容器填充系统和用于容器填充系统的阀的制作方法

文档序号:18451759发布日期:2019-08-17 01:19阅读:254来源:国知局
容器填充系统和用于容器填充系统的阀的制作方法

相关专利申请的交叉引用

本申请要求2013年3月22日提交的、名称为“(通用填充系统和用于通用填充系统的阀)”的美国临时专利申请61/804,452的优先权。专利申请61/804,452全文以引用方式并入本文中。



背景技术:

饮料产品是用于人类消费的产品类别,通常是用于饮用。饮料产品通常放置在某些类型的初级包装中以进行分配和销售。初级包装可以包括各种容器类型中的任何类型。实例包括由PET(聚对苯二甲酸乙二醇酯)、HDPE(高密度聚乙烯)或其它塑料制成的瓶、玻璃瓶、铝瓶、罐等。即便用于单个类型的产品,初级包装也可以具有宽范围的尺寸和形状。

用于用饮料产品填充初级包装容器的系统通常包括填充阀,该填充阀起动和停止产品流入到正在被填充的容器中。填充阀通常连接到所讨论的用以保持较大量的饮料产品的罐或其它类型的贮存器。填充容器的方式随着不同类型的饮料产品而变化。对于某些类型的饮料产品,容器可以进行冷填充。在冷填充过程中,产品在处于冷冻或室温状态的同时被分配到容器中。对于某些类型的饮料产品,容器进行温填充或热填充。在这些类型的填充过程中,产品在处于加热状态的同时被分配到容器中。一些其它类型的饮料产品必须在无菌条件下放置到无菌容器中,这是被称为无菌填充的过程。

当前的用于用饮料产品填充初级包装容器的系统被设计成处理较窄范围的产品类型和填充情形。例如,大多数填充系统被设计成仅仅用于冷填充、温/热填充、延长保存期限填充、高酸性无菌填充或低酸性无菌填充中的一种。作为另一个例子,可获得的填充系统被设计成用处于相当窄的粘度范围内的产品来填充容器。常规的系统还受限于可能存在于产品中的内含物的类型、尺寸和浓度。当用不是低粘度的产品(例如,如果产品粘度大于大约20厘泊)或包括内含物的产品填充容器时,许多这样的常规系统还必须以显著降低的速度进行操作。

这些限制严重局限了能够用单个填充系统成功进行包装的产品空间。这继而限制了昂贵的生产设施的灵活性和有效性。如果产量显著下降或者如果不再要求产品类型,那么转换为能够用于用不同类型的饮料产品填充容器的设备可能是昂贵且耗时的。饮料填充系统的制造商宁愿向工厂提供若干填充系统以填充宽范围的产品(也就是提供多个饮料填充平台),而不是提供能够处理宽范围产品的单个填充器。



技术实现要素:

本发明内容旨在以简化形式引入构思的选择,在下文的具体实施方式中对此做进一步描述。该发明内容并不是用来确定本发明的关键特征和必要特征。

实施例包括容器填充阀。填充阀可以包括磁性地联接的穿梭物和驱动套筒。驱动套筒的运动可以使穿梭物从填充阀关闭的位置运动到填充阀打开的位置。

实施例还包括容器抓握臂。臂可以包括被构造成用以保持容器的远侧端部和包括测力传感器的近侧端部。臂可以进行调节,以改变容器施加的载荷和施加在测力传感器上的载荷之间的比。在一些实施例中,可以自动地执行臂的调节。

实施例还包括低流量设定点系统。该系统可以被构造成用以在填充阀部分关闭时阻止该填充阀关闭。该系统可以是可调节的,并且可以包括流体致动器,该流体致动器被构造成用以阻止阀穿梭物的运动。

实施例还包括压力控制系统。该系统可以被构造成用以保持贮存器中的期望压力或者来自该贮存器的流动路径中的期望压力。该系统可以被构造成用以保持为真空的期望压力。

实施例额外包括产品再循环系统,在例如热填充操作期间可以使用该产品再循环系统。该系统可以被构造成用以调节产品再循环系统中的流量。在一些实施例中,可以通过调节变速泵的流量来调节该流量。在其它实施例中,可以以其它方式来调节该流量。

