一种基于岩石室内实验的双岩芯驱替泵吸排液控制系统的制作方法

文档序号:11173447阅读:842来源:国知局
一种基于岩石室内实验的双岩芯驱替泵吸排液控制系统的制造方法与工艺

本发明属于岩石室内实验技术领域,特别是涉及一种基于岩石室内实验的双岩芯驱替泵吸排液控制系统。



背景技术:

目前,对于石油工业、非常规天然气工业(如页岩气开采等)以及干热岩热源开发等领域,都需要进行岩石室内实验,特别是通过岩石室内实验来测试致密岩石基质的渗透性。

由于岩石岩芯的孔隙度非常小,其渗透率可达到纳达西级别,因此对实验精度要求是非常之高的。当下比较主流的岩石室内实验包括室内三轴实验和室内真三轴实验,通过在岩石室内实验中结合驱替泵来完成岩石试样的相关渗透性测试。

在实验过程中,需要通过岩芯驱替泵吸排液控制系统来实现增压或维压,但是,现有的单岩芯驱替泵吸排液控制系统已经难以满足高精度高压力输出要求,有些时候还需要多次充液和回液才能够达到所需的高压力,控制过程冗杂且费时费力。



技术实现要素:

针对现有技术存在的问题,本发明提供一种基于岩石室内实验的双岩芯驱替泵吸排液控制系统,能够满足高精度高压力输出要求,控制过程简单且省时省力。

为了实现上述目的,本发明采用如下技术方案:一种基于岩石室内实验的双岩芯驱替泵吸排液控制系统,包括第一岩芯驱替泵、第二岩芯驱替泵、第一阀板、第二阀板、第一两位五通电磁阀、第二两位五通电磁阀、第三两位五通电磁阀、第四两位五通电磁阀、第一两位两通气控阀、第二两位两通气控阀、第三两位两通气控阀、第四两位两通气控阀、气源及油源;

所述第一岩芯驱替泵的高压排液口一路与第一两位两通气控阀相连通,另一路与第二两位两通气控阀相连通,第一两位两通气控阀与油源相连通,第二两位两通气控阀与执行元件相连通;所述第一两位两通气控阀的气控换向阀口与第一两位五通电磁阀相连通,第一两位五通电磁阀与第一阀板相连通;所述第二两位两通气控阀的气控换向阀口与第二两位五通电磁阀相连通,第二两位五通电磁阀与第一阀板相连通,第一阀板与气源相连通;

所述第二岩芯驱替泵的高压排液口一路与第三两位两通气控阀相连通,另一路与第四两位两通气控阀相连通,第三两位两通气控阀与油源相连通,第四两位两通气控阀与执行元件相连通;所述第三两位两通气控阀的气控换向阀口与第三两位五通电磁阀相连通,第三两位五通电磁阀与第二阀板相连通;所述第四两位两通气控阀的气控换向阀口与第四两位五通电磁阀相连通,第四两位五通电磁阀与第二阀板相连通,第二阀板与气源相连通。

当第一岩芯驱替泵排液且第二岩芯驱替泵吸液时,所述第一两位五通电磁阀、第二两位五通电磁阀、第三两位五通电磁阀及第四两位五通电磁阀的电磁铁均处于得电状态,所述第一两位两通气控阀及第四两位两通气控阀均处于换位截止状态,所述第二两位两通气控阀及第三两位两通气控阀均处于换位导通状态。

当第一岩芯驱替泵吸液且第二岩芯驱替泵排液时,所述第一两位五通电磁阀、第二两位五通电磁阀、第三两位五通电磁阀及第四两位五通电磁阀的电磁铁均处于失电状态,所述第一两位两通气控阀及第四两位两通气控阀均处于换位导通状态,所述第二两位两通气控阀及第三两位两通气控阀均处于换位截止状态。

本发明的有益效果:

本发明与现有技术相比,不仅采用了双岩芯驱替泵,而且实现了双岩芯驱替泵之间的交替吸排液,有效满足高精度高压力输出要求,而且控制过程简单且省时省力。

附图说明

图1为本发明的一种基于岩石室内实验的双岩芯驱替泵吸排液控制系统(第一岩芯驱替泵排液且第二岩芯驱替泵吸液)原理图;

图2为本发明的一种基于岩石室内实验的双岩芯驱替泵吸排液控制系统(第一岩芯驱替泵吸液且第二岩芯驱替泵排液)原理图;

图中,1—第一岩芯驱替泵,2—第二岩芯驱替泵,3—第一阀板,4—第二阀板,5—第一两位五通电磁阀,6—第二两位五通电磁阀,7—第三两位五通电磁阀,8—第四两位五通电磁阀,9—第一两位两通气控阀,10—第二两位两通气控阀,11—第三两位两通气控阀,12—第四两位两通气控阀,13—气源,14—油源,15—执行元件。

具体实施方式

下面结合附图和具体实施例对本发明做进一步的详细说明。

如图1、2所示,一种基于岩石室内实验的双岩芯驱替泵吸排液控制系统,包括第一岩芯驱替泵1、第二岩芯驱替泵2、第一阀板3、第二阀板4、第一两位五通电磁阀5、第二两位五通电磁阀6、第三两位五通电磁阀7、第四两位五通电磁阀8、第一两位两通气控阀9、第二两位两通气控阀10、第三两位两通气控阀11、第四两位两通气控阀12、气源13及油源14;

