一种顶板来压动态预测方法与流程

文档序号:22687912发布日期:2020-10-28 12:57阅读:177来源:国知局
一种顶板来压动态预测方法与流程
本发明涉及矿山压力监测预测
技术领域
,具体涉及一种顶板来压动态预测方法。
背景技术
:目前,煤矿井下综采工作面主要通过实时监测支架压力大小,进行顶板来压实时监测,但是,对综采工作面安全生产的时效性偏低,即综采工作面来压后才能监测到,不能做到事前预测,提前防备。因此,对综采工作面来压进行来压时间、来压地点、来压强度等信息的提前预测意义重大。但是,由于影响顶板来压的因素过多,且各因素间动态变化、相互影响,造成来压预测难度高、预测准确度低,因此,有必要研究一种准确率较高的顶板来压动态预测方法来解决上述问题。技术实现要素:本发明目的是针对上述问题,提供一种有效预测顶板下次来压步距、顶板下次来压时间的顶板来压动态预测方法。为了实现上述目的,本发明的技术方案是:一种顶板来压动态预测方法,包括如下步骤:s1、采集综采工作面的地质基础信息;同时根据采煤机的运行轨迹进行割煤循环的划分;所述地质基础信息包括几何尺寸数据、地质构造数据、顶板岩性数据、综采工作面左右两侧区域开采状态数据;综采工作面几何尺寸数据包括综采工作面倾向长度、埋深,地质构造数据包括断层位置、断层落差、断层类型,顶板岩性数据包括综采工作面各坐标点(以开切眼为x轴,上顺槽或下顺槽为y轴,搭建综采工作面平面坐标系,采用坐标确定综采工作面各点位置)的顶板厚度、顶板硬度,综采工作面左右两侧区域开采状态数据包括仅右翼采空、仅左翼采空、两翼均采空、两翼均未采空四种状态。综采工作面倾向长度为综采工作面的长度,即上、下顺槽的平面中心距。综采工作面埋深即埋藏深度,为综采工作面对应的地面高程与综采工作面底板高程的差值。s2、建立综采工作面顶板来压监测模型,实时监测综采工作面顶板是否来压并记录顶板来压时的综采工作面的地质基础信息及顶板来压信息;所述顶板来压信息包括来压步距、动载系数、来压部位;s3、利用步骤s2建立的综采工作面顶板来压监测模型进行来压监测,当监测到顶板来压时,采集综采工作面的来压前兆指标,搭建综采工作面的来压前兆指标库;来压前兆指标库包括来压前兆指标及顶板来压信息;所述来压前兆指标为在顶板来压剩余0.8m、1.6m、2.4m……nm时,对应的支架增阻率ηi、顶板破碎率λi、活柱下缩率ωi、顶底板移近率εi、煤壁片帮率φi、安全阀开启率ξi以及两次顶板来压之间的综采工作面推进速度v、初撑力利用率δ、额定阻力富余量κi;s4、提取步骤s2中记录的顶板来压时的来压步距,从中选取出来压步距最大值lmax,将综采工作面前方未开采的0~lmax长度的区域设定为顶板来压初次预测区域;s5、提取综采工作面顶板来压初次预测区域中的地质基础信息;并以预测区域地质基础信息为参照,从综采工作面后方的已开采的顶板来压区域中提取地质基础信息相近的来压数据,来压数据包含地质基础信息及顶板来压信息;s6、基于步骤s4得到的初次预测区域,在历史综采工作面顶板来压监测模型中寻找与初次预测区域相近地质基础信息相对应的5~8组顶板来压信息,计算顶板来压信息各项数据的平均值,将各项顶板来压信息的平均值作为综采工作面顶板下一次来压的首次预测结果输出;基于当前前综采工作面的推进度,计算剩余来压距离。s7、伴随综采工作面的不断推进,在产生的新的割煤循环后,在新产生割煤循环期间内,计算综采工作面在回采过程中的来压前兆指标;s8、将新产生割煤循环期间内的来压前兆指标与步骤s3中采集的综采工作面的来压前兆指标进行一致性检验;s9、通过一致性检验从综采工作面的来压前兆指标中匹配与当前综采工作面的割煤循环一致性程度最高的记录,以该记录对应来压剩余距离与顶板来压信息作为综采工作面的下次来压信息进行动态预测更新。将各循环计算的各项指标同历史记录各项指标对比,求各项指标的均方差,最终利用各项指标均方差来判断同当前循环最相近的历史来压记录。并以历史该次记录的来压特征作为当前来压预测标准。