实施例包括填充系统,该填充系统可以被构造成用以在多种类型的填充条件下用各种各样的产品填充各种类型的容器。产品的粘度可以在从1厘泊(cps)至400cps的范围内。产品还可以包含有内含物。内含物可以采取块或颗粒的形式,其尺寸大到10立方毫米和/或其体积大到1000立方毫米。这样的内含物可以小到1毫米,例如配合在1毫米x1毫米x1毫米的方块中的内含物。内含物还可以采取长度长至10毫米的浆囊和长度长至20毫米的纤维的形式。产品可以包含多种类型的内含物(颗粒、块、浆和/或纤维)。内含物在产品中的体积百分比可以高达50%。

实施例包括使用本文所述的装置和系统的方法。

本文描述了额外的实施例。

附图说明

在附图中以举例的方式而非限制性地示出了某些实施例,其中相同的附图标记表示相似的元件。

图1A为填充器单元和对应容器抓握臂的左侧视图。

图1B为图1A的填充器单元和容器抓握臂的前视图。

图2为转盘式饮料产品容器填充系统的局部示意性俯视图,其包括图1A的填充器单元和抓握臂。

图3A至3F分别为图1A的填充器单元的放大前视图、左视图、右视图、后视图、左透视图和右透视图。

图3G为图1A的填充器单元的放大左后透视图,但是移除了某些部件。

图4A为从图3A所示的位置截取的局部横截面图。

图4B是与图4A类似的横截面图,其中填充阀处于打开状况。

图5A至5C分别为来自图1A的填充器单元的穿梭物的放大俯视透视图、俯视透视图和仰视透视图。

图5D为从图5B所示的位置截取的横截面图。

图5E为来自图5A-5C的穿梭物的放大侧透视图,但是移除了某些元件。

图5F为来自图1A的填充器单元的主管中的穿梭物的放大俯视图。

图5G为从图5F所示的位置截取的放大横截面图。

图5H和5I分别为根据某些其它实施例的穿梭物的放大俯视和仰视透视图。

图6A为来自图1A的填充器单元的填充阀驱动套筒的放大横截面透视图。

图6B为图6A的驱动套筒的透视图。

图7A至7C分别为图1A的容器抓握臂的左前透视图、右前透视图和右侧视图。

图7D为图1A的容器抓握臂处于可供选择的构造中的右侧视图。

图8A至8H为图1A的填充器单元的后视图的局部示意图,并且进一步解释了根据一些实施例的低流量设定点系统的操作。

图8I至8P为结合有根据另一个实施例的低流量设定点系统的填充器单元的局部示意性后视图。

图9A为根据至少一些实施例的包括压力控制系统的饮料容器填充系统的一部分的示意图。

图9B为根据至少一些实施例的包括产品再循环系统的饮料容器填充系统的一部分的示意图。

图9C和9D根据附加实施例的结合有产品再循环系统的饮料容器填充系统的一部分的示意图。

图10为根据一些实施例的填充系统控制器的输入和输出的方框图。

图11A为结合图8A-8H和图8I-8P所示的操作,可以由填充系统控制器执行的算法的例子的流程图。

图11B为结合与图8A-8H和图8I-8P所示类似的操作,可以由填充系统控制器执行的可供选择的算法的例子的流程图。

图11C为可以由填充系统控制器结合压力控制系统执行的算法的例子的流程图。

图11D为可以由填充系统控制器结合产品再循环系统执行的算法的例子的流程图。

图12A至12D为示出了根据某些实施例的方法的步骤的方框图。

具体实施方式

在以下各个实施例的描述中,参考附图,附图形成说明书的一部分,并且各个实施例仅仅是示例性的。应当理解,存在其它实施例,并且可以进行结构和功能上的修改。本发明的实施例可以在某些部分和步骤中采取物理形式,其例子将在以下的说明中详细描述,并且将在形成说明书一部分的附图中示出。

