低温容器、超导磁能储存系统、以及用于屏蔽低温流体的方法

文档序号:5814534阅读:374来源:国知局
专利名称:低温容器、超导磁能储存系统、以及用于屏蔽低温流体的方法
技术领域
本发明大体上有关用于储存低温流体的低温容器。本发明亦有关使用低温容器的超导磁能储存(SMES)。本发明亦有关用于屏蔽低温流体隔离热能的方法。
背景技术
低温容器,诸如杜瓦式容器和低温槽,是用于储存低温流体,诸如液态的氮、氧、氢和氖。一传统式的低温容器包含内槽,其建构成容纳该低温流体;以及一外槽,其建构成提供热屏障于该低温流体以及外界之间。除此之外,该外槽形成一环绕该内槽的环形区域,其中容纳有绝热体,且在某些系统中包含真空。
低温容器一般是由医院和工业应用所使用,在此可携带性和小型化并非为主要的考量。低温容器亦使用于运输工业中的船或车辆上,诸如油罐卡车或轨道车辆。在运输工业中,可携带性和小型化为更重要的课题,但考虑到车辆的大小,则并非为主要的考量。
低温容器亦使用于另类燃料车辆(AFVs-alternative fueled vehicles),诸如汽车和卡车,以储存用来当作该车辆的燃料的低温流体。在此情况中,该低温流体可以是液化天然气(LNG)、压缩天然气(CNG)或是液化石油气(LPG)的形式。另类燃料车辆(AFVs)的发展已由1990年的大气清净法(Clean Air Act)和1992年的能源政策法(Energy Policy Act)鞭策。除此之外,发展中国家,诸如中国大陆,相较于传统汽油和柴油车辆,其选择支持另类燃料车辆(AFVs)的政策。在另类燃料车辆(AFVs)中,低温容器的可携带性和小型化则为主要的考量。除此之外,因为低温流体必须储存数天或更长的时间,此低温容器必须具备抵抗热从外界传至低温流体的高阻热性。
利用低温容器的另一种科技则为低温超导性。超导材料具有传导电流时不会有能量损失或电阻热产生的能力。除此之外,超导材料表现出的磁性特性在于其容许超过20特斯拉的磁场产生。低温超导磁铁是使用于医学应用的核磁共振影像系统,以及用于实验室中的实验应用。在这些应用中,低温容器是用于保持超导性所需要的低温。
近来,超导体,诸如二硼化镁(MgB2),已被发现可在接近40K的温度表现出超导性。虽然这是低温,相较于传统超导体(诸如铌合金,其需要大约23K的温度)所使用的技术来达到超导性,其可使用较不昂贵的技术来达成。
除了使用于核磁共振影像系统,超导磁铁可使用于储存磁能。此技术为现有习知的超导磁能储存(SMES)。举例来说,属于Logan的美国专利第5,146,383号名称为“模组化超导磁能储存感应器”是揭露一种超导磁能储存系统。属于Nick的美国专利第6,222,434 B1号名称为“超导环磁系统”亦揭露一种超导磁能储存系统。一般而言,这些先前技艺的超导磁能储存系统为直径数百呎的大型不可携带的装置。如果超导磁能储存系统的大小能减少的话,这些技术可使用于运输和另类燃料车辆工业,以及其它的应用。
本发明是有关所有尺寸的低温容器,但更特别地是有关可携带,但仍具有低热传导性,以及高度热屏蔽能力的低温容器。此外,本发明是有关一种使用该低温容器的可携带超导磁能储存系统。再进一步地,本发明是有关一种屏蔽低温流体隔离热能的改进的方法。

发明内容
根据本发明,一种改进式低温容器、一超导磁能储存系统,以及用于屏蔽低温流体的改进方法是被提供。
该低温容器包含一建构成容纳在选定的温度范围的低温流体的内容器。该低温容器亦包含一环绕该内容器的外容器,以及一介于该内容器和外容器之间的环形区域,其建构成容纳一绝热材料和/或真空。该内容器包含在选定温度范围具有超导特性的材料所形成的超导层。
在绘示的实施例中,该内容器包含金属圆筒,且该超导层覆盖于该内容器的内表面(ID)或外表面(OD)上。较佳地,该超导层包含一低温超导材料,诸如二硼化镁、铌合金、氧化铜或是BCS超导体。该超导层产生一磁场,其屏蔽该低温流体隔绝电磁能,减少从外界传导的热,并且将该低温流体维持在低温。