动态预测更新是在首次预测结果之后,综采工作面来压时将进行下一次来压的首次预测更新,之后随割煤循环的推进,将依据循环内指标进行动态更新。进一步的,所述步骤s1中的综采工作面几何尺寸数据包括综采工作面倾向长度、埋深,地质构造数据包括断层位置、断层落差、断层类型,顶板岩性数据包括综采工作面各坐标点的顶板厚度、顶板硬度,综采工作面左右两侧区域开采状态数据包括仅右翼采空、仅左翼采空、两翼均采空、两翼均未采空四种状态。进一步的,所述步骤s2中建立综采工作面顶板来压监测模型包括以下步骤:s21、采集综采工作面的支架压力数据、采高数据,计算各割煤循环内各个支架的最大工作阻力pmax、时间加权平均阻力pt、活柱下缩率ω、动载系数m,并分别计算得到该数据的平均值pmax-aver,pt-aver,ω-aver,m-aver,将该数据的平均值与该数据的均方差τpmax,τpt,τω,τm进行比较,得到四个顶板来压判据标准;所述最大工作阻力pmax取各个支架在割煤循环期间内的最大压力;所述时间加权平均阻力pt的计算公式为:pt=(p1×t1+p2×t2+…+pn×tn)/(t1+t2+…+tn);其中,pt为当前割煤循环内单个支架的时间加权平均阻力;pn为当前割煤循环内单个支架的第n个压力值;tn为当前割煤循环内单个支架第n个压力值的持续时间;所述活柱下缩率ωi的计算公式为:ωi=(h2-h1)/(t2-t1)+(h3-h2)/(t3-t2)+…+(hn-hn-1)/(tn-tn-1);其中,ωi为当前割煤循环内单个支架活柱下缩率;hn为当前割煤循环内单个支架的第n个高度值;tn为当前割煤循环内单个支架的第n个高度值产生时间;所述动载系数m的计算公式为:m=pt/ptt;其中,m为当前割煤循环内单个支架的动载系数;pt为当前割煤循环内单个支架的时间加权平均阻力;ptt为非来压期间内所有支架的时间加权平均阻力;所述最大工作阻力的平均值pmax-aver的计算公式为:pmax-aver=(pmax1+pmax2+…+pmaxi+…+pmaxn)/n;其中,pmax-aver为当前割煤循环内综采工作面所有支架最大工作阻力的平均值;pmaxi为当前割煤循环内综采工作面第i个支架的最大工作阻力;n为当前割煤循环内综采工作面全部支架所有支架的最大工作阻力的个数;所述时间加权平均阻力的平均值pt-aver的计算公式为:pt-aver=(pt1+pt2+…+pti+…+ptn)/n;其中,pt-aver为当前割煤循环内综采工作面所有支架时间加权平均阻力的平均值;pti为当前割煤循环内综采工作面第i个支架的时间加权平均阻力;n为当前割煤循环内综采工作面所有支架时间加权平均阻力的总数;所述活柱下缩率的平均值ω-aver的计算公式为:ω-aver=(ω1+ω2+…+ωi+…+ωn)/n;其中,ω-aver为当前割煤循环综采工作面所有支架活柱下缩率的平均值;ωi为当前割煤循环第i个支架的活柱下缩率;n为当前割煤循环内活柱下缩率的个数;所述动载系数的平均值m-aver的计算公式为:m-aver=(m1+m2+…+mi+…+mn)/n;其中,m-aver为当前割煤循环综采工作面所有支架动载系数的平均值;mi为当前割煤循环第i个支架的动载系数;n为当前割煤循环内动载系数的个数;所述最大工作阻力指标均方差τpmax的计算公式为:其中,τpmax为当前割煤循环综采工作面所有支架的最大工作阻力的均方差;j为综采工作面的支架总数;pmax_i为当前割煤循环内第i个支架的最大工作阻力;pmax-aver为当前割煤循环综采工作面所有支架的最大工作阻力的平均值;所述时间加权平均阻力指标均方差τpt的计算公式为:其中,τpt为当前割煤循环综采工作面所有支架的时间加权平均阻力指标均方差;j为综采工作面支架总数;pt_i为当前割煤循环内第i个支架的时间加权平均阻力;pt-aver为当前割煤循环综采工作面全部支架时间加权平均阻力的平均值;所述活柱下缩率均方差τω的计算公式为:其中,τω为当前割煤循环综采工作面所有支架的活柱下缩率均方差;n为当前割煤循环内活柱下缩率的个数;ωi为当前