如本申请中所用,包括权利要求,以下的术语具有适用含义。“被构造成用于<功能或操作”在与具体部件、装置或系统结合使用时表示所讨论的部件、装置或系统包括有将该部件、装置或系统置于准备执行指明操作或功能的状态中的结构。除非另外指明,否则“流体”可以是液体、气体或者液体和气体的混合物。“包括”与“包含”意义相同。例如,“X包括元件Y”的表述不排除X还包括其它元件。

根据至少一些实施例的饮料容器填充系统可以包括填充阀和/或本文所述的其它设备。如以下进一步详细解释的,这些填充系统能够在多种不同填充情形下用各种饮料产品填充不同类型的容器。例如,在一个时间段期间,填充系统可以操作为冷填充(CF)系统,并且用冷冻的或室温饮料产品填充容器。在另一个时间段期间,同样的填充系统可以操作为热填充(HF)系统,并且用加热的饮料产品填充容器。在另一个时间段期间,填充系统可以操作为延长保存期限(ESL)填充系统。在其它时间段期间,填充系统可以操作为高酸性无菌(HAA)或低酸性无菌(LAA)填充系统。

根据一些实施例的填充系统还可以适应宽范围的饮料产品类型。至少一些这样的系统可以用粘度在大约1厘泊(cps)至大约400cps范围内的饮料产品填充容器。在这种粘度范围内的饮料产品的非限制性例子包括水(1cps)、牛奶(3cps)、果汁(55至75cps)、番茄汁(180cps)和可饮用酸奶(50至400cps)。

根据一些实施例的系统还用包含有硬的或软的内含物的多相饮料产品来填充容器。内含物可以采取块、颗粒、浆和/或纤维的形式。软的内含物的例子包括果肉、蔬菜块、凝胶块、木薯块、其它类型的软食物产品、原生果浆囊和水果纤维。硬的内含物的例子包括种子、坚果块和谷粒。在至少一些实施例中,系统可以将容器填充有饮料产品,该饮料产品具有尺寸大至或能够配合在大约10毫米(mm)x大约10mmx大约10mm的方块内的颗粒或块状内含物(硬的或软的)、10mm长的浆囊和20mm长的纤维内含物。产品可以包含多种类型的内含物(颗粒、块、浆和/或纤维)。内含物在该产品中的百分比(按体积计)可以高达50%、低至1%(或甚至0%)或者它们之间的任何百分比值。但是作为某些例子,在多个实施例中,系统可以将容器填充有饮料产品,该饮料产品具有的内含物的体积浓度小于1%、为大约1%、从1%至5%、从5%至10%、从10%至15%、从15%至20%、至少20%、至少25%、至少30%、至少35%、至少40%或至少45%。在与这些体积内含物浓度中每一个相对应的实施例中,内含物的至少一部分的体积均可以为1立方毫米或更小(例如每种内含物都配合在1mmx1mmx1mm的方块中)、至少125立方毫米(例如,5mmx5mmx5mm的方块)、至少216立方毫米(例如,6mmx6mmx6mm的方块)、至少343立方毫米(例如,7mmx7mmx7mm的方块)、至少400立方毫米(例如,7.37mmx7.37mmx7.37mm的方块)、至少512立方毫米(例如,8mmx8mmx8mm的方块)、或至少729立方毫米(例如,9mmx9mmx9mm的方块)。内含物可以是球形的或可以具有任何其它形状。

图1A为根据至少一些实施例的填充器单元10和相关的容器抓握臂20的左侧视图。图1B为填充器单元10和抓握臂20的前视图。图1A和1B示出了抓握臂20将饮料容器C保持在填充器单元10下方的填充位置中。当容器C处于填充位置时,填充器单元10的填充阀能够可控地允许饮料产品流入到容器C的颈部中的开口内。以下将描述填充器单元10和容器抓握臂20的另外的部件,以及它们的操作。此外,如下所述,在一些实施例中,完整的填充系统可以包括与填充器单元10相同的多个额外的填充器单元和与臂20相同的多个容器抓握臂。

