用于太阳能制氢的光电化学水分解装置及其制造方法与流程

文档序号:17436754发布日期:2019-04-17 04:13阅读:460来源:国知局
用于太阳能制氢的光电化学水分解装置及其制造方法与流程

本发明总体上涉及可再生能源领域,具体地,涉及通过太阳能驱动的水分解来制氢。

背景和现有技术

到目前为止已经占据了全球能量产生和消耗的很大一部分的一些传统能源造成了当今的问题。特别是关于石油,第一问题是其在未来的短缺;更一般地,化石燃料(石油及其衍生物、煤炭和类似产品)对温室效应、气候变化—全球变暖及其后果负有责任;最后,核燃料和核电站本质上是危险的,且核能发电的最终产物造成了长期(甚至数千年或更长时间)的安全储备的严重问题,对此目前还没有找到可行的解决方案。

鉴于这些问题,在过去的几十年中,许多研究工作都致力于寻找新能源,这些新能源理想上应该是可再生的(即,不像化石燃料那样会耗尽),并且它们的使用不会带来危险的副作用。

太阳能是有希望的候选者。

太阳能回收的可行方案是借助于光伏电池将太阳光直接转化为电能。然而,这种情况下的问题是储存能量以应对不同的能量收集(白天、夜晚、天气)和不同的需求供应。

另一种方法是利用太阳能将水分解成氢和氧;这样产生的氢可以储存起来,并在需要时通过无论是直接燃烧还是在燃料电池中与氧的再结合来产生能量。这种方法提供的优点在于,氢的储存比电的储存更容易;并且氢和氧的再结合产生水,因此是完全安全且环境友好的。

目前,太阳能制氢的两条主要路线基于(i)用作用于直接光电化学水分解的光电极的宽带隙金属氧化物或iii-v族半导体;以及(ii)用于催化剂辅助的水电解的光伏电池。

然而,用于直接光电化学水分解的电极目前具有低于2%的低效率;此外,它们需要外部电压供应来驱动水分解反应,从而降低净能量平衡和系统的效用。

迄今为止,通过光伏电池驱动的水电解,已经实现了大约10%的最高的太阳能转氢效率。专利us6,936,143b1和专利申请wo2011/006102a2(在这些文献中,系统被定义为“串叠型电池”)中报道了这种系统的示例。然而,所需的多结电池或模块制造起来复杂且昂贵,这也适用于所需的电催化剂系统。此外,为了实用,用于制氢的太阳能系统应该具有不低于15%,优选约20%或更高的功率转换效率:引用文献中所提出的系统没有显示出这些效率水平;功率转换效率使用以下公式来测定:

其中:

η是太阳能转氢的功率转换效率;

j是以ma/cm2为单位的光电流密度;

1.23v是分解水所需的理论最小电压;以及

p是以mw/cm2为单位的入射光功率密度。

最近,一种新型的光电阳极在由n.h.alvi等人于nanoenergy(2015)13第291-297页中发表的论文“inn/inganquantumdotphotoelectrode:efficienthydrogengenerationbywatersplittingatzerovoltage”中公开。这种光电阳极利用ingan表面上产生的inn量子点的活性,通过零外加电压下的水分解驱动直接光电化学制氢,其中太阳能转氢的效率为6%;在0.4v外偏压下,效率增加到20%。这种光电阳极与p-si欧姆接触,因此可以与si光伏电池集成,容易地提供0.4v的偏压,而不限制电流,以达到20%的效率。

为了实现这些效率水平,inn的量子点必须生长在ingan层的c表面上;进而这需要在暴露晶体表面(111)的si上直接生长。然而,最常见的商用si光伏电池是n型在上面的,并且在暴露表面(100)的p型si衬底上制造。因此,问题在于制造这种将inn-ingan量子点光电阳极与商用si光伏电池集成在一起的混合水分解装置的表面定向和掺杂顺序错误。

此外,本发明人已经观察到,先前研究的光电阳极对象易于氧化,导致系统的水分解性能快速下降。

本发明的目的是提供不会经历水分解效率快速下降的光电阳极,以及在保持预期应用所需的高活性的同时在传统si光伏电池上制造所述光电阳极的方法。

发明概述

通过本发明实现了这个目的和其他目的,在本发明的第一方面中,该目的涉及集成在商用si光伏电池上制造的光电阳极的新型混合装置,其特征在于,光电阳极由在p型硅的晶体平面(111)上外延生长的ingan层制成,并且inn量子点在ingan层的暴露表面上产生,所述量子点的高度/直径的比率低于0.25。