割煤循环内第i个支架的活柱下缩率;ω-aver为当前割煤循环内综采工作面全部支架活柱下缩率的平均值;所述动载系数均方差τm的计算公式为:其中,τm为当前割煤循环内综采工作面全部支架的动载系数均方差;n为当前割煤循环内的动载系数个数;mi为当前割煤循环内第i个支架的动载系数;m-aver为当前割煤循环内综采工作面所有支架动载系数的平均值;判据标准1:最大工作阻力pmax≥pmax-aver+τpmax;判据标准2:时间加权平均阻力pt≥pt-aver+τpt;判据标准3:活柱下缩率ω≥ω-aver+τω;判据标准4:动载系数m≥m-aver+τm;s22、来压监测判断标准:伴随综采工作面不断推进,实时计算综采工作面在回采过程中各部位支架的最大工作阻力pmax、时间加权阻力pt、活柱下缩率ω、动载系数m;当各支架满足4个判据标准,则将满足标准的支架顶板,记为强烈来压;如果仅满足任意3个判据标准,则将满足标准的支架顶板,记为明显来压;如果其仅满足任意2个判据标准,则将满足标准的支架顶板,记为普通来压;如果其仅满足1个判据标准或1个判据标准都不满足,则将该区域的支架顶板,记为未来压。进一步的,步骤s3中,所述支架增阻率ηi的计算公式为:ηi=(p2-p1)/(t2-t1)+(p3-p2)/(t3-t2)+…+(pn-pn-1)/(tn-tn-1);其中,ηi为当前割煤循环内单台支架增阻率;pn为当前割煤循环内单台支架的第n个压力值;tn为当前割煤循环内单台支架第n个压力的产生时间;所述顶板破碎率λi的计算公式为:λi=d1/s1*100%;其中,λi为当前割煤循环内综采工作面i号支架顶板破碎率;d1为当前割煤循环内端面无支护区冒顶的宽度,单位为m;s1为当前割煤循环内端面无支护区顶板的宽度,单位为m;所述活柱下缩率ωi计算公式为:ωi=(h2-h1)/(t2-t1)+(h3-h2)/(t3-t2)+…+(hn-hn-1)/(tn-tn-1);其中,ωi为当前割煤循环内单台支架活柱下缩率;hn为当前割煤循环内单台支架的第n个高度值;tn为当前割煤循环内单台支架的第n个高度值的产生时间;所述顶底板移近率εi的计算公式为:εi=lshift/(tq-tp);其中,εi为当前割煤循环内顶底板移近率;lshift为当前割煤循环内综采工作面顶底板移进变化量;tq为当前割煤循环的结束时间;tp为当前割煤循环的开始时间;所述煤壁片帮率φi的计算公式为:φi=jslide/j;其中,φi为当前割煤循环内煤壁片帮率;jslide为当前割煤循环内煤壁片帮的支架个数;j为综采工作面的支架总数;所述安全阀开启率ξi的计算公式为:ξi=tsafe/(tq-tp);其中,ξi为当前割煤循环内单台支架安全阀开启率;tsafe为当前割煤循环内单台支架压力处于支架额定安全阀开启压力之上的时长;tq为当前割煤循环的结束时间;tp为当前割煤循环的开始时间;所述两次顶板来压之间的综采工作面推进速度v的计算公式为:v=ncycle×b/(tw-tm);其中,v为两次顶板来压之间的综采工作面平均推进速度;ncycle为两次顶板来压之间的割煤循环数;b为采煤机的截割深度;tw为后一次顶板来压的开始时间;tm为前一次顶板来压的结束时间;所述初撑力利用率δ的计算公式为:δ=pset/prate;其中,δ为当前割煤循环内单台支架的初撑力利用率;pset为当前割煤循环单台支架的实际初撑力;prate为支架的额定初撑力;所述额定阻力富余量κi的计算公式为:κi=pt/p额工作阻力;其中,κi为当前割煤循环内单台支架的额定阻力富余量;pt为当前割煤循环单台支架的时间加权平均阻力;p额工作阻力为支架的额定工作阻力。进一步的,所述步骤s3中煤壁片帮率φi的计算公式为:φi=jslide/j;其中,φi为煤壁片帮率;jslide为当前割煤循环内煤壁片帮的支架个数;j为当前割煤循环内综采工作面的支架总个数。进一步的,所述步骤s8中进行一致性检验,包括以下步骤:s81、从步骤s3综采工作面的来压前兆指标库中,筛选各来压剩余距离下设定数量与当前综采工作面的地质基础信息最为相近的的来压前兆指标。