填充器单元10安装到支撑搁架11。如以下结合图2更详细地解释的,支撑搁架11可以保持额外的填充器单元,这些填充器单元布置成形成圆形样式。填充器单元10的入口管通过进给管12连接到产品贮存器(在图1A和1B中未示出)。再循环管道13是系统的一部分,可以用来使产品进行再循环,如本文中更详细地描述的。

图1A中的虚线示意性地示出了阻挡物30的一部分。阻挡物30内的空间在填充器单元10下方和同一填充系统中其它填充器单元下方形成无菌区域31。阻挡物30可以类似于常规填充系统的无菌区域阻挡物,可以分别包括上部、内部、下部和外部隔离物32、33、34和35。无菌空气可以泵送到无菌区域31中。然后,无菌空气从隔离物32至35中或之间的开口流出,以防止污染物进入无菌区域31。抓握臂20、再循环管道13和其它设备(未示出)可以通过这样的开口延伸到无菌区域31中。图1B中示出了上部隔离物32、内部隔离物33和下部隔离物34,其中省略了外部隔离物35。如图1B的右侧和左侧上的曲线所示,阻挡物30可以继续超过填充器单元10的两侧,以使得无菌区域31在其它填充器单元下方延伸。尽管图1A和1B示出了结合有搁架11的阻挡物30,但是这不是必要的。在一些实施例中,例如,无菌区域阻挡物的上部隔离物可以位于夹具的下方,该夹具将填充阀的杯状物连接到阀的其它部分(例如,在图1A和1B中示出为直接处于搁架11下方的夹具)。

图2为转盘式饮料产品容器填充系统40的局部示意性俯视图,该转盘式饮料产品容器填充系统包括填充器单元10(象征性地示出为圆形)和抓握臂20(象征性地示出为矩形)。填充系统40包括七十一个额外的填充器单元10和七十一个额外的抓握臂20。为了方便起见,仅仅一个填充器单元10和一个抓握臂20标记有符号。从与标记的符号类似的其它符号的位置,其它填充器单元10和抓握臂20的位置是明显的。填充系统40沿顺时针方向转动,如图所示。填充器单元10布置在系统40转盘的外周边附近。与这些填充器单元10中的每一个相关的抓握臂20朝向系统40转盘的中心向内径向地延伸。如上文所述,搁架11可以为环的形状(或者可以是多个托架,这些托架连接起来形成环),以便将填充器单元保持为圆形布置形式。额外的托架(未示出)可以支撑抓握臂和填充系统40的其它部件。另外,在图2中示出了阻挡物30的边界。上部隔离物32、内部隔离物33和下部隔离物34可以附接到填充系统40的转动转盘部分,其中外部隔离物35保持静止。外部隔离物35可以包括开口,所述开口用于传送器以将空的容器进给到转盘中,并且用于另一个传送器以从转盘运送填充的容器。用于这些传送器的近似位置如图2所示,其中箭头示出了空的容器行进到转盘的方向以及填充的容器从转盘行进的方向。

尽管在图2中未示出,但是填充系统40的其它部件可以位于由填充器单元10及其对应抓握臂20围绕的中心转盘区域中。这些部件可以包括但不限于产品贮存器、产品再循环系统、压力控制系统和本文所述的其它部件。图2仅仅示出了根据一些实施例的填充器单元和抓握臂的一种布置形式。其它实施例可以包括更少或更多的填充器单元和抓握臂对。填充系统不必是可转动的。在一些实施例中,例如,填充器单元和/或容器抓握臂(例如本文所述的那些)可以线性地布置。

图3A为填充器单元10的放大前视图。图3B为填充器单元10的放大左侧视图。图3C为填充器单元10的放大右侧视图。图3D为填充器单元10的放大后视图。图3E为填充器单元10的左前透视图。图3F为填充器单元10的右前透视图。

