一种用于桶形气缸的密封件的制作方法

文档序号:16813868发布日期:2019-02-10 14:04阅读:179来源:国知局
一种用于桶形气缸的密封件的制作方法

本申请要求根据巴黎公约对2016年3月15日提交的美国临时申请no.62/308,239的优先权;其公开内容通过引用整体并入本文。本申请涉及2006年4月7日提交的韩国专利申请no.10-2006-0031762;其公开内容通过引用整体并入本文。本申请还涉及2012年2月24日提交的pct国际申请no.pct/cn2012/071634;其公开内容通过引用整体并入本文。

本发明涉及活塞技术,具体涉及活塞–气缸密封机构。



背景技术:

活塞是往复式内燃机、往复泵、气体压缩机、气缸和其他类似机械装置的组件。活塞是由气缸容纳的移动部件,并且由活塞环形成气体或液体密封。

活塞环围绕活塞安装,并且一般是橡胶o形环。图1为一种示例的活塞–气缸组件横截面图,其中应用在活塞上的是传统多橡胶o形环密封件。为了通过橡胶o形环实现气缸的有效密封,橡胶o形环必须保持一定的弹性范围。橡胶o形环的弹性是实现密封功能的基本特征。但是,在低于-50℃的温度下,橡胶分子会冻结,橡胶o形圈的弹性会丧失。在高于+250°c的温度下,橡胶分子会渗碳并且弹性也会丧失。因此,橡胶o形环通常设计为在-50℃至+250℃的环境温度范围内操作。

使用橡胶o形环也限制了气缸的最大内部压力。当内部压力高于450kg/cm2时,橡胶被挤出气缸壁和活塞之间的间隙。因此,橡胶o形环密封的活塞–气缸通常设计成在不超过450kg/cm2的内部压力下操作。

克服温度和压力限制的一种现有技术是使用多活塞环设计。在这种设计中,当密封环提供密封功能时,一个或多个辅助环围绕活塞安装,以承受气缸的高内压。密封环还由一个由诸如玻璃纤维增强酚醛树脂之类的硬质聚合物制成的耐磨环辅助,以延长其使用寿命。也可以采用硬质聚合物环来减小密封环和气缸壁之间的摩擦。总共可以有多达16个不同功能的活塞环,导致复杂的机械结构、需要昂贵和复杂的制造工艺。活塞在气缸中的高速往复运动期间无论采用什么材料,使用多个活塞环进行密封会产生巨大的摩擦,这会导致功率损失,气缸内壁的过度刮擦以及缩短气缸寿命。

大多数现代内燃往复式发动机设计成具有略微桶形的气缸。这是因为在上下冲程期间活塞可能严重划伤气缸壁,特别是当活塞在上下冲程过渡时定位在气缸的上端或下端附近时。上端和下端之间的刮擦相对较少。为了补偿刮擦严重程度的差异导致气缸壁的不同腐蚀率,制造气缸使得其横截面内径从中间向上端和下端逐渐变小,类似于桶的形状。在这种情况下,安装在活塞周围的活塞环必须设计成开口的,以便当活塞朝向气缸的任一端行进时它可以收缩,并且当活塞穿过气缸的中间部分时膨胀或扩张。

此外,活塞环仅密封气缸内壁但不密封活塞。泄漏会从活塞顶部区域发生。在内燃机中,这让燃料和润滑油在曲轴箱内部彼此混合,导致不期望的泄露。



技术实现要素:

本发明提供一种使用动态密封装置的活塞-气缸密封方法和装置,从而消除上述性能和制造缺陷。本发明还提供一种动态密封装置,采用适用于桶形气缸的螺旋盘绕(helicalcoiled)密封环。

根据本发明的各种实施例,气缸的活塞和活塞杆装配有螺旋盘绕密封环。由此产生的活塞-气缸机械装置具有更简单的结构,没有众多活塞环而具有更少的部件数量,具有极高的温度耐受性提高了耐用性和更高的性能,增加了内部压力容量,由于活塞-气缸摩擦减少而减少功率损耗,并且极大地减少泄漏。

根据本发明的另一方面,对于规则的圆柱形气缸,螺旋盘绕密封环在整个上下冲程循环期间始终密封活塞和气缸。

附图说明

在下文中参考附图更详细地描述本发明的实施例,其中:

图1为一个示例的活塞–气缸组件横截面图,其中应用在活塞上的是传统多橡胶o形环密封件;

图2为一个实施例中活塞-气缸组件横截面图,其中活塞采用了螺旋盘绕密封件;

图3为本发明实施例的螺旋盘绕密封件的各个c形环示意图;

图4为本发明实施例的用于活塞-气缸组件的螺旋盘绕密封件示意图;

图5为本发明实施例的改进螺旋盘绕密封件的各个c形环示意图;