以当前综采工作面来压前兆指标为基础,设定各项指标的范围;从采集的来压前兆指标中,去除采集的来压前兆指标中不在设定范围的数据。获取筛选后,剩余各来压剩余距离下来压前兆指标数据。按照来压剩余距离分类,对相同来压剩余距离下的数据将其来压前兆指标求取平均值,生成各来压剩余距离下唯一对应的来压前兆指标;对相同来压剩余距离下的数据将顶板来压信息求取平均值,生成各来压剩余距离下唯一对应的顶板来压信息。s82、获取通过步骤s7,实时计算当前割煤循环中综采工作面的各支架顶板的来压前兆指标;s83、对来压前各设定距离下来压前兆指标的均方差进行计算,其中,设定距离为0.8m时支架增阻率的均方差的计算公式为:其中,τ0.8mη为设定距离为0.8m时当前割煤循环中支架增阻率的均方差;ηi为当前割煤循环中综采工作面的第i个支架增阻率;为步骤s81确定来压前0.8m时,筛选基础前兆指标中支架增阻率的平均值;n为当前割煤循环内综采工作面的支架增阻率总个数;s84、依据步骤s83中的计算公式分别求解设定距离为0.8m时各项来压前兆指标的均方差,分别为分别为支架增阻率的均方差τ0.8mη、顶板破碎率的均方差τ0.8mλ、支架活柱下缩率的均方差τ0.8mω、顶底板移近率的均方差τ0.8mε、煤壁片帮率的均方差τ0.8mφ、安全阀开启率的均方差τ0.8mξ、两次顶板来压之间的综采工作面推进速度τ0.8mv、初撑力利用率τ0.8mδ、额定阻力富余量τ0.8mκ,对来压剩余距离0.8m时各项来压前兆指标的均方差,求解均方差平均值τ0.8m;支架顶板破碎率的均方差τ0.8mλ的计算公式为:其中,τ0.8mλ为设定距离为0.8m时当前割煤循环中支架顶板破碎率的均方差;λi为当前割煤循环中综采工作面的第i个支架顶板破碎率;为步骤s81确定来压前0.8m时,筛选基础前兆指标中支架顶板破碎率的平均值;nλ为当前割煤循环内综采工作面的支架顶板破碎率总个数;支架活柱下缩率的均方差τ0.8mω的计算公式为:其中,τ0.8mω为设定距离为0.8m时当前割煤循环中支架活柱下缩率的均方差;ωi为当前割煤循环中综采工作面的第i个支架活柱下缩率;为步骤s81确定来压前0.8m时,筛选基础前兆指标中支架活柱下缩率的平均值;nω为当前割煤循环内综采工作面的支架活柱下缩率总个数;顶底板移近率的均方差τ0.8mε的计算公式为:其中,τ0.8mε为设定距离为0.8m时当前割煤循环中顶底板移近率的均方差;εi为当前割煤循环中综采工作面的第i个支架顶底板移近率;为步骤s81确定来压前0.8m时,筛选基础前兆指标中支架顶底板移近率的平均值;nε为当前割煤循环内综采工作面的顶底板移近率总个数;煤壁片帮率的均方差τ0.8mφ的计算公式为:其中,τ0.8mφ为设定距离为0.8m时当前割煤循环中煤壁片帮率的均方差;φi为当前割煤循环中综采工作面的煤壁片帮率;为步骤s81确定来压前0.8m时,筛选基础前兆指标中综采工作面煤壁片帮率的平均值;安全阀开启率的均方差τ0.8mξ的计算公式为:其中,τ0.8mξ为设定距离为0.8m时当前割煤循环中安全阀开启率的均方差;ξi为当前割煤循环中综采工作面的第i个支架安全阀开启率;为步骤s81确定来压前0.8m时,筛选基础前兆指标中综采工作面安全阀开启率的平均值;nξ为当前割煤循环内综采工作面的安全阀开启率总个数;两次顶板来压之间的综采工作面推进速度的均方差τ0.8mv计算公式为:其中,τ0.8mv为设定距离为0.8m时当前割煤循环中综采工作面推进速度的均方差;vi为当前割煤循环中综采工作面的综采工作面推进速度;为步骤s81确定来压前0.8m时,筛选基础前兆指标中综采工作面综采工作面推进速度的平均值;初撑力利用率的均方差τ0.8mδ的计算公式为:其中,τ0.8mδ为设定距离为0.8m时当前割煤循环中初撑力利用率的均方差;δi为当前割煤循环中综采工作面的第i个支架初撑力利用率;为步骤s81确定来压前0.8m时,筛选基础前兆指标中综采工作面初撑力利用率的平均值;nδ为当前割煤循环