在低温容器中的热传递是由数个因素影响,包含,但非限制,冷表面的红外线加热,从暖表面到冷表面的气体分子的传导传热,以及经由用于该内容器的支撑结构的传导传热。由该超导层所产生的磁场减少了因为冷表面的红外线加热的热传递。在环形区域中的绝热体亦减少从外界到低温流体的热传递。
该超导磁能储存系统包含该低温容器以及一在该内容器中的超导磁能储存磁铁,其建构成储存电能。该超导磁能储存系统亦包含在外容器上的电连接器,其建构成连接至一能量源,以传递电能至该超导磁能储存磁铁之中,或是连接至一负载,用于从该超导磁能储存磁铁中取出储存的电能。该超导磁能储存系统亦可包含一再填充器以及一低温冷却器,其建构成能将低温流体再填充至该低温容器。
该方法包含以下步骤提供用于容纳在选定温度范围的低温流体的低温容器;提供在选定温度范围具有超导特性的层于该低温容器上;并且使用该层来屏蔽低温流体隔绝电磁能。


图1A是根据本发明建构的低温容器的示意剖面图。
图1B是沿图1A中剖面线1B-1B截取的低温容器的示意剖面图。
图1C是沿图1B中剖面线1C-1C截取的放大示意剖面图,其绘示出在该低温容器的内壁上的一超导层。
图1D是沿图1B中剖面线1C-1C截取的放大示意剖面图,其绘示出在该低温容器的外壁上的一超导层。
图2A是根据本发明建构且使用该低温容器的一超导磁能储存系统的示意剖面图。
图2B是沿图2A中剖面线2B-2B截取的超导磁能储存系统的示意剖面图。
图2C是沿图2B中剖面线2C-2C截取的放大示意剖面图,其绘示出在该超导磁能储存系统上的一超导层。
图2D是沿图2B中剖面线2D-2D截取的放大示意剖面图,其绘示出在该超导磁能储存系统上的一超导层。
图3是该超导磁能储存系统的一该超导磁能储存磁铁的示意图。
图4是绘示本发明的方法的步骤的方块图。
10低温容器12外容器14内容器 15纵轴16低温流体17多层绝热体18环形区域19外表面20液面21内表面22超导层 23界面管24超导磁能储存系统26低温容器28外容器 30内容器32环形区域33绝热体34低温流体35界面管36超导层 37液面38超导磁能储存磁铁39外表面40低温冷却器 41内表面
42再填充器46蓄积线圈48线圈区段50输入/输出电子连结器52填充口 54控制电路具体实施方式
请参照图1A至图1D,其绘示出根据本发明而建构的一低温容器10。该低温容器10包含一外容器12,以及一悬置于该外容器12之中的内容器14。该外容器12以及该内容器14大体上为圆筒状造形,而形成具有视需要选定的内容积的流体密封槽。若不是圆筒状,该外容器12以及内容器14可以具有别种形状,例如立方形。
该外容器12以及内容器14两者皆可包含通常使用于建构杜瓦式(Dewar-type)低温槽的任何材料,例如钢、不锈钢,或是非磁性不锈钢。除此之外,该内容器14可以使用任何传统结构,诸如支撑杆或支撑环(未显示),而悬置于外容器12之中。
因为低温容器10的尺寸为可携带性的关键,对于可携式应用而言,较佳地,该低温容器10的直径是从1公分到1公尺,长度从5公分到2公尺。然而,这些尺寸并非固定,而且对于非可携带应用而言,可以增加至数百呎。除此之外,对于可携带应用而言,该低温容器10可用于容纳10cc.(立方公分)至1m3(立方公尺)体积的低温流体16。一般而言,大于此范围的容器尺寸会不利地影响低温容器10的可携带性,以及其在运输系统中的使用,特别是另类燃料车辆(AFVs)。然而,对于非可携带式应用而言,容纳体积可随着低温容器10尺寸的增加而大大地增加。
如图1A以及图1B中所显示,该低温流体16是容纳于内容器14之中。在本文中所使用的“低温流体”是代表具有温度在0.001K至200K之间的流体。根据应用,该低温流体16可包含任何在低温温度的流体。作为范例而非限制,典型的低温流体包含氮、氧、氢、氖以及这些元素的化合物。在所绘示的实施例中,该低温容器10是定位成水平方向(意即,平行于地面),因此低温流体16具有液面20,其大体上为水平,且平行于该低温容器10的一纵轴15。或者,该低温容器10可垂直地定位,在这种情况中,液面20大体上将正交于纵轴15。
