导从电极旁边经过的边缘区域的处理受到重视。不过这些边缘区域也应尽可能均匀地被电解处理。为此有利地利用这种可能性,即在电极装置内可以有目的地进行电化学“方向相反”的反应(如金属化,去金属)。参照图3来说明对即使极小的结构(宽度0.1mm)的这种很均匀的电解处理。
在图3中示出一种装置,具有两个电极装置,这些电极装置分别具有阳极化电极和阴极化电极6′,7′,6″,7″。一个箔带Fo具有结构4、例如用铜制成的音4制导线结构,它被沿输送方向Ri引导通过这里未示出的电解液。在本例中用一个镀锡电解浴作为电解液。
阴极化电极6′,6″通过对离子敏感的隔膜5与周围电解空间屏蔽开。由此阻止了电解液中的锡沉积在电极6′,6″上。在电极6′与7′及6″与7″之间分别安置了绝缘壁9′及9″。在这两个电极装置之间安置了一个绝缘壁17。隔膜5也可以省去。在这种情况下阴极化电极6′,6″应经常被去除金属。
在具有电极6′和7′的第一电极装置中结构4被金属化。由于结构4被引导自左向右从该电极装置旁边经过,结构4的右边缘比左边缘更长时间承受电解反应,因此右边缘上的金属沉积量和金属层厚度比左边缘上的更大。为了至少部分地平衡这种失衡,箔带Fo在经过第一电极装置之后被引导从第二电极装置旁边经过。在该装置中,阴极化电极6″与阳极化电极7″的排列顺序相对于第一电极装置内的电极6′和7′的极性交换,使得结构4的左边缘分别比对应右边缘更长时间承受电极7″的电化学(电镀)作用。结构4的右边缘在经过阴极化的电极6″时被阳极化,因而比结构4的左边缘更长时间承受阳极反应,这样,在这种情况下,最好使右边缘上的金属再度溶解。结果是,沉积了厚度相当均匀的锡层。
这种结果可以借助图4所示的曲线图来理解,在该图中将所得到的金属层厚度d作为待镀层结构4的长度延伸量a的函数示出。该曲线图在这样的边界条件下给出,即第二电极装置内的电流是第一电极装置内的电流的一半,电化学反应(金属溶解,金属沉积)的电解效率近乎100%。
在这些结构经过第一电极装置之后可测得的层厚度分布用曲线I表示出。在结构的左边缘上(a=0)实际上没有金属沉积,而在右边缘上(a=A)达到镀层厚度D。在经过第二电极装置时发生两个过程在左边缘上实际上只沉积金属(用曲线II表示的子过程)。因此,在该区域内镀层厚度达到D/2。此外在右边缘上实际上只有金属溶解(用曲线III表示的子过程)。因此,该位置上的镀层厚度从原先的d=D减小到d=D/2。该结构上位于中间的区域同样基本上具有d=D/2的镀层厚度。所实现的镀层厚度分布用曲线IV给出。
通过将处理浴优化,还可以再改善金属化通过将一个不允许金属溶解的电解浴用于金属沉积,可以总体达到更大的金属层厚度。在这种情况下第一电极装置和第二电极装置的电流必须相等大小。在这种情况下,图4所示曲线III与横座标重合,因为没有金属溶解。因此得到层厚度D,该厚度在金属结构的整个表面上都一样(曲线IV′)。
对图3所示装置的进一步简化这样达到,即将具有电极7′,7″(图3)的中间区域合并成一个具有一个电极的区域。在这种情况下也要求用两个电流/电压源对电极供电,借助它们可以在两个分电极装置上产生不同的电流,两个分电极装置中一个由电极6′和电极7′,7″组成,另一个由电极7′,7″和电极6″组成。在这种情况下省去分隔壁17。在这种情况下电极装置的机械构造特别简单。
在图5中示意示出本发明一个优选实施形式中电极装置的结构。在该电极装置的下方示出具有结构4的箔带Fo(位于箔带Fo下侧面上的结构4被箔下侧的一个第二电极装置电解处理)。箔带Fo被沿输送方向Ri引导。该电极装置由电极6(阴极)和电极7(阳极)组成。在电极6与7之间有一个绝缘壁9,在这种情况下该绝缘壁贴靠在箔带Fo上并且对由电极6和7发出的场力线产生有效的电屏蔽作用。电极6和7被阴极空间10和阳极空间11包围,电解液F1位于此空间内。两个空间10和11朝向输送平面敞开,在该输送平面中引导箔带Fo。通过两个小的开口12k,12a达到电极对箔带Fo的一个小区域上的作用的聚焦,这两个开口由侧面绝缘壁13,14和电极6与7之间的绝缘壁9形成。这是有利的,因为由此使小结构4的电解处理均匀化。与此相反,在选择大的开口12a,12k的情况下对小结构进行的电解处理是不均匀的。