内综采工作面的初撑力利用率总个数;额定阻力富余量的均方差τ0.8mκ的计算公式为:其中,τ0.8mκ为设定距离为0.8m时当前割煤循环中额定阻力富余量的均方差;κi为当前割煤循环中综采工作面的第i个支架额定阻力富余量;为步骤s81确定来压前0.8m时,筛选基础前兆指标中综采工作面额定阻力富余量的平均值;nκ为当前割煤循环内综采工作面的额定阻力富余量总个数;通过0.8m时各项来压前兆指标的均方差求解均方差平均值τ0.8m,其公式如下:τ0.8m=(τ0.8mη+τ0.8mλ+τ0.8mω+τ0.8mε+τ0.8mφ+τ0.8mξ+τ0.8mv+τ0.8mδ+τ0.8mκ)/9;其中,τ0.8m为来压剩余距离0.8m时各项来压前兆指标的均方差的平均值。s85、重复步骤s83、s84,分别求解设定距离为0.8m、1.6m、2.4m…nm时各项来压前兆指标的均方差平均值τ0.8m、τ1.6m、τ2.4m…τnm;s86、筛选τ0.8m、τ1.6m、τ2.4m…τnm中的最小值τxm,当τxm小于设定数值时,则认为xm为顶板下次来压的剩余来压步距;根据综采工作面割煤循环推进速度,计算顶板下次来压对应的日期;根据综采工作面累计推进距离,计算顶板下次来压对应的来压位置;根据顶板来压信息,预测顶板下次来压对应的强度。与现有技术相比,本发明具有的优点和积极效果是:本发明专利基于大数据统计与关联分析,对历史的顶板来压数据进行分类、各指标定量化处理、关联关系拟合等,建立顶板来压历史数据库,通过实时计算当前各指标特征值,并与顶板来压历史数据库进行对比,从而实时、动态为综采工作面来压提供来压预测结果。本发明有效提高了顶板下次来压信息预测准确性,给顶板来压预测工作作出了一定的贡献。附图说明为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。图1为煤机轨迹及其一次割煤循环划分图;图2为来压监测、预警流程图;图3为综采工作面起始布设示意图;图4为综采工作面回采阶段示意图;图5为综采工作面破碎状态示意图。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。如图1至图5所示,本实施例中的顶板来压动态预测方法,包括以下步骤:s1、采集综采工作面的地质基础信息:包括对综采工作面进行地质勘探,在综采工作面上、下顺槽内按照固定间距,综采工作面从开切眼至停产线等间隔设置勘测区域,各勘测区域的顶板岩性、厚度、硬度信息以及通过钻孔揭露的方式,统计综采工作面断层、陷落柱不稳定特殊区域位置信息。通过勘测区域顶板信息,依据岩层传递连续性原则,依据勘探出来的各点顶板信息,延展出综采工作面整体顶板状态;综采工作面顶板岩性数据库综采工作面地质构造数据库s2、根据安装在支架上的红外传感器采集的煤机轨迹,实现割煤循环的划分;根据当前综采工作面割煤进刀工艺,选择设定区域支架号为综采工作面机头进刀区、选择设定区域支架号为综采工作面机尾进刀区。在综采工作面机头进刀区寻找煤机轨迹的峰值点,在综采工作面机尾进刀区寻找煤机轨迹的谷值点,将寻找的两种点定义为煤机轨迹的循环切割点,每相邻两个煤机轨迹循环切割点定义为一次割煤循环。s3、采集综采工作面支架历史压力数据、采高数据,计算各割煤循环各支架最大工作阻力pmax、时间加权阻力pt、活柱下缩率ω、动载系数m,并计算四个指标的平均值pmax-aver,pt-aver,ω-aver,m-aver,与四个指标均方差τpmax,τpt,τω,τm,构成四个顶板来压判据:通过来压判据建立综采工作面顶板来压监测模型;s31、割煤循环各支架最大工作阻力pmax、时间加权阻力pt、活柱下缩率ω、动载系数m,并计算四个指标的平均值pmax-aver,pt-aver,ω-aver,m-aver的确定。确定割煤循环的时间期间,取综采工作面各个支架在期间内产生的最大压力pmax,作为综采工作面各个支架的最大压力数据pmax。