图6为本发明实施例的由各个c形环构成的改进螺旋盘绕密封件结构示意图;

图7为本发明实施例的改进螺旋盘绕密封件的俯视图、侧视图和仰视图。

具体实施方式

在以下描述中,作为优选实施例阐述了使用螺旋盘绕密封件的活塞-气缸密封的方法和装置。对于本领域技术人员显而易见的是,在不脱离本发明的范围和精神的情况下,可以进行修改,包括添加和/或替换。具体细节可以省略,以免模糊本发明;然而,编写本发明是为了使本领域技术人员能够在不进行过度实验的情况下实践本文的内容。

参见图1和2,活塞-气缸组件仅采用一个活塞-阻塞-密封式螺旋盘绕密封件08,其安装或在径向上紧密环绕活塞块06,代替现有技术中多达11个不同功能的活塞环。在活塞杆密封块04上安装的是单个螺旋盘绕密封件12,而不是现有技术中多达五个不同功能的活塞环,用于密封气缸中的活塞杆05。当活塞-阻塞-密封式螺旋盘绕密封件08安装在活塞块06上时,压缩弹簧09从压缩环07上的弹簧孔中扣住并突出,在活塞-阻塞-密封式螺旋盘绕密封件08上提供压力,以保持螺旋盘绕密封件的源环与气缸壁紧密接触。螺旋盘绕密封件和气缸壁之间的紧密接触,即使不是绝对零泄露,也可以减少泄漏以接近零泄露。

活塞块06和活塞杆05之间的密封由橡胶o形环20提供。螺栓10将活塞块06和压缩环07保持在一起,并且杆螺母11固定活塞块06和压缩环07在活塞杆05的缸内端。

气缸01的连杆端部02通过系紧螺栓17固定在气缸上。活塞杆05的连接端03通过螺纹15固定在活塞杆05上,螺纹15位于连接端03和活塞杆05的暴露端上。

活塞杆密封块04通过系紧螺栓16固定在气缸01的内壁上。活塞杆05放置在活塞杆密封块04的中心开口内。活塞-阻塞-密封式螺旋盘绕密封件12围绕活塞杆密封块04的中心开口的向内侧安装。压缩弹簧14,其从压缩环13上的弹簧孔扣住并突出,在活塞-阻塞-密封式螺旋盘绕密封件12上提供压力,以保持螺旋盘绕密封件的源环紧密地接触气缸壁。螺旋盘绕密封件和活塞杆表面之间的紧密接触,即使不是绝对零泄露,也可以减少泄漏以接近零泄露。

参见图3和4,上述螺旋盘绕密封件由多个c形(或部分圆形)环形成,这些环彼此端对端连接以形成螺旋盘结构。在一个实施例中,c形环使用焊接形式的燕尾连接被端对端的连接起来。

为了密封活塞-气缸组件,使用三组c形环来形成螺旋盘绕密封件。一组c形环用于密封活塞(活塞密封部分401)。活塞密封段环的内径略小于活塞直径,使得它们紧密围绕活塞表面并密封,同时它们的外径与连接段环的外径相同,小于气缸内径使得它们永远不会接触气缸表面。

第二组c形环用于连接活塞密封段环和其间的气缸密封段环(连接段环402)。这些连接段环的内径大于活塞,因此它们不会接触活塞表面,同时它们的外径小于气缸内径,因此它们也不会接触气缸内壁。因为这些连接段环悬置在活塞表面和气缸内壁上,所以它们还起到振动吸收层的作用。

第三组c形环用于密封气缸内壁(气缸密封部分403)。这些气缸密封段环的外径略大于气缸内径,因此它们从各个方向推压气缸内壁以密封它,同时其内径与连接段环的内径相同,比活塞直径大,从而不会接触活塞表面。

因为每个c形环仅是部分圆形。为了提供有效的密封功能(与密封表面380度接触),活塞密封部分中至少需要两个c形环,并且在气缸密封部分中至少需要两个c形环。连接部分至少需要一个c形环,因此,用于密封活塞-气缸组件的完整螺旋盘绕密封件具有至少五个c形环。

螺旋盘绕密封件的连接部分允许活塞-气缸组件中大的错位公差,因为在高速的上下行程运动时,该部分中的环可在横向方向上移动、摆动以吸收由活塞和气缸之间的错位引起的振动和横向运动。这样,螺旋弹簧密封件中连接部分的存在也减少了由于活塞销、曲柄销和曲轴中心之间的错位引起的不需要的扭矩。

密封环与相应的活塞表面和气缸内壁接触部分之间的直径差异很小。施加在密封接触处的横向力是温和但连续的,因此在密封接触表面上产生的摩擦可忽略。这反过来减少了气缸内壁上的刮擦和腐蚀。