填充器单元10包括填充阀50,该填充阀在图3A-3F中是关闭的。填充阀50包括由入口管51、主管52和杯状物53形成的壳体。主管52的下部部分延伸穿过支撑搁架11中的开口,并且通过保持棒54和螺钉55而保持就位。主管52可以分别通过常规的夹具56和57附接到杯状物53和入口管51。每个夹具56和57可以是本领域中通常称为“Tri-Clamp”的类型。常规的卫生垫片(例如,通常与Tri-Clamp式夹具一起使用的类型)可以位于入口管51和主管52之间以及主管52和杯状物53之间,以密封形式连接。产品再循环管道13从杯状物53的底部延伸到产品再循环系统。以下将结合图9B描述该产品再循环系统的部件和操作。

填充阀50还包括围绕主管52的磁性驱动套筒60。驱动套筒60能够沿着主管52运动。如以下更详细地解释的,位于填充阀50的壳体内的穿梭物磁性地联接到驱动套筒60。当填充阀50关闭时,该穿梭物的底端部上的阻挡件被定位成关闭杯状物53的底部中的分配出口。驱动套筒60朝向入口管51的运动使得穿梭物向上运动,由此使得穿梭物的阻挡件从出口移出,并且允许产品从出口流出并流入到位于杯状物53下方的填充位置中的容器内。

除了阀50之外,填充单元10还包括两个流体致动器70和80。流体致动器70包括主壳体71。致动器70的杆72从壳体71延伸和缩回,并且联接到壳体71内部的可动活塞。相似地,流体致动器80包括主壳体81和杆82,该杆从壳体81延伸和缩回,并且联接到壳体81内部的活塞。致动器70和80的下端部可枢转地附接到支撑搁架11。杆72和82的上端部73和83经由额外的部件联接到驱动套筒60,如下所述。致动器70被构造成用以打开和关闭填充阀50。为了打开填充阀50,加压空气通过配合件74引入到壳体70的下部活塞腔室中,同时空气能够通过配合件75从壳体71的上部活塞腔室逸出。为了关闭填充阀50,空气能够通过配合件74从下部腔室逸出,同时加压空气通过配合件75引入到上部腔室中。可以利用未示出的常规螺线管致动的空气阀来控制空气流入和流出致动器70的腔室。

致动器80被构造成用以停止驱动套筒60的运动。具体地,且如以下结合图8A至8H更详细地描述的,致动器80是可调节的低流量设定点系统的一部分。流体通过配合件84进入和离开壳体81的下部活塞腔室。流体通过配合件85进入和离开壳体81的上部活塞腔室。

图3G为填充器单元10的放大左后透视图,其中致动器70和80以及各种其它部件被移除,以更好地示出填充器单元10的某些底层结构。和在图3A-3F中一样,在图3G中填充阀50是关闭的。竖立件托架91的下端部附接到驱动套筒60。横杆92在上端部附近附接到竖立件托架91。引导块状物93也在上端部附近附接到竖立件托架91。引导杆94向上延伸穿过引导块状物93中的孔95,其中引导杆94的底端部附接到支撑搁架11。孔95的尺寸形成为使得引导块状物93能够沿着杆94向上和向下滑动。致动器70和80的杆72和82的上端部73和83附接到横杆92。

可调节的杆110(图3C)限制驱动套筒60的向上运动。当驱动套筒60处于其向上行程的顶部处时,杆110的底部上的阻挡件111抵靠板112的下侧。一个或多个螺旋弹簧113位于引导杆94上,并且由穿过引导杆94的销进行约束。另一个引导块状物115(在图3C中可见)附接到竖立件托架91的下端部,并且在驱动套筒60上升或下降时也在引导杆94上滑动。当驱动套筒60上升时,弹簧113由引导块状物115和销压缩。从而,弹簧113将填充阀50偏压到关闭位置。这提供了故障安全关闭特征,其在电力故障的情况下自动地关闭阀50。光学标志120可以附接到横杆92(图3E),并且移入和移出光学传感器121中的狭槽。以下结合图8A至8H更详细地讨论传感器121。