确定割煤循环内任意一台支架的时间加权平均阻力pt,计算公式如下,pt=(p1×t1+p2×t2+…+pn×tn)/(t1+t2+…+tn);其中,pt为当前割煤循环内单个支架的时间加权平均阻力;pn为当前割煤循环内单个支架的第n个压力值;tn为当前割煤循环内单个支架第n个压力值的持续时间;所述活柱下缩率ωi的计算公式为:ωi=(h2-h1)/(t2-t1)+(h3-h2)/(t3-t2)+…+(hn-hn-1)/(tn-tn-1);其中,ωi为当前割煤循环内单个支架活柱下缩率;hn为当前割煤循环内单个支架的第n个高度值;tn为当前割煤循环内单个支架的第n个高度值产生时间;确定割煤循环内任意一台支架的动载系数m,计算公式如下,m=pt/ptt其中,m为当前割煤循环内单个支架的动载系数;pt为当前割煤循环内单个支架的时间加权平均阻力;ptt为非来压期间内所有支架的时间加权平均阻力;所述最大工作阻力的平均值pmax-aver的计算公式为:pmax-aver=(pmax1+pmax2+…+pmaxi+…+pmaxn)/n;其中,pmax-aver为当前割煤循环内综采工作面所有支架最大工作阻力的平均值;pmaxi为当前割煤循环内综采工作面第i个支架的最大工作阻力;n为当前割煤循环内综采工作面全部支架所有支架的最大工作阻力的个数;所述时间加权平均阻力的平均值pt-aver的计算公式为:pt-aver=(pt1+pt2+…+pti+…+ptn)/n;其中,pt-aver为当前割煤循环内综采工作面所有支架时间加权平均阻力的平均值;pti为当前割煤循环内综采工作面第i个支架的时间加权平均阻力;n为当前割煤循环内综采工作面所有支架时间加权平均阻力的总数;所述活柱下缩率的平均值ω-aver的计算公式为:ω-aver=(ω1+ω2+…+ωi+…+ωn)/n;其中,ω-aver为当前割煤循环综采工作面所有支架活柱下缩率的平均值;ωi为当前割煤循环第i个支架的活柱下缩率;n为当前割煤循环内活柱下缩率的个数;所述动载系数的平均值m-aver的计算公式为:m-aver=(m1+m2+…+mi+…+mn)/n;其中,m-aver为当前割煤循环综采工作面所有支架动载系数的平均值;mi为当前割煤循环第i个支架的动载系数;n为当前割煤循环内动载系数的个数;所述最大工作阻力指标均方差τpmax的计算公式为:其中,τpmax为当前割煤循环综采工作面所有支架的最大工作阻力的均方差;j为综采工作面的支架总数;pmax_i为当前割煤循环内第i个支架的最大工作阻力;pmax-aver为当前割煤循环综采工作面所有支架的最大工作阻力的平均值;所述时间加权平均阻力指标均方差τpt的计算公式为:其中,τpt为当前割煤循环综采工作面所有支架的时间加权平均阻力指标均方差;j为综采工作面支架总数;pt_i为当前割煤循环内第i个支架的时间加权平均阻力;pt-aver为当前割煤循环综采工作面全部支架时间加权平均阻力的平均值;所述活柱下缩率均方差τω的计算公式为:其中,τω为当前割煤循环综采工作面所有支架的活柱下缩率均方差;n为当前割煤循环内活柱下缩率的个数;ωi为当前割煤循环内第i个支架的活柱下缩率;ω-aver为当前割煤循环内综采工作面全部支架活柱下缩率的平均值;所述动载系数均方差τm的计算公式为:其中,τm为当前割煤循环内综采工作面全部支架的动载系数均方差;n为当前割煤循环内的动载系数个数;mi为当前割煤循环内第i个支架的动载系数;m-aver为当前割煤循环内综采工作面所有支架动载系数的平均值;s33、构成四个液压支架对应的顶板来压判据:①判据1:最大工作阻力pmax≥pmax-aver+τpmax;②判据2:时间加权平均阻力pt≥pt-aver+τpt;③判据3:活柱下缩率ω≥ω-aver+τω;④判据4:动载系数m≥m-aver+τm;s34、来压监测判断标准:若各循环内支架满足①~④中4个判据标准,当各支架满足4个判据标准,则将满足标准的支架顶板,记为强烈来压;如果仅满足任意3个判据标准,则将满足标准的支架顶板,记为明显来压;如果其仅满足任意2个判据标准,则将满足标准的支架顶板,记为普通来压;如果其仅满足1个判据标准或1个判据标准都不满足,则将该区域的支架顶板,记为未来压。