如从图5中同样可看到的,电解液F1被从上面送入电极装置内(用箭头Sr表示)。高的流动速度可使电化学反应加速。
在图6中示出本发明的另一个装置,具有多个相邻的电极6,7′,7″。电极6,7′,7″与电流/电压源8′,8″、例如电流整流器连接。绝缘壁9位于这些电极之间。一个待处理的箔带Fo在输送平面内沿输送方向Ri移动。包围电极6和7的各个电解空间具有朝向输送平面定向的开口12a,12k,这些开口由绝缘壁9形成。这些开口12a,12k大小不同。因此,在箔带Fo上与开口12a和12k相对的区域4,4*上产生不同大小的电流密度并从而产生不同的电位。
对于在一种金属沉积溶液中处理具有金属区域4的箔带Fo的情况,出现如下情形由于在阴极化电极6旁的开口12k比在阳极化电极7旁的开口12a小,与被处理的区域4*的与阳极化电极7′,7″相对的区域4*k相比,在与阴极化电极6相对的区域4*a上出现更大的电流密度和更高的电位。因此,在阴极化电极6的区域内的阳极子过程中,除了金属溶解之外还发生竞争的氧气产生,使得在该区域4*a内溶解的金属比在区域4*k内沉积的金属少。因此总的来说形成一个金属层。
在图7中以俯视图示出多个电极装置18沿着材料在一个连续式设备中的输送路径的一种特殊安置。其中用实线和虚线示意示出图1所示装置中的电极6′,6″,7′,7″。这些电极装置18在输送方向Ri上略微倾斜并且在相应长度内在电解设备中延伸。每个电极装置18仅用于处理待处理材料的表面的一部分。因此处理时间明显加长。如果电解设备具例如1.40m的长度和0.20m的宽度,则在图中所示装置具有四个电极装置18时得到处理时间的加长量为1400mm×4/200mm=28。这样,在电极装置18的有效长度为1mm时,在输送速度为例如0.1m/min的情况下得到处理时间为大约17sec。在平均沉积电流密度为10A/dm2时,所沉积的铜的层厚度约为0.6μm。如果用多个电极来处理材料的局部区域,则层厚度随着电极装置数量的增加而增倍。
在图8a中示出一个连续式设备1的剖面图。在这种情况下箔带Fo例如通过辊被输送并保持垂直。箔带Fo被从侧面导入一个容器2中,该容器包含处理浴,例如金属化溶液F1。该溶液通过合适的管路20借助一个泵21被连续地从容器2中抽出,并且在其被再次送回容器内之前经过一个过滤器22。此外,为了使溶液F1产生涡流,通过管路23向容器2内导入空气。
在图8b中以俯视图示出图8a所示设备1,其中仅部分地示出了内装物。箔带Fo被沿输送方向Ri引导。处理液F1位于容器2内,在这种情况下其为一种适合于电解腐蚀的溶液。箔带Fo经由开口24并通过挤出辊25被导入容器2内并且从挤出辊26之间并穿过开口27从该容器中出去。在容器2内,箔带Fo借助合适的导向元件3、例如滚子或辊被引导。
在容器2内有多个电极装置前后顺序安置并且安置在箔带Fo的输送平面两侧,这些电极装置分别由阴极化电极6′,6″,6,…和阳极化电极7′,7″,7,…构成。绝缘壁9位于这些电极之间。这些绝缘壁9具有弹性的密封膜16,这些密封膜在箔带Fo经过时与材料表面接触,由此可以将各个电极空间的电场完全相互屏蔽。电极6′,6″,6,…,7′,7″,7,…与一个电流整流器8连接,其中图8b中右边的电极与整流器的连接在图中未示出。每个电极装置也可以由单独的整流器供电。
通过使箔带Fo例如首先被引导从一个阳极化电极旁边经过、然后从一个阴极化电极旁边经过,可以电解去除金属。
在图9中以侧剖视图示出一个用于电解处理箔带Fo的卧式设备。容器2包含处理液F1。待处理的箔带Fo在处理液F1中被引导水平地沿输送方向Ri从电极装置旁边经过。这些电极装置也分别由阴极化电极6′,6″,6,…和阳极化电极7′,7″,7,…组成。这些电极装置安置在输送平面两侧,箔带Fo在该输送平面内被引导。