图4A为从图3A所示的位置截取的局部横截面图。从图4A中省略了夹具56和57以及填充器单元10的其它外部部件。在图4A的横截面图中示出了入口管51、主壳体52、杯状物53和驱动套筒60。图4A示出了填充阀50的穿梭物200。穿梭物200在图4A的横截面图中未示出。

穿梭物200包括中心杆201以及四个磁性驱动环210a、210b、210c和210d。驱动环210a-210d共同称为“环210”;环210中的任一个一般称为“环210”。。在本说明书中别的地方采用相似的约定,其中多个相似或相同的部件用共同的附图标记加上后附的字母表示。

如以下进一步详细解释的,每个环210包括多个磁体,这些磁体取向成与驱动套筒60的磁体相斥,并且密封在环210的不锈钢封闭件内。杆201延伸有引导叶片元件202和端部元件203。引导叶片元件202在螺纹连接部204处附接到杆201,并且在螺纹连接部205处附接到端部元件203。当填充阀50关闭时,如图4A所示,端部元件203的一部分靠在出口49的内侧边缘和肩部上,以防止产品流过出口49。

图4B是与图4A类似的横截面图,其中填充阀40处于打开状况。当填充阀50打开时,如图4B所示,驱动套筒60上升。因为驱动套筒60和驱动环210的磁体相斥,所以环210关于主管52的纵向中心线保持居中。如以下更详细地解释的,“磁性弹簧”由环210和套筒60中的磁体的磁力形成。该弹簧在图4A中未示出为压缩的。因为穿梭物200磁性地联接到套筒60,所以其随着套筒60向上和向下运动。当穿梭物200向上运动时,端部元件203从开口49收回,产品能够从开口49流到位于杯状物53下方的容器。

如图4A和4B所示,穿过填充阀50的壳体内部的流动路径基本上是笔直的。在一些实施例中,出口49的宽度为大约0.625英寸。如在此所用的,当描述开口或其它流动通道的尺寸时,如果该开口或通道是圆形的,那么“宽度”可以是直径。

图5A为从填充阀50移除的穿梭物200的俯视透视图。除了以下表明的之外,驱动环210基本上彼此相同。每个环210b至201d包括与环210a的内壁211a和外壁212a相似的内壁211和外壁212。每个环210还包括扫掠脊部232,以下讨论扫掠脊部。如以下结合图5D和5E讨论的,磁体密封在每个环210的内壁211和外壁212之间的空间内。环210通过三个径向叶片220连接到杆201。在所示的实施例中,每个叶片220都是实心的,并且延伸环210的全部长度。叶片220可以彼此等距地间隔开,也就是相邻的叶片220之间的角度可以是120°。由此,叶片220和环210的内壁212形成三个尺寸相等的120°扇形段221。图5B为穿梭物200的俯视图。在至少一些实施例中,扇形段221的尺寸形成为使得10mm的立方体内含物能够穿过。

图5C为穿梭物220的仰视透视图。引导叶片元件202包括三个径向延伸的叶片208,这些叶片有助于使得通过填充阀50分配的饮料产品的流动变直。端部元件203包括圆形阻挡件224,该阻挡件密封杯状物53的出口49。阻挡件的元件203的末端225的尺寸形成为延伸穿过出口49。在阀50关闭期间,末端225提供剪切力,以切断可能被困在出口49的喉部中的内含物,从而提供彻底的了断。这避免了碎片从关闭的出口49流出,在热填充或无菌填充操作中该碎片是不期望的。如以下更详细地解释的,在低流量操作中,末端225可以部分地位于出口49中,以便降低产品的流量,并且防止过度填充并提高填充精度。

