旋转阀的制作方法

文档序号:5622888阅读:283来源:国知局
专利名称:旋转阀的制作方法
技术领域
本发明涉及旋转阀,特别是脉冲管制冷器中使用的旋转阀。
背景技术
脉冲管制冷装置(PTR)的典型应用,是在隔热层中保持寒冷的环境,其中隔热层包围液氦冷却的超导磁体。气态氦通常用作PTR中的工作液体。脉冲管制冷装置运行原理是众所周知的。
在一种形式的脉冲管制冷装置中,有必要通过精确控制的反复循环,将压缩机提供的氦气顺序输送给几个相互连接的室中,其中包括PTR。在所需热性能的实现过程中,这些流动脉冲的周期率、占空比和相位是关键的。还采用了分离的节流装置分别来控制来自PTR室流路的流入量和流出量的至少一个,但典型地控制两个。
可以以各种方式实现上述流动转换,包括在电子控制方式下运行的电磁操作阀的阵列。可替换的方式是通过恒定速度驱动的多口旋转阀装置来实现,如通过同步或步进电马达驱动。这样的阀的一种已知形式,是配流板旋转阀。相对于配流板旋转的转子,与其转动表面的流动控制口结合,其转动表面的流动控制口与配流板上的配合口外形相互作用,提供调节功能。这样,通过旋转阀流动连通元件的几何尺寸及其调节功能,来指示流动逻辑及时刻。转子和配流板口以各种方式与PTR室和压缩机供给管路及回流管路连接。阀转子和驱动马达可以方便地包含在单一压力容器中,其中压力容器结合在PTR流动回路中。
在这样的阀的一种形式中,通过作用在压缩机供给管路与回流管路之间的压差,得到转子与配流板之间的闭合力。通过将供气压力导向围绕转子的室,从而配置这种压力,用于直接相对于配流板对阀转子加载。使用弹簧来提供另外的力,相对于定子来保持转子,从而保证了开始条件下形成的初始密封。当建立压缩机压力时,这样的初始密封允许在转子上形成压差,使转子紧贴配流板的旋转表面。闭合力的大小是压差、转子面的几何形状和配流板口形成的反向压力的函数。
这种方法对于简单的两口旋转阀是有效的。然而,对于多口布置,却限制了转子和配流板的复杂性,或者导致了过大的闭合力,这样的闭合力显著地大于在转子界面上实现有效密封所需的闭合力。这导致了转子和配流板不必要地磨损,或导致另外的驱动扭矩要求。
根据本发明的第一方面,用于流动转换的多口旋转阀包括转子、定子、压缩机供给管路和压缩机回流管路;其中在整个转换循环过程中,气体通过压缩机供给管路提供,从而将转子从定子上升起而与之分开;阀进一步包括平衡缸,抵消压缩机供给管路产生的压差效应,从而在转子/定子界面上形成气体密封。

发明内容
在本发明的旋转阀中,相对于现有的旋转阀,供应压力从定子接近转子。定子上的压差会将转子从定子表面升起来,通过平衡缸来抑制这种趋势,其中平衡缸通过相同的供应压力来供压。通过使用足够但不过大的闭合力,会减少转子和定子的磨损。
平衡缸最好由压缩机供给管路提供动力。
阀最好进一步包括位移装置,从而开始时就在转子/定子界面上提供密封。
在使用中,平衡缸产生的轴向力由推力支承装置承受。它可以是滚动体推力支承装置,但阀最好进一步包括轴向静液压支承。
已经知道,在PTR中遇到的氦气环境,会使润滑剂从传统支承中流失,这会促使支承早期失灵,并且流失的润滑剂会污染PTR。用于产生平衡力的相同供应压力可以用于轴向静液压支承中,希望不需要润滑剂,而实际产生零摩擦和无限长的寿命。
支承最好包括浮动盘,它具有释放中心,从而盘下聚集的气体实际上相等地作用在转子下的整个区域,来抵消施加的推力。
盘具有的面积最好大于平衡缸活塞截面的面积。
转子最好以两个角自由度连接到马达轴上。
推力支承最好直接安装在平衡缸之后。
根据本发明的第二方面,脉冲管制冷装置(PTR)包括根据第一方面的多口旋转阀和多个室,而接收来自压缩机供给管路的气体。