在这种情况下,为了使电极6′,6″,6,…,7′,7″,7…相互绝缘,使用具有密封唇的绝缘辊28。也可以使用具有密封膜16的绝缘壁9代替绝缘辊28。
在图9的右部示出另以一种实施形式和电极6,7相对于绝缘壁9和密封膜16的安置。
图10示出一个箔带Fo的俯视图,其具有金属牺牲区29和设置了金属结构的区域30(结构未示出),这些区域相互电连接。通过将箔带Fo浸入处理液中并引导其从本发明电极装置旁边经过,该箔带Fo可以例如在一个卧式设备中被处理。电极装置的电极6和7在图中通过在箔带Fo上的投影示出。阳极化电极7对准已具有结构的区域30定向并用“”标记,阴极化电极6对准由金属形成的牺牲区29定向并用“Θ”标记。在电极6和7之间安置了绝缘壁9。绝缘壁9及电极6和7在图10中只简单示出,该细节是附图的图示平面的剖视图。
材料块被沿输送方向Ri′和Ri″之一引导。在此,由金属形成的牺牲区29连续地从阴极化电极6旁边经过并且因此溶解。相反,已具有结构的区域30被金属化,因为它被引导从电极7旁边经过。借助这种安置可以沉积与形成具有结构的区域的金属相同的金属。
在图11中示意性示出本发明另一个优选装置。材料被沿输送方向Ri引导从电极装置旁边经过,这些电极装置分别由纵长延伸的电极6′,6″6,…和7′,7″,7,…组成。这些电极装置以其电极相对于输送方向Ri形成一个角度α1或一个角度α2。因此使得由于对相对于输送方向Ri不同定向的结构对处理时间造成的影响得到平衡。由于在导电薄片中印制导线通常平行或垂直于箔材的一个侧边缘延伸并因而平行或垂直于输送方向Ri,只要这些印制导线具有相同的长度,通过图中所示电极装置的取向可以使两个方向上的印制导线达到相同长的处理时间。
在图12中示意地示出另一个处理设备1,借助该设备可以电解处理长的箔带Fo。这样的设备1被称为卷到卷设备。
箔带Fo从一个作为箔带Fo存储装置的第一卷15′上展开,并且在该带被沿输送方向Ri′输送通过设备1后卷绕到一个第二卷15″上。如果箔带Fo被沿输送方向Ri″输送通过设备1,卷15″用于展开该带并且卷15′用于在箔带Fo被冲洗和干燥后将其卷起。
此外,处理设备1包含一个容器2,处理液F1处于其内。箔带Fo在进入容器内后被多个转向滚子3导向,这些转向滚子3不具有电气功能,在此,该带被引导从多个电极装置旁边经过,这些电极装置分别由一个阴极化电极6和一个阳极化电极7组成。阴极化电极6用“Θ”标示,阳极化电极7用“”标示。在这种情况下,这些电极装置只安置在箔带Fo的一个表面上。如果箔带Fo的两个表面都要被处理,则必须使电极装置位于该绝缘带的两侧。
在图12的一个局部视图中示出一个电极装置及被引导从其旁边经过的箔带Fo的局部。阴极化电极6与阳极化电极7通过一个绝缘壁9隔开。
参考符号1 处理设备2 电解浴容器3 箔材Fo的导向元件4 箔材Fo上的金属结构4*处理后的金属结构4*a阳极处理的后金属结构4*k阴极处理后的金属结构5 隔膜6,6′,6″,6 阴极化电极7,7′,7″,7 阳极化电极8,8′,8″ 电流/电压源9 绝缘壁10 阴极空间11 阳极空间12 电极装置朝向电解浴容器的开口12k阴极化电极旁的开口12a阳极化电极旁的开口13 电极装置的绝缘侧壁14 电极装置的绝缘侧壁15,15′ 用于卷起/展开箔带Fo的存储卷16 密封膜17 电极装置之间的绝缘壁18 电极装置20 电解液管路21 泵22 过滤器23 空气管路24 入口25 挤出辊26 挤出辊27 出口28 绝缘辊29 牺牲区30 具有结构的区域Fo 板材块/箔材块Ri,Ri′,Ri″ 输送方向F1 处理液Sr 处理液F1的流动方向
权利要求