该低温容器10亦包含一环形区域18于外容器12以及内容器14之间。该环形区域18是用于容纳真空,以及一多层绝热体17,诸如铝/麦拉(Al/mylar)和达克纶网(Dacron netting)。该低温容器10亦包含一界面管23,其沿着纵轴15延伸,几乎跨越纵轴15整个长度。该界面管23可包含控制装置(诸如感测器和关闭阀)以及安全装置(诸如减压安全阀)。该界面管可包含强度/热传导性为高比例的材料,诸如玻璃纤维/环氧树脂复合物。除此之外,该界面管23可包含外真空套(图中未显示)。
该低温容器10亦包含一超导层22,该超导层22包含一材料,其温度在相当于该低温流体16的温度范围时具有超导特性。较佳地,该超导层22包含一低温超导体,其中低温是界定为从0.1K至150K。合适的低温超导体包含二硼化镁、铌合金、以及氧化铜合金,诸如稀土氧化铜(RECuOx-rare earth copper oxide)。其他合适的超导体包含碳材料、陶瓷材料,以及掺杂材料,诸如掺杂有碳化硅的二硼化镁(例如MgB2Six)。一般而言,超导层22可包含任何BCS超导体,其中BCS代表超导体先驱John Bardeen,Leon Cooper和Robert Schrieffer名字的首字。此外,超导层22可包含多层材料,诸如具有不同磁性或电气特性的不同超导体。
如显示于图1C中,该超导层可覆盖该内容器14的外表面19(换言之,即外直径-outside diameter,OD)。或者,如显示于图1D中,该超导层22可覆盖该内容器14的内表面21(换言之,即内直径-inside diameter,ID)。或是再另一种情况,该超导层22可同时覆盖内容器14的外表面19和内表面21两者。
该超导层22可使用合适的被覆、沉积或层迭加工,诸如化学蒸气沉积(CVD)、机械制合金、或烧结。除此之外,如前文提及,该超导层22可包含单层材料,或是多堆迭层材料。超导层22的厚度T可视需要选择,从0.1μm到1公尺为典型的范围。或者,该超导层22可包含分离元件,诸如外覆或内衬,其包围或加衬该内容器14,但并非永久地附着。一般而言,该超导层22可包含任何质量的超导材料,其配置成能提供对于低温流体任何部位的屏蔽结构。
该超导层22需要低温以表现超导特性。举例来说,以铌为主的合金需要大约23K的温度来表现超导特性。相对于其他超导体而言,二硼化镁则需要较暖的温度,约40K。在本例中,当超导层22借由低温流体16冷却时,可以达到这些温度。
举例来说,低温流体16最初被注入至内容器14之中是在0.1K到150K的温度。随后,低温流体16会将超导层冷却至实质相同的温度。一旦超导层22到达其临界温度“Tc”且进入超导状态,一磁场将围绕着低温容器10产生。此磁场将屏蔽电磁能,包含热能和红外线辐射能而保护该低温流体16,将低温流体16保持在所希望的低温。该超导层22因此防止热经由辐射从外界传导通过内容器14至低温流体16。
由本发明人的理论来说,借由超导层22所产生的磁场经由麦士纳效应(Meissner effect)和完全反磁性(pure diamagnetism)两者或其中之一而抑制进来的电磁能。磁场的强度是根据场强(field strength)、电流密度以及超导层22的同调性(coherence)。同时,理论上而言,由超导层22所产生的磁场的排斥效应(repellent effect)缓和了进入的短波辐射的加热效应。该热绝体17,除了提供热绝缘之外,亦减弱磁通跳跃(flux jumping)并且提供由超导层22所产生的磁场的磁性稳度。
已知的是,超导状态无法存在于磁场大于一临界值的时候。此临界磁场是强烈地与超导体材料的临界温度相互关联。当施加的磁场并未超过其临界磁场时,超导体自然地排除磁场。此临界磁场可设定在0K,并且随着温度的增加而减少强度,在超导特性的临界温度时到达0。低于临界温度的临界磁场是具有以下的关系Bc≅Bc(0)[1-(T/Tc)2]]]>其中T代表材料目前的温度,Tc代表材料的临界温度,在此温度材料失去其超导特性,而Bc(0)代表材料在0K时的磁场。
