一种实现海上平台油气井协同生产的优化模型

文档序号:25991766发布日期:2021-07-23 21:03阅读:112来源:国知局
一种实现海上平台油气井协同生产的优化模型

本发明涉及采油工程技术领域,更具体地说,它涉及一种实现海上平台油气井协同生产的优化模型。



背景技术:

随着陆上石油资源可开发区域日渐稀少且油质下降,开采难度大幅提升,海洋石油资源逐渐得到重视。直至近些年,海洋石油开采技术与平台建设才日渐成熟,又由于海洋面积广袤且绝大多数仍未勘探开发,随着钻采技术的不断突破,海洋石油必将成为石油开采重要的一极。

海洋石油开采依托海洋石油生产平台。相较于陆上油气田,海上油气田开发较为复杂。陆上油田空间开阔,可根据实际需要,扩建生产装置,丰富开发手段。而由于海上平台空间有限,各类装置设备数目也受到限制,开发手段调整空间小。

现有如下海上平台特定生产环境:某海上油气田开发进入后期,油气井产能低下,生产成本居高不下,油藏开发、生产工艺等方面矛盾凸显。该海上平台分别建有油井、气井井组,油气同产。油井生产方式为电泵举升与高压气体辅助举升,气井生产方式为自喷生产。气井在生产后期,由于地层压力、气井产能下降,井筒温度梯度增大,因温度下降导致天然气中的部分成分在井筒内凝析而形成凝析液,而气井产气量又不足以带出该部分凝析液时,凝析液就回落至井底,产生井筒积液。凝析液积液对气井生产影响较地层液积液大,在纯气井出现凝析液积液的初期,地层压力相对较高的情况下,可以靠自身能量带出积液。但在生产后期,地层压力不足,需要依靠辅助注气带出积液。目前,为满足平台日常生产所需高压气体由气体压缩机和自喷气井提供。但因平台空间有限,气体压缩机数量有限,其所提供的高压气体与自喷气井所提供的在总量上无法满足所有井的正常生产,故需要在单井分配气量上做优化。此外,由于国家对海洋环境保护日趋重视,平台配有污水处理器处理日常污液。但考虑到空间及成本,仅配有一台,因而污水处理量有限。

实际生产中,平台方要求在尽可能满足排液总量不超过污水处理器上限的前提下,单井产能最优,井组总产能最大。针对以上情况,现场工程师往往凭借经验,通过单井调参,维持生产。生产井生产过程中存在以下缺陷:

1.实施生产过程中,环境复杂多变,单井调参效率低;

2.平台污水处理设备即将到达极限值时,通过关停高产液井的方式降低总产液量。但高产液井往往也是油气产量最高的井,这将降低生产平台总体产能,影响经济效益;

3.单井调参通常不能保证平台上所有井组处于当前生产条件下的最优状态,使得生产井不能维持较长的稳定生产。



技术实现要素:

为解决上述技术问题,本发明提供一种实现海上平台油气井协同生产的优化模型,解决海洋油气生产平台在排污量受限前提下合理调参及分配注气量,使平台单井保持最佳生产状态,又能确保井组产能最大化,具有重要意义。

本发明的上述技术目的是通过以下技术方案得以实现的:

一种实现海上平台油气井协同生产的优化模型,目标函数如下:

目标函数的约束条件如下:

t1:污液处理量限制条件为:

t2:电泵井电机频率限制条件为:

xd(i)∈[单井电泵机组最佳工况区对应频率范围]

t3:平台气源的日供气量上限位d×104m3/d,满足积液井复产所需量为s×104m3/d,得到如下关系:

t4:限定第j口气举井的注气量满足如下关系:

0≤xq(j)≤xqmax(j)

其中:有m口油井采用电泵举升采油,第i口井的电机频率为xd(i),可产出qo(i)的油和qw(i)的水,第i口油井电泵举升采油动态曲线回归系数为ai,bi,电泵举升采水动态曲线回归系数为gi,hi;有n口油井需要注气采油,第j口井(j=1,2,3,...,n)注入xq(j)的气,可产出qo(j)的油和qw(j)的水,第j口油井气举采油动态曲线回归系数为cj,dj,ej,气举产水动态曲线回归系数为ij,jj,kj。