1.用于电解处理电绝缘箔材(Fo)的表面上的相互电绝缘的可导电结构(4)的方法,其中该箔材(Fo)a.自一个存储装置(15′,15″)上卸料;b.然后在一个输送带上被输送通过一个处理设备(1),并且在那里与处理液(F1)接触;c.在被输送期间被引导从至少一个电极装置旁边经过,所述电极装置分别由至少一个阴极化电极(6)和至少一个阳极化电极(7)组成,其中,所述至少一个阴极化电极(6)和至少一个阳极化电极(7)与处理液(F1)接触并且与一个电流/电压源(8)连接,从而一个电流流过这些电极(6,7)和可导电的结构(4),而且,将一个电极装置的电极(6,7)这样安置,使得它们被定向在该材料(Fo)的一侧,并且,在电极(6,7)之间安置至少一个绝缘壁(9);以及d.最后再被装载到一个存储装置(15′,15″)上。
2.如权利要求1所述的方法,其特征在于,所述至少一个绝缘壁(9)这样安置,使得在材料(Fo)被输送通过处理设备(1)时其与材料(Fo)接触或者其至少直接到达该材料(Fo)上。
3.如前述权利要求之一所述的方法,其特征在于,材料(Fo)被引导先后从至少两个电极装置旁边经过。
4.如前述权利要求之一所述的方法,其特征在于,电极(6,7)纵长延伸地构成并且基本上平行于一个面安置,在该面中输送材料(Fo)。
5.如权利要求4所述的方法,其特征在于,电极(6,7)大致在材料(Fo)的整个宽度上并且基本上垂直于输送材料(Fo)的方向(Ri)延伸。
6.如权利要求4所述的方法,其特征在于,电极(6,7)与输送材料(Fo)的方向(Ri)成一个角度α≠90°。
7.如前述权利要求之一所述的方法,其特征在于,材料(Fo)被引导从具有纵长延伸地构成的电极(6,7)的至少两个电极装置旁边经过,其中,不同电极装置的电极(6,7)与输送材料(Fo)的方向(Ri)成不同的角度。
8.如前述权利要求之一所述的方法,其特征在于,电极(6,7)基本上平行于输送材料(Fo)的面振荡式运动。
9.如前述权利要求之一所述的方法,其特征在于,这些电极装置被绝缘壁(13,14)包围,这些电极装置旁朝向材料(Fo)表面取向的开口(12k,12a)由绝缘壁(13,14)和安置在电极(6,7)之间的绝缘壁(9)形成,这些开口(12k,12a)在输送方向(Ri)上看分别具有一个这样的宽度,使得当该方法用于在材料(Fo)上沉积金属时,与阴极化电极(6)对应的开口(12k)小于与阳极化电极(7)对应的开口(12a),或者当该方法用于腐蚀材料(Fo)上的金属表面(4)时,与阴极化电极(6)对应的开口(12k)大于与阳极化电极(7)对应的开口(12a)。
10.如前述权利要求之一所述的方法,其特征在于,设置多个相互平行安置、具有纵长延伸地构成的电极(6,7)的相邻的电极装置,彼此相邻的电极(6,7)分别与一个电流/电压源(8)连接。
11.如权利要求10所述的方法,其特征在于,与第一电极装置相对的结构(4)上的电流密度被调整为与第二电极装置相对的结构(4)上的电流密度的大约两倍大小。
12.如前述权利要求之一所述的方法,其特征在于,包围阴极化电极(6)的电解空间(10)被对离子敏感的薄膜(5)屏蔽。
13.如前述权利要求之一所述的方法,其特征在于,这样调制电流,使得一个单极的或双极的电流脉冲序列流过电极(6,7)和材料(Fo)的表面(4)。
14.如权利要求1至13之一所述方法的应用,用于在箔材(Fo)上沉积金属,其中,材料(Fo)被引导首先从至少一个阴极化电极(6)旁边经过,然后从至少一个阳极化电极(7)旁边经过。
15.如权利要求14所述的应用,用于在材料(Fo)的铜表面(4)上沉积锡。
16.如权利要求1至13之一所述方法的应用,用于腐蚀材料(Fo)上的金属表面(4),其中,材料(Fo)被引导首先从至少一个阳极化电极(7)旁边经过,然后从至少一个阴极化电极(6)旁边经过。