麦士纳效应说明,当材料从正常转变至超导状态时,其主动地从其内部排除磁场。此强制超导体内部为零磁场是与完全反磁性有所区别,其是由零电阻引起。借由零电阻,其意味着如果欲磁化一超导体,电流回路将会产生而完全地消除所施加的磁场。然而,若材料已经具有通过其本身的稳定磁场,当材料被冷却而经过超导转变时,该磁场将预期仍会保留。如果所施加的磁场没有变化,其将不会有产生的电压来驱动电流,甚至在完全导体中。因此,磁场的主动排除必须认为是不同于零电阻的效应。
该超导层22发展一磁场,其产生无摩擦电流。麦士纳效应排斥电磁能,包含在红外线区域中的波。由低温流体16的低温温度而赋予的磁场可具有5Telis的强度。除此之外,因为超导区的零电阻特性,维持5Telis电流的必要能源是非常小的。
请参照图2A至图2D,其是绘示根据本发明的一超导磁能储存系统24。该超导磁能储存系统24包含一低温容器26,其实质上类似于前述的低温容器10(图1A)。该低温容器26包含一外容器28、一内容器30、一环形区域32、以及一绝热体33,其实质上如前述的外容器12(图1A)、内容器14(图1A)、环形区域18(图1A)以及绝热体17(图1A)。除此之外,一具有液面37的低温流体34是被容纳于该内容器30之中,实质上类似于前述的低温流体16(图1A)以及液面20(图1A)。该低温容器26亦包含一界面管35,其实质上类似于前述的界面管23(图1A)。
该低温容器26(图2A)亦包含一超导层36(图2C至图2D),其形成于内容器30(图2C)的一外表面39(图2C)上,或是形成在内容器30(图2D)的一内表面41上(图2D)。该超导层36(图2C至图2D)较佳地包含一低温超导体材料,其实质上类似于前述的超导层22(图1C至图1D)。
该超导磁能储存系统24(图2A)亦包含一超导磁能储存磁铁38(图2A),其悬置于该内容器30(图2A)之中,且浸没于该低温流体34中(图2A)。该超导磁能储存磁铁38(图2A)包含一超导材料,缠绕于该界面管35(图2A)的周围。除此之外,该超导磁能储存磁铁38(图2A)包含一输入/输出电子连结器50(图2A)于该界面管35上(图2A),用于传输电能进入或离开该超导磁能储存磁铁38(图2A)。
该超导磁能储存系统24(图2A)亦可包含一可携式再填充器42(图2A),其建构成能再填充低温流体24(图2A)于低温容器26(图2A)。该再填充器(图2A)建构成能与界面管35(图2A)上的一填充口52(图2A)作可移除式密封接合。除此之外,该再填充器42(图2A)可包含一压缩机(图中未显示),其建构成将一低温气体压缩成高压(例如,1000至3000psig),以用于注入至低温容器26之中(图2A)而形成低温流体34(图2A)。该再填充器42(图2A)亦可包含一被动冷却元件,诸如一冷指(cold finger,图中未显示),以促进加压的低温气体传送至界面管35(图2A)上的填充口52(图2A)。
该超导磁能储存系统24(图2A)亦可包含一主动可携式低温冷却器40(图2A),其建构成将一流体冷却至低温温度,并且将流体34传输至该再填充器42(图2A)。该低温冷却器40(图2A)亦可包含一电源供应器(图中未显示),诸如一12伏特直流电池,用于供给用于冷却流体的能源。除此之外,该低温冷却器40(图2A)可包含一热交换器(图中未显示)和一焦耳-汤姆生膨胀阀(Joule-Thompson expansion valve,图中未显示)用来冷却该流体,以及一用于可移除地将该低温冷却器40(图2A)连接至再填充器42(图2A)的配件。