s4、利用建立的来压监测模型,一旦监测到顶板来压,则采集并统计顶板来压前的历史数据,包括综采工作面在顶板来压前0.8m、1.6m、2.4m……nm来压支架对应的支架增阻率ηi、顶板破碎率λi、活柱下缩率ωi、顶底板移近率εi、煤壁片帮率φi、安全阀开启率ξi,两次顶板来压之间的综采工作面推进速度v、初撑力利用率δ、额定阻力富余量κi,建立综采工作面来压前兆指标库;来压前兆指标数据库所述的支架增阻率ηi、顶板破碎率λi、活柱下缩率ωi、顶底板移近率εi、煤壁片帮率φi、安全阀开启率ξi,两次顶板来压之间的综采工作面推进速度v、初撑力利用率δ、额定阻力富余量κi。指标计算公式如下所示,ηi=(p2-p1)/(t2-t1)+(p3-p2)/(t3-t2)+…+(pn-pn-1)/(tn-tn-1)其中,ηi为当前割煤循环内单台支架增阻率;pn为当前割煤循环内单台支架的第n个压力值;tn为当前割煤循环内单台支架第n个压力的产生时间;支架的顶板破碎率λi计算手段为人工现场抽样或采用面向顶板空顶区域的激光三维扫描仪进行测量;人工现场抽样:从1#支架支架开始,设定支架间隔选定支架号,现场实测选定支架中支架上部顶板破碎的信息,包括端面无支护区冒顶的宽度d1,m;端面无支护区顶板的宽度s1,m。激光三维扫描仪测量:在支架前梁下方布设激光三维扫描仪,实时监测端面无支护区冒顶的宽度d1,m;端面无支护区顶板的宽度s1,m。顶板破碎率λi计算方法为:λi=d1/s1*100%其中,λi为当前割煤循环内综采工作面顶板破碎率;d1为当前割煤循环内端面无支护区冒顶的宽度,单位为m;s1为当前割煤循环内端面无支护区顶板的宽度,单位为m;ωi=(h2-h1)/(t2-t1)+(h3-h2)/(t3-t2)+…+(hn-hn-1)/(tn-tn-1)其中,ωi为当前割煤循环内单台支架活柱下缩率;hn为当前割煤循环内单台支架的第n个高度值;tn为当前割煤循环内单台支架的第n个高度值的产生时间;εi=lshift/(tq-tp)其中,εi为当前割煤循环内顶底板移近率;lshift为当前割煤循环内综采工作面顶底板移进变化量;tq为当前割煤循环的结束时间;tp为当前割煤循环的开始时间;φi=jslide/j其中,φi为当前割煤循环内煤壁片帮率;jslide为当前割煤循环内煤壁片帮的支架个数;j为综采工作面的支架总数;ξi=tsafe/(tq-tp)其中,ξi为当前割煤循环内安全阀开启率;tsafe为当前割煤循环内支架压力处于支架额定安全阀开启压力之上的时长;tq为当前割煤循环的结束时间;tp为当前割煤循环的开始时间;v=ncycle×b/(tw-tm);其中,v为两次顶板来压之间的综采工作面平均推进速度;ncycle为两次顶板来压之间的割煤循环数;b为采煤机的截割深度;tw为后一次顶板来压的开始时间;tm为前一次顶板来压的结束时间;所述初撑力利用率δ的计算公式为:δ=pset/prate;其中,δ为当前割煤循环内单台支架的初撑力利用率;pset为当前割煤循环单台支架的实际初撑力;prate为支架的额定初撑力;κi=(pt-p额工作阻力)/p额工作阻力;其中,κi为当前割煤循环内单台支架的额定阻力富余量;pt为当前割煤循环单台支架的时间加权平均阻力;p额工作阻力为支架的额定工作阻力。s5、顶板来压初次预测区域制定;从建立的顶板来压信息数据库中,提取历史来压步距信息,从中选取最大值lmax,将综采工作面前方未开采的0~lmax区域作为顶板来压初次预测区域;s6、以综采工作面基础信息数据库为基础,提取当前综采工作面顶板初次来压预测区域的基础信息,包括:顶板来压初次预测区域内的地质数据、顶板岩性数据、两侧区域开采状态数据;综采工作面顶板来压的首次预测结果表时间预测来压步距预测来压时间预测动载系数预测来压部位t1l1q1k1距开切眼35ms7、基于初次来压预测区域内提取的相近的地质基础信息,包括顶板岩性数据、两侧区域开采状态的历史数据,在历史综采工