作为一种优选方案,电泵井电机频率为30-50hz,且为整数。

作为一种优选方案,模型建立具体包括以下步骤:

s1:通过电泵井历史产生数据,开展电泵井生产特性拟合,回归得到电泵井特征方程;

s2:通过气举油井历史产生数据,开展气举油井生产特性拟合,回归得到气举油井特征方程;

s3:利用积液气井历史生产数据,修正李闽模型,确定积液气井恢复生产所需最小临界携液流量;

s4:核对平台污液处理器处理能力,设定处理能力上限值;核实平台日供气量上限值;测试电泵井电泵机组最佳工况区对应工作频率;s5:结合s1、s2、s3和s4,得出各方程组参数限制范围;

s6:利用非线性规划数学方法建立海上油气井系统协同生产优化模型。

作为一种优选方案,s4过程中,污液处理器处理能力上限值具体设置方式如下:通过核准设备折旧后的污液处理能力,并以该污液处理能力作为处理能力上限值。

在上述优选方案中,核准设备折旧后的污液处理能力通过专业人员进行核准。

作为一种优选方案,s5过程中,各方程组参数限制范围包括电泵井电机频率参数范围和气举井注气量参数范围;

电泵井电机频率参数范围通过电潜泵性能试验曲线得到最佳参数范围。

在上述优选方案中,如图4所述,生成下表:

其中,序号6仅为室内试验下最高泵效对应的最佳电机频率,实际生产中该值有一定浮动空间。在非线性规划算法中仅需设置上下限即可。上限值为表中测试值,下限值可设置为0,也可根据矿场生产经验或用电量规划自由设定。

作为一种优选方案,气举井注气量参数范围确定方法包括单井注气量上限可采用平均分配法和经验法;

单井注气量上限可采用平均分配法:将气举油井可用最大总气量/总气举井数结果作为上限参数;

经验法:结合单井生产预测曲线,通过产液量上限值反求注气量,以此确定单井注气量上限值。

在上述优选方案中,积液气井复产所需气量需由使用方自行计算制定,本算法默认已经获取该数值[如果有积液气井],故未提供具体算法。

作为一种优选方案,气举油井可用最大总气量具体获取步骤为:

从平台高压气体压缩机及气源井的最大产气量中扣除积液井复产所需气量后剩余的总气量,公式如下:

综上所述,本发明具有以下有益效果:

(1)本发明构造了海上平台油气井协同生产整体优化模型,建立联动调节方程组;利用该模型,在平台生产条件变化后,均能快速确定各井生产参数最优值;

(2)本发明所述算法均由各生产井历史数据拟合回归建立,可有效指导实际生产;

(3)本发明所构建的数学优化模型,可利用程序快速求解,满足生产现场快速响应的要求;

(4)本发明所构建的数学优化模型,可根据实际生产需要进行扩充和调整,灵活性强。

附图说明

图1是本发明的实施例中的海上平台生产流程模拟图;

图2是本发明的实施例中的电泵井pipesim软件拟合示意图;

图3是本发明的实施例中的气举油井pipesim软件拟合示意图;

图4是本发明的实施例中的潜油泵性能试验曲线图。

具体实施方式

本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包括”为一开放式用语,故应解释成“包括但不限定于”。“大致”是指在可接受的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。

本说明书及权利要求的上下左右等方向名词,是结合附图以便于进一步说明,使得本申请更加方便理解,并不对本申请做出限定,在不同的场景中,上下、左右、里外均是相对而言。

以下结合附图对本发明作进一步详细说明。

梳理海上平台油气井组生产关系,绘制海上平台油气井生产流程模拟图,如附图1。

电泵井:利用单井油藏设计参数及历史生产数据,结合pipesim软件,拟合单井生产特性曲线,并预测其在不同井口压力、电机频率下的产能状况(见附图2示例),绘制生产特性图版并回归得到特征方程,为整体优化模型提供目标函数及参数限制条件。

气举井:利用单井油藏设计参数及历史生产数据,结合pipesim软件,拟合单井生产特性曲线,并预测其在不同注气量下的产能状况(见附图3示例),绘制生产特性图版并回归得到特征方程,为整体优化模型提供目标函数及参数限制条件。

积液气井:利用积液气井历史生产数据,修正李闽模型,确定积液气井恢复生产所需最小临界携液流量,并为整体优化模型提供限制条件。

核对平台污液处理器处理能力,设定合理的处理能力上限值;核实平台日供气量上限值;测试获取电泵井电泵机组最佳工况区对应工作频率。

综合上述各类油气井特征方程及限制条件,利用非线性规划数学方法建立海上油气井系统协同生产数学优化模型并借助编程形成优化系统。

建立一种实现海上平台油气井协同生产的优化算法,具体步骤如下:

步骤1,利用数学语言将生产问题抽象化,具体情况如下

(1)有m口油井采用电泵举升采油,第i口井(i=1,2,3,…,n)电机频率为xd(i),可产出qo(i)的油和qw(i)的水。通过对电泵举升动态曲线进行回归,均得到了一次线性方程,且相关系数接近1,便可利用一元一次方程作为各电泵举升井的特征方程。设第i口油井电泵举升采油动态曲线回归系数为ai,bi,电泵举升采水动态曲线回归系数为ci,di,则单井产能关系式可表示为:

产油:qo(i)=aixd(i)+bi(i=1,2...n)

产水:qw(i)=gixd(i)+hi(i=1,2...n)

m口井产油总量及产水总量可分别表达为:

(2)有n口油井需要注气采油,第j口井(j=1,2,3,…,n)注入xq(j)的气,可产出qo(j)的油和qw(j)的水。通过对这些井气举动态曲线进行回归,均得到二次抛物线方程,且相关系数接近1,便可利用一元二次方程作为各气举井的气举特征方程。设第j口油井气举采油动态曲线回归系数为cj,dj,ej,气举产水动态曲线回归系数为ij,jj,kj,则单井产能关系式可表示为:

产油:qo(j)=cj[xq(j)]2+djxq(j)+ej(j=1,2...n)

产水:qw(j)=ij[xq(j)]2+jjxq(j)+kj(j=1,2...n)

n口井产油总量及产水总量可分别表达为:

(3)平台气源来自气举压缩机,日供气量上限为d×104m3/d。扣除满足积液井复产所需的s×104m3/d气量后,可用于井组优化的最大配气量为:

(4)可根据实际生产情况及设备能力选择添加单井注气上限限制条件xqmax(j);

步骤2,综合步骤1各井组方程,建立海上油气井组协同优化一般性模型

为便于求解,令f(x)=g(x)-1,由于max{f(x)}与min{g(x)-1}有相同极值点,故可将极大值问题转换为求极小值问题。故在以电泵井/气举井井组产能最大化,同时平台污水处理量不超过系统最大处理能力为优化目标的前提下,可建立油气井协同生产一般优化模型:

目标函数:

步骤3,获取步骤2所构建数学优化模型的约束条件:

①污液处理量限制条件

②电泵井电机频率限制条件:

xd(i)∈[单井电泵机组最佳工况区对应频率范围]

③平台气源来自气举压缩机,日供气量上限为d×104m3/d。扣除满足积液井复产所需的s×104m3/d气量后,可用于井组优化的最大配气量:

④可根据生产需要,选择限定第j口气举井的注气量:

0≤xq(j)≤xqmax(j)

步骤4,将单井生产特性方程带入步骤2所构建模型的目标函数,并结合步骤3的约束条件,利用求解非线性规划的遗传算法计算确定生产方案。

模型验证:

一种实现海上平台油气井协同生产的优化算法,具体验证结果如表1(2017年底h平台实际生产数据表)和表2(优化后生产参数表):

表1

表2

(1)根据优化配气量计算,气举油井井组产油量为109.71m3/d,实际产液量为108.64m3/d,增产1.07m3/d,模型有效。

(2)电泵井2017年底实际产液量为3490.91m3/d,按拟合方程计算结果为3468.18m3/d,误差为0.7%,相符度高。

模型预测:

实施例1:

假设排污处理能力降为5500m3/d,注气总量10×104m3/d,单井注气量不超过3×104m3/d,电泵井最佳排量区间以潜油电泵性能试验曲线为准,设计得到如下3种方案,见表3(优化设计方案1)、表4(优化设计方案2)、表5(优化设计方案3):

表3

如实施例1所述,不同的是电泵井频率与气举油井注气量方案。

表4

如实施例1所述,不同的是电泵井频率与气举油井注气量方案。

表5

实施例2:

假设排污处理能力上限为5000m3/d,注气总量8×104m3/d,单井注气量不超过2.5×104m3/d,电泵井最佳排量区间以潜油电泵性能试验曲线为准,设计得到如下3种方案,见表6(优化设计方案4)、表7(优化设计方案5)、表8(优化设计方案6):

表6

如实施例2所述,不同的是电泵井频率与气举油井注气量方案。

表7

如实施例2所述,不同的是电泵井频率与气举油井注气量方案。

表8

本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1