该超导磁能储存系统24(图2A)可用于从手提式电子产品到用于车辆的供给能源中任何需要可携式能源的应用。举例来说,该超导磁能储存系统24(图2A)可用于当作一另类燃料车辆(AFV)的动力源。在此情况中,该低温流体34(图2A)可包含液态氢,该低温冷却器40(图2A)可用于形成超临界氢,且该再填充器42(图2A)可用于形成压缩氢气体。作为范例而非限制,该超导磁能储存系统24(图2A)可以建构成提供一大约1000A的超导磁能储存电流、大约2.1MJ(amp hrs)的储存能量、大约200kW的电力、8秒的积存时间(carry over time)、800v的直流链电压、4.5T的磁场、4.1H的感应率以及760mm/600mm的磁铁直径。
如显示于图3中,该超导磁能储存磁铁38包含复数个超导蓄积线圈46。每一个蓄积线圈46包含复数个线圈区段48,其连结在一起并且电气地连接以形成该蓄积线圈46。除此之外,每个蓄积线圈46可包含由超导体材料所形成的电线或层。一个超导电线材料包含掺杂二硼化镁的碳化硅。此材料已经由澳洲新南威尔士州卧龙岗(Wollongong)市的卧龙岗大学的超导和电子材料研究所使用发展超导磁铁。
如亦显示于图3中,该超导磁能储存磁铁38可包含控制电路54,其建构成从超导磁能储存磁铁38取出能源,或者输入能源到超导磁能储存磁铁38之中。举例来说,在填充模式中,该控制电路54容许该超导磁能储存磁铁38储存能源,而在排放模式中,该控制电路54容许该超导磁能储存磁铁38放出能源。
该超导磁能储存系统24(图2A)亦可包含额外的感测器和电路于低温容器26的各种元件上和界面管35之中。举例来说,额外的感测器和电路(例如,瓦特计)可以用来测量电流和电压输入或输出。将温度感测器置于绝热体33和其它各种表面上,额外的感测器和电路亦可用于测量在具有超导性或不具超导性时的热传递(意即,MLI接触电阻、支撑结构传导、自由分子气体传导)。除此之外,感测器和电路可用于执行该低温流体34的蒸发损失(boil-off)测量。虽然感测器和电路会产生额外的热能,该系统24可建构成消除和减轻此额外热能的影响。
请参照图4,其绘示出本发明的方法的概略步骤。这些步骤包含提供用于容纳在选定温度范围的低温流体16的低温容器10;提供超导层22于低温容器10上,其在选定的温度范围具有超导特性;使用该超导层22来屏蔽该低温流体隔绝电磁能。
因此,本发明提供一种低温容器、一超导磁能储存系统和一用于屏蔽低温流体的方法。虽然本发明参照某些较佳实施例作说明,在此技术领域中具有通常知识者可了解的是,在不背离本发明的范踌下可达成某些在所附的权利要求界定的改变和修饰。
权利要求
1.一种低温容器,其特征在于其包含至少一个容器,其建构成容纳在选定温度范围的低温流体;以及一材料,其位于该容器上,且在选定的温度范围具有超导特性。
2.根据权利要求1所述的低温容器,其特征在于其中该至少一个容器包含一内容器,该内容器被一外容器环绕,且该材料覆盖该内容器的表面。
3.根据权利要求1所述的低温容器,其特征在于其中,该低温流体包含任何在低温温度的流体。
4.根据权利要求1所述的低温容器,其特征在于其中,该至少一个容器是建构成容纳体积从10cc到1m3的低温流体。
5.根据权利要求1所述的低温容器,其特征在于其中,该材料包含低温超导体。
6.根据权利要求1所述的低温容器,其特征在于其中,该至少一个容器是建构成杜瓦式容器。
7.一种低温容器,其特征在于其包含一内容器,其建构成容纳在选定温度范围的低温流体;一外容器,其围绕该内容器,而形成一环形区域于该内容器以及该外容器之间;以及一层,其位于该内容器上,包含在选定的温度范围具有超导特性的材料。
8.根据权利要求7所述的低温容器,其特征在于其中,该层实质地覆盖该内容器的一外表面。
9.根据权利要求7所述的低温容器,其特征在于其中,该层实质地覆盖该内容器的一内表面。
10.根据权利要求7所述的低温容器,其特征在于其中,该内容器是用于容纳体积从10cc到1m3的低温流体。
11.根据权利要求7所述的低温容器,其特征在于其中,该环形区域包含一绝热体以及真空。
12.根据权利要求7所述的低温容器,其特征在于其中,该材料包含低温超导体。
13.根据权利要求7所述的低温容器,其特征在于其中,该材料包含从下列群组所选出的化合物二硼化镁、铌合金、氧化铜、BCS超导体、稀土氧化铜、碳材料、或是陶瓷材料。