现在参考附图描述根据本发明的旋转阀例子,其中图1显示了旋转阀的剖面,其中旋转阀承载在压力容器内;图2说明了图1中阀的转子和定子表面;图3显示了图1的阀中使用的静液压支承装置;以及图4说明了根据本发明在阀中安装推力支承的可选择装置。
具体实施例方式
图1显示了旋转阀的剖面,其中旋转阀承载在压力容器内。电马达1通过销3驱动阀转子2,其中销3安装在平衡活塞4上,并且配合到转子2的槽(未显示)中。马达和转子承载在压力容器5内,压力容器5通过口6连接到压缩机的回流管路上。
转子2相对于定子7运转。转子和定子都与它们相对表面上的调节口结合,如图2显示的典型形式。通过口8提供的压缩机供给,穿过定子7的中心进入转子的横槽9中。这个槽通过定子7中的口10、11和12,使气流与PTR的各个室连通。当转子旋转时,PTR的回流通过定子口10、13、14和转子口15、16进入阀承压壳体5。阀承压壳体5中汇聚的回流通过口6返回压缩机。转子2外表面的一部分暴露于压缩机回流管路的压力中。供给口与回流口之间,在转子下作用在连通界面15和回流管路上的压差,用于将转子从定子上升起并分离。当发生转换时,气流为整个循环提供背压。
这个分离力由平衡缸装置抵消,平衡缸包括活塞4,在缸筒17中运动,缸筒17结合到转子2中,并且承载在马达驱动轴18上。活塞与转子轴孔之间的气密密封性由密封件19保持。转子界面的供给压力通过转子中的通道20与平衡缸连通。选择平衡缸与活塞的有效面积,提供最小的界面闭合力,但足以克服压力产生的转子举升力,加上另外的安全系数一起建立气密性。这样避免了过大的且不需要的摩擦力,或者避免了减小转子调节面的面积,从而允许更大自由度的设计。平衡缸产生的闭合力,自动补偿系统压力的准稳态变化,其中系统压力的准稳态变化由初始充气变化、长时间后的气体损失、和PTR温度变化导致产生以及由于流动引入的压力循环通过作用在转子上的动态压差产生。
当暴露在各个口压力下的区域其几何形状改变时,转子举升力随着转子旋转位置改变。此外,当界面表面条件由于磨损改变时,这个界面上的压力分布在整个延长的时间周期内改变。由此,需要闭合力加上另外的安全系数来包括这些变化,而不允许发生气体泄漏。通过改变杆的有效面积,使用分离的压力平衡缸有助于精确设置这些力的要求,而不必改变转子或定子阀表面。
位移设备,如轻的弹簧,用于在开始条件下在转子与定子之间提供初始密封,位移设备具有足够大的力来克服平衡活塞密封件的摩擦。当流动导致的压差不出现时,弹簧31保持转子与定子接触。平衡缸的尺寸配置成产生足以克服转子分离力的力,其安全系数可以适应压力分布变化,并且提供净界面闭合力,正好足够提供转子阀表面上的气密性。缸还提供了足够的轴向移动,来适应转子和定子面的逐渐磨损。
平衡缸产生的轴向力沿着马达轴8作用,并且由推力支承装置21支撑,推力支承21由马达1远端延伸的马达轴22承载。图1显示了现有的滚动体推力支承装置。位于马达机座内的马达电枢径向支承23提供轴向自由度,来承受通过马达传递过来的推力的反作用力。
图3显示了可选择的静液压支承装置。输送给平衡缸的供给压力还通过马达轴中的轴向孔24(由虚线显示),到达静液压支承盘25。节流装置26安装在气流路径内,限制气流的速度。支承盘25采用具有释放中心27的浮动盘形式。凸缘28靠近平的表面29延伸,气压通过凸缘28在支承盘之下聚集,其中平坦表面29设置在承压壳体内。盘释放中心允许汇聚的气体压力在转子下相等地作用在整个暴露区域,抵抗施加的推力。
选择盘25的面积稍大于平衡缸17的面积。轴向力使盘向平直延伸的板靠近,将气流限制到一点上,这点上的压力差足以将盘支持在板上。转子盘凸缘28的下表面具有角度非常小的锥度,而提供流体动力稳定性,防止盘倾斜,并将气流释放到一侧。这个流体动力稳定装置还帮助避免转子与运转表面29机械接触。连接到马达轴上的转子包括两个角自由度,在转子轴旋转时,允许转子精确地符合冲击板相对于转子轴的角度。这显示为结合到轴安装件上的橡胶元件30。它还用于将马达轴的旋转传递到静液压支承转子上。或者可以由具有销旋转驱动装置的球和插口接头代替。
在适于现有的滚动体支承或图3显示的静液压支承的可选择装置中,推力支承32直接安装在平衡活塞33之后,如图4所示。
权利要求
1.一种用于流动转换的多口旋转阀,阀包括转子、定子、压缩机供给管路和压缩机回流管路;其中气体在整个转换循环过程中通过压缩机供给管路提供,从而转子从定子上升起并分离;阀进一步包括平衡缸,来抵消压缩机供给管路产生的压差效应,从而在转子/定子界面上形成气体密封。
2.根据权利要求1所述的阀,其中平衡缸由压缩机供给驱动。
3.根据权利要求1或2所述的阀,进一步包括位移装置,从而一开始就在转子/定子界面上提供密封。
4.根据权利要求1到3任一项所述的阀,进一步包括滚动体支承。
5.根据权利要求1到3任一项所述的阀,进一步包括轴向静液压支承。
6.根据权利要求5所述的阀,其中支承包括浮动盘,具有释放中心,从而盘下聚集的气体大致相等地作用在转子下的区域上,来抵抗施加的推力。
7.根据权利要求6所述的阀,其中盘具有的面积大于平衡缸活塞的剖面积。
8.根据前面任一项权利要求所述的阀,其中转子以两个角自由度连接到电机轴上。
9.根据权利要求4或5所述的阀,其中推力支承直接安装在平衡缸之后。
10.一种脉冲管制冷装置(PTR),PRT包括根据前面任何一项权利要求所述的多口旋转阀,并且包括多个室,而从压缩机供给管路中接收气体。
全文摘要
用于流动转换的多口旋转阀,阀包括转子(2)、定子(7)、压缩机供给管路(7)和压缩机回流管路(6)。在整个转换循环过程中,气体通过压缩机供给管路提供,从而转子从定子(7)上升起并分离。阀进一步包括平衡缸,来抵消压缩机供给管路产生的压差效应,从而在转子/定子界面上形成气体密封。
文档编号F16K11/074GK1412462SQ0215147
公开日2003年4月23日 申请日期2002年10月19日 优先权日2001年10月19日
发明者R·A·赫伦 申请人:牛津磁体技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1