在本发明的第二方面,涉及用于制造第一方面的改进的混合电池对象的工艺。

附图简述

下面将参照图1详细描述本发明,图1示出了本发明的混合装置的不同制造阶段。

在附图中,不同部件的尺寸不是按比例的,特别是ingan薄膜的厚度和存在于所述薄膜上的inn量子点的尺寸被大大放大,以清楚呈现。

发明详述

在本发明的第一方面中,涉及混合装置,其将光电阳极与硅光伏电池单片集成。

光电阳极是在光伏电池上形成的ingan薄膜,其中inn量子点形成在所述薄膜的表面上;特别地,ingan薄膜与光伏电池的正掺杂硅(p型si)面接触。

ingan薄膜在硅表面上是连续的,并且具有介于10nm至100nm之间,优选介于50nm至60nm之间的厚度。

另一方面,inn量子点(以下也缩写为qd)是在ingan表面上产生的不连续结构。这些qd具有低于5nm的厚度,优选介于3nm和4nm之间,并具有介于20nm和30nm之间的直径;因为qd通常不是完美的圆形,因此“直径”是指点的长轴长度。

发明人发现,为了本发明的目的,量子点必须暴露inn晶体的晶体c平面;该条件是通过使qd生长到ingan薄膜上来实现的,ingan薄膜转而又暴露了其晶体结构的相应c平面。

在他们的研究之后,发明人已经确定c平面innqd表面包含高密度的固有带正电荷的表面施主(surfacedonor)。这些表面施主已经将电子转移到半导体上,在其中形成电子表面累积层。因此,表面的氧化,即释放更多的电子是不可能的,使得表面耐腐蚀。由于c平面具有最大密度的带正电荷的表面施主,因此它是最耐腐蚀的平面。本发明中针对qd设定的条件,即这些点必须具有0.25或更小的高度/直径比,最大化了c平面暴露表面,使得有可能实现与现有技术的电池相比具有改进的耐腐蚀性的混合装置。

由于ingan薄膜构建在硅表面上并且具有非常小的厚度,因此它将再现其所构建(外延生长)于的衬底表面的晶体结构。给定ingan和si的晶体结构,垂直于所述薄膜的c轴的薄膜的生长(并因此暴露为c平面的表面)需要下面的硅表面是硅晶体的平面(111)。

在本发明的第二方面中,涉及用于制造上述混合装置的方法。

如上所述,混合装置通过以下步骤制造:处理商用硅光伏电池以改变暴露表面的晶体定向,首先在如此处理的硅光伏电池上生长ingan层,最后在所述层上产生inn量子点。参照图1对该过程进行描述。

图1a示意性地示出了标准硅光伏电池(10)。所述标准电池通常包括双层硅,一个是正掺杂(p型si)层(11),另一个是负掺杂(n型si)层(12)。为了便于制造,这两层都具有对应于硅晶体的晶体平面(100)的主要(暴露)表面。然而,如上所述,为了本发明的目的,ingan薄膜必须生长在硅衬底的表面(111)上,特别是生长在光伏电池的p型侧上。

因此,本发明的第一处理步骤是处理暴露硅晶体结构的平面(100)的商用硅pv电池的表面,以将所述表面转换成暴露对应于硅晶体结构的平面(111)的面的表面。

为了获得必要的条件,光伏电池的p型表面(100)可以被化学蚀刻,以便获得暴露硅平面(111)的纹理化表面(texturedsurface)。结果如图1b所示,其中示出了由多个(111)面14形成的纹理化表面13。蚀刻必须是各向异性的,即蚀刻速率必须沿硅晶体的不同晶轴不同。这种各向异性蚀刻可以通过例如碱金属氢氧化物或氢氧化铵的水溶液获得,该水溶液可选地包含一元醇、二元醇或多元醇;有用的蚀刻溶液是按重量计(氢氧化物重量/所得溶液重量)浓度大约为45%的氢氧化钾(koh)的水溶液。结果是由多个棱锥组成的新的暴露表面,该棱锥的面对应于si晶体的平面(111)。通过化学蚀刻,棱锥的尺寸和间距由蚀刻条件(碱浓度和温度)控制。

可替代地,硅表面的必要纹理化可以借助于光刻方法实现,允许获得有序的结构和其他布置,如脊、倒棱锥阵列和网状。

遵循这些技术中的任何一种,硅表面将由一系列硅面(111)形成。

在纹理化之前,电池的p型侧可以可选地(并且优选地)变薄,以增强光通过它的透射;事实上,在操作中,光照射在衬底背侧(p型表面)上。变薄可以通过机械研磨来完成。

一旦硅衬底被纹理化以暴露面(111),ingan层(15)就在纹理化表面13上产生(图1c)。优选的外延生长技术是分子束外延和金属有机气相外延。最后,如图1d所示,innqd16在ingan层上生长,获得本发明的混合装置17。

生长所需厚度和尺寸的ingan层和innqd的方法和过程是技术人员已知的;inn-ingan量子点在si(111)上的生长的可能示例在由p.e.d.sotorodriguez等人在appliedphysicsletters106,023105(2015)的“stranski-krastanovinn/inganquantumdotsgrowndirectlyonsi(111)”的参考文献中的从第1页开始并继续到第2页的最后一段中进行了描述。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1