14.根据权利要求1所述的低温容器,其特征在于其中,该材料包含二硼化镁。
15.一种用于储存电能的系统,其特征在于其包含一内容器,其建构成容纳在选定温度范围的低温流体;一外容器,其围绕该内容器,而形成一环形区域于该内容器以及该外容器之间;一材料,其位于该内容器上,在选定的温度范围具有超导特性;以及一在内容器中的超导磁能储存磁铁,其建构成储存电能。
16.根据权利要求15所述的系统,其特征在于其进一步包含一再填充器,其建构成注入一压缩低温空气至该内容器中,用于再填充该低温流体。
17.根据权利要求16所述的系统,其特征在于其进一步包含一低温冷却器,其建构成提供超临界流体至该再填充器。
18.根据权利要求15所述的系统,其特征在于其中,该材料包含一层,该层实质地覆盖该内容器的一外表面。
19.根据权利要求15所述的系统,其特征在于其中,该内容器是建构成容纳体积从10cc到1m3的低温流体。
20.根据权利要求15所述的系统,其特征在于其中,该环形区域包含一绝热体以及真空。
21.根据权利要求15所述的系统,其特征在于其中,该材料包含二硼化镁。
22.根据权利要求15所述的系统,其特征在于其中,该材料包含从下列群组所选出的化合物二硼化镁、铌合金、氧化铜、BCS超导体、稀土氧化铜、碳材料、或是陶瓷材料。
23.根据权利要求15所述的系统,其特征在于其中,该超导磁能储存磁铁包含至少一个蓄积线圈,该蓄积线圈包含一超导电线。
24.根据权利要求23所述的系统,其特征在于其中,该超导电线包含掺杂二硼化硅。
25.一种用于屏蔽一低温流体隔绝电磁能的方法,其特征在于其包含提供一低温容器,其用于容纳在选定温度范围的低温流体;提供一材料于低温容器上,该材料在选定的温度范围具有超导特性;以及使用该材料来屏蔽该低温流体,防止电磁能。
26.根据权利要求25所述的方法,其特征在于其中,该低温容器包含一内容器,其建构成容纳该低温混合物,并且该材料实质上覆盖该内容器的一外表面。
27.根据权利要求25所述的方法,其特征在于其中,该低温容器包含一内容器,其建构成容纳该低温混合物,并且该材料实质上覆盖该内容器的一内表面。
28.根据权利要求25所述的方法,其特征在于其中,该环形区域容纳一绝热材料和一真空。
29.根据权利要求25所述的方法,其特征在于其中,该环形区域容纳一绝热材料。
30.根据权利要求25所述的方法,其特征在于其中,该材料包含二硼化镁。
31.根据权利要求25所述的方法,其特征在于其中,该材料包含从下列群组所选出的化合物二硼化镁、铌合金、氧化铜、BCS超导体、稀土氧化铜、碳材料、或是陶瓷材料。
32.根据权利要求25所述的方法,其特征在于其中,该低温容器是建构成容纳体积从10cc到1m3的低温流体。
全文摘要
一种低温容器(10),其包含一用于容纳低温流体(16)的内容器(14),和一用于将低温流体与外界隔绝的外容器(12)。该内容器(14)包含一由在该低温流体(16)的温度时具有超导特性的材料所形成的超导层(22)。该超导层(22)形成环绕该低温容器(10)的磁场,其防止来自外界的电磁能,包含热能,而将该低温流体(16)保持在低温。该低温容器(10)具有可携带性以及容许其使用于手握式电子产品到诸如另类燃料车辆(AFVs)中的体积。一超导磁能储存系统(24)包含一低温容器(26),以及一悬置于低温流体(34)之中的超导磁能储存磁铁(38)。该超导磁能储存系统(24)亦可包含一再填充器(42)以及一低温冷却器(40),其建构成能将低温流体(34)再填充至该低温容器(26)。
文档编号F17C13/08GK1985120SQ200580023548
公开日2007年6月20日 申请日期2005年5月19日 优先权日2004年5月19日
发明者葛莱格利·J·伊根 申请人:葛莱格利·J·伊根
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1