17.用于电解处理电绝缘箔材(Fo)的表面上的相互电绝缘的可导电结构(4)的装置,具有如下特征a.各至少一个用于存储箔材(Fo)的第一装置和第二装置(15′,15″);b.合适的输送装置(3),用于在一个输送带上输送箔材(Fo)自箔材(Fo)的所述至少一个第一存储装置(15′,15″)通过一个处理设备(1)到所述至少一个第二存储装置(15′,15″);c.至少一个用于使箔材(Fo)与处理液(F1)接触的装置;d.至少一个电极装置,分别由至少一个阴极化电极(6)和至少一个阳极化电极(7)组成,其中,所述至少一个阴极化电极(6)和所述至少一个阳极化电极(7)可与处理液(F1)接触,一个电极装置的阴极化电极(6)和阳极化电极(7)被定向在输送带的一侧;e.至少一个绝缘壁(9),分别位于一个电极装置的电极(6,7)之间;和f.至少一个电流/电压/源(8),其与电极装置电连接,以产生一个通过电极装置的电极(6,7)的电流;g.其中,电极(6,7)通过所述至少一个绝缘壁这样相互屏蔽,使得基本上不会有电流直接在相反极性的电极(6,7)之间流过。
18.如权利要求17所述的装置,其特征在于,所述至少一个绝缘壁(9)这样安置,使得在材料(Fo)被输送通过处理设备(1)期间其与材料件(Fo)接触或者至少直接到达材料(Fo)上。
19.如权利要求17或18所述的装置,其特征在于,电极(6,7)纵长延伸地构成并且基本上平行于一个面安置,在该面内输送材料(Fo)。
20.如权利要求19所述的装置,其特征在于,电极(6,7)基本上垂直于输送材料(Fo)的方向(Ri)延伸。
21.如权利要求19所述的装置,其特征在于,电极(6,7)与输送材料(Fo)的方向(Ri)成一角度α≠90°。
22.如权利要求17至21之一所述的装置,其特征在于,设置至少两个具有纵长延伸地构成的电极(6,7)的电极装置,其中,不同电极装置的电极(6,7)与输送材料(Fo)的方向(Ri)成不同的角度。
23.如权利要求19至22之一所述的装置,其特征在于,纵长延伸的电极(6,7)这样构成,使得它们可基本上平行于输送材料(Fo)的面振荡式运动。
24.如权利要求17至23之一所述的装置,其特征在于,这些电极装置被绝缘壁(13,14)包围,这些电极装置旁朝向输送材料(Fo)的面取向的开口(12k,12a)由绝缘壁(13,14)和安置在电极(6,7)之间的绝缘壁(9)形成,这些开口(12k,12a)在输送方向(Ri)上看分别具有一个这样的宽度,使得当该装置用于在材料(Fo)上沉积金属时,与阴极化电极(6)对应的开口(12k)小于与阳极化电极(7)对应的开口(12a),或者当该装置用于腐蚀材料(Fo)的金属表面(4)时,与阴极化电极(6)对应的开口(12k)大于与阳极化电极(7)对应的开口(12a)。
25.如权利要求17至24之一所述的装置,其特征在于,包围阴极化电极(6)的电解空间(10)被对离子敏感的薄膜(5)屏蔽。
26.如权利要求17至25之一所述的装置,其特征在于,设置多个相互平行安置、具有纵长延伸地构成的电极(6,7)的相邻的电极装置,彼此相邻的电极(6,7)分别与一个电流/电压源(8)连接。
全文摘要
一种用于电解处理电绝缘箔材Fo的表面上的相互电绝缘的可导电结构4的方法,其中,材料被从一个存储装置15′,15″上卸料,然后在一个输送带上被输送通过一个处理设备1并在那里与处理液F1接触。材料Fo在被输送期间被引导从至少一个电极装置旁边经过,所述电极装置分别由至少一个阴极化电极6和至少一个阳极化电极7组成,其中,所述至少一个阴极化电极6和至少一个阳极化电极7与处理液F1接触并且与一个电流/电压源8连接。因此,一个电流流过电极6,7和可导电的结构4。电极6,7被相互屏蔽,使得基本上不会有电流直接在相反极性的电极6,7之间流过。最后,再将材料Fo装载到一个存储装置15′,15″上。
文档编号C25D7/06GK1382231SQ00814608
公开日2002年11月27日 申请日期2000年10月5日 优先权日1999年10月20日
发明者埃贡·许贝尔 申请人:埃托特克德国有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1