所述第一岩芯驱替泵1的高压排液口一路与第一两位两通气控阀9相连通,另一路与第二两位两通气控阀10相连通,第一两位两通气控阀9与油源14相连通,第二两位两通气控阀10与执行元件15相连通;所述第一两位两通气控阀9的气控换向阀口与第一两位五通电磁阀5相连通,第一两位五通电磁阀5与第一阀板3相连通;所述第二两位两通气控阀10的气控换向阀口与第二两位五通电磁阀6相连通,第二两位五通电磁阀6与第一阀板3相连通,第一阀板3与气源13相连通;

所述第二岩芯驱替泵2的高压排液口一路与第三两位两通气控阀11相连通,另一路与第四两位两通气控阀12相连通,第三两位两通气控阀11与油源14相连通,第四两位两通气控阀12与执行元件15相连通;所述第三两位两通气控阀11的气控换向阀口与第三两位五通电磁阀7相连通,第三两位五通电磁阀7与第二阀板4相连通;所述第四两位两通气控阀12的气控换向阀口与第四两位五通电磁阀8相连通,第四两位五通电磁阀8与第二阀板4相连通,第二阀板4与气源13相连通。

当第一岩芯驱替泵1排液且第二岩芯驱替泵2吸液时,所述第一两位五通电磁阀5、第二两位五通电磁阀6、第三两位五通电磁阀7及第四两位五通电磁阀8的电磁铁均处于得电状态,所述第一两位两通气控阀9及第四两位两通气控阀12均处于换位截止状态,所述第二两位两通气控阀10及第三两位两通气控阀11均处于换位导通状态。

当第一岩芯驱替泵1吸液且第二岩芯驱替泵2排液时,所述第一两位五通电磁阀5、第二两位五通电磁阀6、第三两位五通电磁阀7及第四两位五通电磁阀8的电磁铁均处于失电状态,所述第一两位两通气控阀9及第四两位两通气控阀12均处于换位导通状态,所述第二两位两通气控阀10及第三两位两通气控阀11均处于换位截止状态。

下面结合附图说明本发明的一次使用过程:

首先以第一岩芯驱替泵1排液且第二岩芯驱替泵2吸液为例。

开启气源13,然后控制第一两位五通电磁阀5、第二两位五通电磁阀6、第三两位五通电磁阀7及第四两位五通电磁阀8的电磁铁得电,气源13输出的高压气体分两路依次进入第一阀板3和第二阀板4。

从第一阀板3流出的高压气体分两路依次进入第一两位五通电磁阀5和第二两位五通电磁阀6,从第一两位五通电磁阀5流出的高压气体进入第一两位两通气控阀9的气控换向阀口内,使第一两位两通气控阀9处于换位截止状态;从第二两位五通电磁阀6流出的高压气体进入第二两位两通气控阀10的气控换向阀口内,使第二两位两通气控阀10处于换位导通状态,此时,第一岩芯驱替泵1排出的液体会经第二两位两通气控阀10输出至执行元件15。

同时,从第二阀板4流出的高压气体分两路依次进入第三两位五通电磁阀7及第四两位五通电磁阀8,从第三两位五通电磁阀7流出的高压气体进入第三两位两通气控阀11的气控换向阀口内,使第三两位两通气控阀11处于换位导通状态;从第四两位五通电磁阀8流出的高压气体进入第四两位两通气控阀12的气控换向阀口内,使第四两位两通气控阀12处于换位截止状态,此时,油源14排出的液体经第三两位两通气控阀11进入第二岩芯驱替泵2内,第二岩芯驱替泵2实现吸液。

再以第一岩芯驱替泵1吸液且第二岩芯驱替泵2排液为例。

气源13继续开启状态,此时控制第一两位五通电磁阀5、第二两位五通电磁阀6、第三两位五通电磁阀7及第四两位五通电磁阀8的电磁铁失电,气源13输出的高压气体依旧分两路依次进入第一阀板3和第二阀板4。

从第一阀板3流出的高压气体依旧分两路依次进入第一两位五通电磁阀5和第二两位五通电磁阀6,此时从第一两位五通电磁阀5流出的高压气体进入第一两位两通气控阀9的气控换向阀口后,会使第一两位两通气控阀9处于换位导通状态;从第二两位五通电磁阀6流出的高压气体进入第二两位两通气控阀10的气控换向阀口后,会使第二两位两通气控阀10处于换位截止状态,此时,油源14排出的液体经第一两位两通气控阀9进入第一岩芯驱替泵1内,第一岩芯驱替泵1实现吸液。

同时,从第二阀板4流出的高压气体依旧分两路依次进入第三两位五通电磁阀7及第四两位五通电磁阀8,从第三两位五通电磁阀7流出的高压气体进入第三两位两通气控阀11的气控换向阀口后,会使第三两位两通气控阀11处于换位截止状态;从第四两位五通电磁阀8流出的高压气体进入第四两位两通气控阀12的气控换向阀口后,会使第四两位两通气控阀12处于换位导通状态,此时,第二岩芯驱替泵2排出的液体会经第四两位两通气控阀12输出至执行元件15。

只需交替执行上述步骤,即可实现第一岩芯驱替泵1与第二岩芯驱替泵2之间的交替吸排液过程,进而满足高精度高压力输出要求,控制过程简单且省时省力。

实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1