如果螺旋盘绕密封件横向加宽,则两端的带子将缩短以补偿螺旋结构的直径变化。反之亦然,如果螺旋盘绕密封件被横向挤压,则两端的带子将拉长。这种设计提供了高度的灵活性,并最大限度地减小了施加在密封接触表面上的横向力。在润滑油的帮助下,螺旋弹簧密封件沿气缸内壁表面平滑移动。气缸内壁上的刮擦减少到最小。

在一个实施例中,螺旋盘绕密封件由铜、磷青铜或具有高传热特性的其他合金制成。这有助于通过将燃烧室中燃料爆炸的巨大热量传递到发动机机身以冷却活塞。

螺旋盘绕密封件的每个密封层里的多个盘绕环保证了完美的密封性能。例如,在活塞表面上,活塞密封部分中的每个环围绕密封接触表面密封整个360度。如果发生泄漏,用于密封密封接触表面的相邻环会阻止泄漏。如果仍然存在泄漏,则密封密封接触表面的第二相邻环进一步阻止泄漏,等等。这消除了在使用活塞环时承受的渗漏问题。完全密封的活塞-气缸组件可以将燃料与润滑油完全分离,因此没有润滑油渗入燃烧室以污染纯燃料。完全密封的活塞-气缸组件阻止未燃烧的燃料和废气泄露到曲轴箱中,因此不需要处理漏气并且排气中不会产生烟雾。结果是更清洁的发动机具有更高效的动力输出。

回到桶形气缸。安装在活塞周围的活塞环必须设计成开口的,以便当活塞朝向气缸的较窄顶端和底端行进时能够收缩,并且当活塞穿过气缸的较宽中间部分时膨胀或扩张。因此,活塞在桶形气缸中上下行程循环期间,代替应用于桶形缸活塞-气缸组件的活塞环的螺旋盘绕密封件也必须能够收缩和扩张。

然而,由于包括多个c形环层的螺旋盘绕结构,其结构在桶形气缸活塞-气缸组件中的收缩和扩张所需大量时间是有问题的。这是因为结构上的收缩和扩张必定在密封件的许多层之间均匀分布,并且当今内燃机的高rpm仅容许螺旋盘绕密封件非常短的时间作出响应。多层螺旋盘绕密封件的径向张力导致气缸密封段环中的扩张太慢,使得活塞行进期间在桶形气缸的中间部分,与气缸内壁完全接触。因此,发生严重泄漏。

为了增加螺旋盘绕密封件的收缩-扩张响应时间,必须使用更少数量的环层。一个实施例是螺旋盘绕密封件中的气缸密封部分仅使用一个环以及活塞密封部分使用一个环。然而,因为每个环仅是部分圆形的,所以仅由三个c形环制成的螺旋盘绕结构在其密封接触(与密封表面的接触小于380度)上会有间隙,从而破坏其密封功能。

根据本发明的一个实施例,提供了一种改进螺旋盘绕密封件。改进螺旋盘绕密封件包括用于其连接部分的改进c形环(改进连接c形环)。参考图5和图6,在连接到活塞密封c形环的改进连接c形环的一端,内翼501从内周水平延伸。改进连接c形环内周的内翼501的延伸量(或宽度)是这样的:当活塞密封c形环连接到改进连接c形环时,内翼501的内周与活塞密封c形环的内周对齐。内翼501的长度比活塞密封c形环的间隙(或开口)长。这样,一旦活塞密封c形环与改进连接c形环连接,内翼501就成为活塞密封部分的一部分。与活塞密封c形环一起,活塞密封部分能够等于或大于360度包围活塞表面,完全密封活塞表面。

改进连接c形环的另一端是外翼502。改进连接c形环外周的外翼502的延伸量(或宽度)是这样的:当气缸密封c形环连接到改进连接c形环时,外翼502的外周与气缸密封c形环的外周对齐。外翼502的长度比气缸密封c形环的间隙(或开口)长。这样,一旦气缸密封c形环与改进连接c形环连接,外翼502就成为气缸密封部分的一部分。与气缸密封c形环一起,气缸密封部分能够等于或大于360度推动或接触气缸内壁,完全密封气缸内壁。

在仅有三个c形环构成的改进螺旋盘绕密封件的情况下,必须对螺旋盘绕结构采用适当的垂直压缩,以确保所有环彼此紧密接触。这对于避免螺旋盘绕密封件的环层之间泄漏是必需的。垂直压缩力可由安装在保持件中的弹簧提供。

出于说明和描述的目的提供了本发明的上述内容。其并非旨在穷举或将本发明限制于所公开的精确形式。许多修改和变化对于本领域技术人员来说是显而易见的。

选择和描述实施例是为了最好地解释本发明的原理及其实际应用,从而使得本领域其他技术人员能够理解本发明的各种实施例并且具有适合于预期的特定用途的各种修改。本发明的范围旨在由以下权利要求及其等同内容限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1