一种基于耦合干扰观测器的级联电液伺服系统控制方法及系统与流程

文档序号:11128820阅读:1624来源:国知局
一种基于耦合干扰观测器的级联电液伺服系统控制方法及系统与制造工艺

本发明涉及一种可用于级联电液伺服系统的控制方法,特别是级联电液伺服驱动多自由度机械臂、起重装置等机电对象。



背景技术:

目前应用在多自由度机械臂、多关节机器人等机电对象上的控制执行机构一般为电液伺服执行器,由于其能输出有很高的控制力和力矩。机电对象最常见的驱动模式是全驱动模式。而在全驱动模式中,一般将考虑关节负载作为干扰量处理,不需要对其进行测量或估计,关节跟踪控制算法也不包含关节负载的估计值,这样将导致大动态负载干扰对关节运动跟踪的动态响应性能的影响很大,控制精度降低。因此,本专利设计一种耦合干扰观测器,估计多自由度机械臂各关节负载,并将估计值应用于级联电液伺服控制算法中,从而抑制控制变量剧烈恶化,提高大动态负载干扰情况下级联电液伺服控制系统的输出响应性能,并保证系统具有全局稳定性和有界收敛性。



技术实现要素:

本发明的目的是克服目前级联电液伺服全驱动控制方法的不足,同时适用于高动态负载干扰的在线估计,可以防止控制变量剧烈恶化,提高级联电液伺服控制系统的跟踪动态性能。

本发明的技术方案是一种基于耦合干扰观测器的级联电液伺服系统控制方法,该方法包括:

步骤1:建立级联电液伺服执行器模型;

建立的级联电液伺服执行器模型为:

yi=xi1

i=1,…n

其中为第i个级联电液伺服执行器的4阶模型状态变量,yi为第i个液压缸输出位移,为第i个输出位移变化率,pLi为第i个液压缸输出的液压压力,xvi为第i个伺服阀阀芯位移,mi为第i个负载质量,ps为供油压力,Ap为对称缸横截面积,Ctl为液压缸总泄漏系数,Vt为液压缸容积,βe为液压油有效体积弹性模量,Cd为伺服阀流量系数,w为伺服阀面积梯度,ρ为液压油密度,K为负载刚度系数,b为液压油阻尼系数,FLi为第i个外负载压力,Ksv为伺服阀放大系数,Tsv为伺服阀一阶响应时间常数,k为反正切函数tanh(·)中指数项系数,ui为第i个伺服阀控制电压,Tsvi为第i个伺服阀一阶响应时间常数,Ksvi为第i个伺服阀放大系数;

步骤2:驱动电液伺服,实时获取电液伺服的反馈数据,包括:第i个液压缸输出位移、第i个液压缸输出位移变化率、第i个液压缸负载压力、第i个伺服阀阀芯位移,i=1,…n;

步骤3:利用反馈数据结合系统的状态误差计算控制变量;

步骤4:采用耦合干扰观测器对机械臂各关节负载进行在线估计;

步骤5:结合反馈数据、系统误差和负载干扰估计量计算反步控制律;

步骤6:根据反步控制律对级联电液伺服机构实时进行驱动。

进一步的,所述步骤3中系统误差zij(i=1,…,n,j=1,…,4)表示为

其中yid表示第i个液压缸期望位移指令,αij为反步控制律设计中虚拟控制变量,表示为:

其中

kij表示反步控制律中的控制参数,表示第i个伺服阀的耦合干扰观测器。

进一步的,所述步骤4中耦合干扰观测器表示如下:

其中状态变化率表示为

耦合干扰观测器参数为Kdij=-Kdji≠0,(i≠j),即第i个关节负载干扰估计值不仅与本执行器的状态变量估计误差xi2有关,而且也与其他n-1个执行器的状态变量估计误差xj2(j=1,…,n,j≠i)有关。

进一步的,所述步骤5中反步控制律为:

其中i=1,…,n。

一种采用基于耦合干扰观测器的级联电液伺服系统,该系统为多自由度机械臂对象,包括n个机械连杆,n个电液伺服阀,n个双作用液压缸,1个伺服电机,1个定量柱塞泵,1个油箱;其中第i个连杆与第i+1个连杆之间铰接,称为机械臂第i个关节,在关节处设置光电编码器,用于测量第i个关节的运动角度和角速度,在第i个液压缸进油口和出油口设置第i个压力传感器,测量第i个液压缸的负载力,在定量柱塞泵出口安装1个压力表,监测系统的供油压力。

本发明的目的之三是提出耦合干扰观测器与非线性反步控制算法相结合的反步控制设计方法,既能对机械臂多个关节处的动态负载进行实时估计,同时也可以利用伺服阀控制电压对负载进行有效补偿,并约束液压缸输出位置误差,提高级联电液伺服控制系统的跟踪动态性能。

附图说明

图1为本发明的采用基于耦合干扰观测器和反步控制方法的电液伺服驱动级联机械臂机构示意图;

图2为本发明虚拟变量计算顺序示意图;

图3为本发明一种基于耦合干扰观测器的级联电液伺服控制方法流程图。

具体实施方式

以下提供本发明一种基于耦合干扰观测器和反步控制方法的电液伺服驱动级联机械臂机构的具体实时方式。

电液伺服执行器的模型为4阶模型,不考虑机械臂机构运动的模型,机械臂运动所需要的关节力矩作为电液伺服执行器的负载干扰考虑,简述如下:

1)电液伺服执行器建模

采用四阶模型描述伺服阀驱动液压缸回路的电液伺服执行器模型如下:

i=1,…n

其中为第i个级联电液伺服执行器的4阶模型状态变量,yi为第i个液压缸输出位移,为第i个输出位移变化率,pLi为第i个液压缸输出的液压压力,xvi为第i个伺服阀阀芯位移,mi为第i个负载质量,ps为供油压力,Ap为对称缸横截面积,Ctl为液压缸总泄漏系数,Vt为液压缸容积,βe为液压油有效体积弹性模量,Cd为伺服阀流量系数,w为伺服阀面积梯度,ρ为液压油密度,K为负载刚度系数,b为液压油阻尼系数,FLi为第i个外负载压力,Ksv为伺服阀放大系数,Tsv为伺服阀一阶响应时间常数,k为反正切函数tanh(·)中指数项系数,ui为第i个伺服阀控制电压。

2)级联机械臂关节处产生的负载干扰观测器表示如下:

其中为第i个干扰估计值,为状态变化率的估计值,Kdij=-Kdji≠0,(i≠j)为耦合干扰观测器参数,实际状态变化率由测量值xi2微分获得。

3)基于耦合干扰观测器的级联反步控制律

其中

i=1,…,n

kij表示反步控制律中的控制参数,系统误差zij(i=1,…,n,j=1,…,4)表示为

yid表示第i个液压缸期望位移指令,αij为反步控制律设计中虚拟控制变量。

一般的反步控制律设计是一个迭代过程,如图2所示。每个变量的计算顺序为:根据公式(4)可以对α2、α3求导得到变化率然后联合公式(1),(2),(3),(4),(5),(6)得到最终的反步迭代控制律表示为

其中

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1