作面顶板来压监测模型中寻找与初次预测区域相近地质基础信息相对应的5~8组顶板来压信息,计算顶板来压信息各项数据的平均值,将各项顶板来压信息的平均值作为综采工作面顶板下一次来压的首次预测结果输出;s8、随综采工作面不断推进,在产生的新的割煤循环后,在新产生割煤循环期间内,计算来压前兆指标库内的各项前兆指标;s9、将新产生割煤循环期间内的来压前兆指标与综采工作面来压前兆指标数据库进行数据一致性检验,主要包括如下步骤:(1)从步骤s3综采工作面的来压前兆指标库中,筛选各来压剩余距离下设定数量与当前综采工作面的地质基础信息最为相近的的来压前兆指标。以当前综采工作面来压前兆指标为基础,设定各项指标的范围;从采集的来压前兆指标中,去除采集的来压前兆指标中不在设定范围的数据。获取筛选后,剩余各来压剩余距离下来压前兆指标数据。按照来压剩余距离分类,对相同来压剩余距离下的数据将其来压前兆指标求取平均值,生成各来压剩余距离下唯一对应的来压前兆指标;对相同来压剩余距离下的数据将顶板来压信息求取平均值,生成各来压剩余距离下唯一对应的顶板来压信息。(2)获取通过步骤s7实时计算当前割煤循环中综采工作面的各支架顶板的来压前兆指标;(3)分别对来压前各设定距离下指标的均方差计算,以来压前0.8m的支架增阻率ηi计算为例,计算方式如下所示:其中,τ0.8mη为来压剩余距离0.8m时,来压前兆指标中支架增阻率的均方差;ηi为当前割煤循环中综采工作面的第i个支架增阻率;为来压剩余距离为0.8m时的来压前兆指标中支架增阻率指标的平均值;n为当前割煤循环内综采工作面的支架增阻率总个数;(4)依据上述计算公式分别求解来压剩余距离0.8m时,来压前兆指标中其余9项指标的的均方差,分别为支架增阻率的均方差τ0.8mη、支架增阻率的均方差τ0.8mλ、支架活柱下缩率的均方差τ0.8mω、顶底板移近率的均方差τ0.8mε、煤壁片帮率的均方差τ0.8mφ、安全阀开启率的均方差τ0.8mξ、两次顶板来压之间的综采工作面推进速度τ0.8mv、初撑力利用率τ0.8mδ、额定阻力富余量τ0.8mκ,对来压剩余距离0.8m时各项来压前兆指标的均方差,求解均方差平均值τ0.8m;0.8m时各项来压前兆指标的均方差求解均方差平均值τ0.8m,公式如下:τ0.8m=(τ0.8mη+τ0.8mλ+τ0.8mω+τ0.8mε+τ0.8mφ+τ0.8mξ+τ0.8mv+τ0.8mδ+τ0.8mκ)/9其中,τ0.8m为来压剩余距离0.8m时各项来压前兆指标的均方差的平均值。(5)依据来压前0.8m均方差以及均方差均值τ0.8m的求解方式,分别求解来压前0.8m、1.6m、2.4m…nm的均方差均值τ0.8m、τ1.6m、τ2.4m…τnm。(6)筛选τ0.8m、τ1.6m、τ2.4m…τnm中的最小值τxm,当τxm小于设定数值时,则认为xm为顶板下次来压的剩余来压步距;根据综采工作面割煤循环推进速度,计算顶板下次来压对应的日期;根据综采工作面累计推进距离,计算顶板下次来压对应的来压位置;根据顶板来压信息,预测顶板下次来压对应的强度。s10、通过一致性检验,从综采工作面来压前兆指标数据库,匹配与当前综采工作面割煤循环一致性程度最高的记录,以该记录对应来压剩余距离与顶板来压信息作为综采工作面的下次来压信息进行动态预测更新。跟新方案如下:根据综采工作面割煤循环推进速度,计算顶板下次来压对应的日期;根据综采工作面累计推进距离,计算顶板下次来压对应的来压位置;根据顶板来压信息,预测顶板下次来压对应的强度。本发明专利基于大数据统计与关联分析,对历史的顶板来压数据进行分类、各指标定量化处理、关联关系拟合等,建立历史综采工作面顶板来压监测模型,通过实时计算当前各指标特征值,并与历史综采工作面顶板来压监测模型进行对比,从而实时、动态进为综采工作面来压提供来压预测结果。本发明有效提高了顶板下次来压信息预测准确性,给顶板来压预测工作作出了一定的贡献。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1