一种分散式空气压缩储能系统的制作方法

文档序号:18403015发布日期:2019-08-10 00:06阅读:181来源:国知局
一种分散式空气压缩储能系统的制作方法

本发明涉及一种空气压缩储能系统,具体涉及一种分散式空气压缩储能系统,属于压缩空气储能技术领域。



背景技术:

电力行业是国民经济发展中最重要的基础能源产业,随着中国经济的高速发展,对电力的需求愈来愈大,同时随着我国产业地不断升级对电能的质量的要求也越来越高。近年来受到风力发电、太阳能发电、海洋能发电、生物能发电等新能源发电系统的不稳定因素的冲击,以及现有电网调节能力较差的固有原因。造成了相当一部分电能无法输入电网,只能白白浪费掉,导致的“弃风、弃光、弃水”等问题日益突出。并且,我国电力负荷较不均衡,但是电力的生成过程是一个连续的过程,所以建立一个安全可靠、投资低、系统效率高、系统响应快的电力储能系统,来削峰填谷、吸纳不稳定的新能源电力是非常有必要的。

当前,大规模电力储能技术只有抽水蓄能和压缩压缩空气储能两种。抽水蓄能技术比较成熟,效率高,但是单位投资大,对地理条件的要求比较高。压缩空气储能对地理条件的要求比较低,大多数地方都可以建设压缩压缩空气储能电站。



技术实现要素:

为解决现有技术的不足,本发明的目的在于提供一种可以使得风力得到充分利用,进而提高风力发电的电能质量的分散式空气压缩储能系统。

为了实现上述目标,本发明采用如下的技术方案:

一种分散式空气压缩储能系统,曲轴上串联若干组连杆;

所述连杆分别驱动若干级气道依次串联的加压泵;

沿气体流动方向,上述加压泵的进气口和出气口,分别设有单向阀。

沿气体流动方向,上述加压泵的活塞外径与气缸内径,依次减小。

上述曲轴由飞轮通过变速器联动。

进一步的,上述飞轮由风车的风轮联动。

上述加压泵包括若干并联的气缸,所述气缸分别匹配独立的连杆。

上述的一种分散式空气压缩储能系统,端末的出气口与塔架储气罐连通。

本发明的意义之处在于:

本发明的一种分散式空气压缩储能系统,通过多组串联设置的加压泵,分级逐步提高空气压力,实现空气压缩比逐步提高,实现能量的高效转换;通过飞轮增大转动的惯性,保证曲轴的旋转角速度和输出转矩尽可能均匀;通过变速器调节曲轴旋转速度;经压缩的空气由储气罐储存,当储气罐储满,或者电力负荷提高有发电需求时,高压空气可通过管道传输到燃气轮机经过一系列操作程序实现发电。

本发明的一种分散式空气压缩储能系统,结构简单,使用方便,适用范围广,尤其适合在平原地带没有合适的地理位置修建抽水蓄能电站的地方使用,具有很强的实用性。

附图说明

图1为本发明的一种分散式空气压缩储能系统的结构示意图。

图2为本发明的风车的示意图。

附图中标记的含义如下:1、飞轮,2、变速器,3、曲轴,4、连杆,5、一级加压泵,6、二级加压泵,7、三级加压泵,8、单向阀,9、空气管道。

具体实施方式

以下结合附图和具体实施例对本发明作具体的介绍。

如图1所示,本发明为一种分散式空气压缩储能系统,于装置的内壳中,设置用于增大装置惯性的飞轮1,可以调节曲轴3旋转速度的变速器2;飞轮1与变速器2依此串联设置在曲轴3上,曲轴3连杆4轴颈处依次安装用于逐步压缩空气的分级加压泵:一级加压泵5、二级加压泵6、三级加压泵7,且一级加压泵5的活塞外径与气缸内径最大,二级加压泵6次之,三级加压泵7最小。

三个加压泵的气缸底部两端分别连接一个单向阀8,仅允许空气向高压侧流通。且,一级加压泵5气缸底部进气口侧的单向阀8直接与空气连通,出气侧通过单向阀8与二级加压泵6的进气口用空气管道9连通;依次的,二级加压泵6气缸底部出气口端与三级加压泵7气缸底进气口端用单向阀8连通,三级加压泵7气缸底部出气口端设有单向阀8,优选的,端末的出气口通过单向阀8再与塔架储气罐连通形成一个完整的系统。

飞轮1由风力吹动的风车的风轮(叶片)联动。

优选的,本发明可以设置在风车的底座内,并利用风力发电机的塔架作为储气罐,充分利用了塔架的内部空间以及合理的改造后合理的利用了塔架的结构强度,经济合理,安全可靠。

实际使用时:

当外界风力不足时,叶片转速比较慢,传统风力发电机无法发电,本系统由于只负责压缩气体无需调节频率,因此可以通过变速器2增大转矩来压缩气空气来储能。

当外界风力充足时,叶片正常转动,带动飞轮1与曲轴3发生转动,加压泵压缩空气。当储气罐储满,或者电力负荷提高有发电需求时,高压空气可通过管道传输到燃气轮机经过一系列操作程序实现发电。

一级加压泵5的活塞往上运动时,气缸中的气压降低,外界空气通过进气口与单向阀8进入到内径最大的一级加压泵5的气缸中,当活塞往下运动时,一级加压泵5中的空气第一次被压缩,当二级加压泵6活塞往上运动时,二级加压泵6气缸压强减小,第一次被压缩的空气通过一级加压泵5出气端的单向阀8与连接管进入内径较小的二级加压泵6的气缸中,当二级加压泵6活塞往下运动时,空气第二次被压缩,当三级加压泵7活塞往上运动时,三级加压泵7气缸中的气压降低,第二次被压缩的空气通过二级加压泵6另一端的单向阀8与连接管进入到内径最小的三级加压泵7的气缸中,当三级加压泵7活塞往下运动时,空气第三次被压缩,最后通过三级加压泵7出气口端的单向阀8与出气口进入到塔架储气罐中储藏起来,实现储能。

以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。



技术特征:

技术总结
本发明公开了一种分散式空气压缩储能系统,曲轴上串联若干组连杆;连杆分别驱动若干级气道依次串联的加压泵;沿气体流动方向,所述加压泵的进气口和出气口,分别设有单向阀。通过多组串联设置的加压泵,分级逐步提高空气压力,实现空气压缩比逐步提高,实现能量的高效转换;通过飞轮增大转动的惯性,保证曲轴的旋转角速度和输出转矩尽可能均匀;通过变速器调节曲轴旋转速度;经压缩的空气由储气罐储存,当储气罐储满,或者电力负荷提高有发电需求时,高压空气可通过管道传输到燃气轮机经过一系列操作程序实现发电。其结构简单,使用方便,适用范围广,尤其适合在平原地带没有合适的地理位置修建抽水蓄能电站的地方使用,具有很强的实用性。

技术研发人员:林伟;甄向荣;刘道桦;郭兰波;黄亚;申爱丽;李永发;蔡付林;周建旭
受保护的技术使用者:河海大学
技术研发日:2019.04.30
技术公布日:2019.08.09
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1