图5D为穿梭物200从图5B所示的位置的横截面图。如上文所述,从图5D中可以看到,叶片220延伸全部四个驱动环210的长度。每个叶片220包括处于两个相邻环210之间的空间中的轻微压痕。如图5D所示,并且如以下结合图5G进一步讨论的,每个环210的内壁211包括上部凸缘228和下部凸缘227。每个环210的扫掠脊部232从其上部凸缘228向外延伸。磁体230定位在内壁211、其相关的凸缘227和228以及外壁212之间的空间内。

图5E中进一步示出了环210中的磁体230的布置。图5E为穿梭物200的侧透视图,其中移除了某些元件。外壁212a和磁体230已经从环210a移除,以便展示内壁211a的外侧面231和下部凸缘227a的内边缘。环210b和210c的外壁212b和212c已经被移除,以展示磁体230。磁体230以类似的方式布置在环210a和210d中。

图5F为主管52中的穿梭物200的俯视图,其中省略了填充阀50的其它元件。图5G为从图5F所示的位置截取的放大局部横截面图。每个驱动环210包括布置在三个带中的磁体230。每个带包括单独的磁体230的四个同中心子带。如图5E所示,每个磁体230仅仅延伸越过驱动环210的周边的小扇形段。带中的磁体230首尾相连地布置,以便围绕环210。

图5G还示出了扫掠脊部232的进一步的细节。环210和主管52的内壁之间的间隙在扫掠脊部232的区域中变窄,以防止种子或其它内含物到达主管52和环210之间的空间。在一些实施例中,扫掠脊部232的外边缘和主管52的内壁之间的间隙为大约0.01英寸。环210的外侧(在外壁212的外侧处)和主管52的内壁之间的间隙的尺寸可以形成为防止种子或其它小的内含物堵塞在驱动环210和主管52的内壁之间。在至少一些实施例中,该间隙可以为大约0.049英寸。

扫掠脊部232的顶面朝向环210的中心向下倾斜一角度α。在穿梭物200的向上行程期间以及当产品流过主管52并穿过穿梭物200时,这些向下倾斜的面有助于将内含物朝向穿梭物200的中心引导。在一些实施例中,下部凸缘227的底面可以朝向环的中心向上倾斜一角度β。在穿梭物200的向下行程期间,这些向上倾斜的面有助于将内含物朝向穿梭物200的中心引导。在一些实施例中,α和β均可以为大约6度。最顶侧的环210a的扫掠脊部232a可以进一步包括唇缘234。唇缘234的顶面可以朝向中心穿梭物200向下倾斜显著较陡的角度。

进一步如图5G所示,环210的外壁212较薄。在一些实施例中,外壁212由具有弱磁吸引力的、0.006英寸厚的、硬化加工的316L奥氏体不锈钢形成。形成壁212的薄片在硬化状态下使用,以便于进行组装。壁212的薄使得壁212和主管52的内壁之间的间隙最大化,同时使得穿梭物60的磁体230和套筒60的磁体230之间的距离最小化。外壁212可以激光焊接就位,以将磁体230密封在环210中,并且防止这些磁体230接触可能穿过阀50的饮料产品或清洁溶液。外壁212的激光焊接焊缝可以抛光以提升清洁度。

在至少一些实施例中,每个环210的内壁211,包括凸缘227和228以及扫掠脊部232、唇缘234、叶片220和杆201,可以由单个整体件的316L奥氏体不锈钢形成为整体单元。单件式单元可以例如由电火花加工(EDM)而形成。引导叶片元件202和阻挡件元件203也可以由316L奥氏体不锈钢加工而成。穿梭物使用软的奥氏体材料使得穿梭物200和磁体230的磁场之间的相互作用最小化。

图5H和5I分别为根据某些其它实施例的穿梭物200'的放大俯视和仰视透视图。穿梭物200'可以用在填充阀50中,作为穿梭物200的替代选择。穿梭物200'可以与穿梭物200相同,除了叶片220'之外。具体地,穿梭物200'包括六个径向叶片220',这些叶片将环210a'至210d'连接到中心杆。叶片220'可以布置成形成主扇形段221和副扇形段222。主扇形段221的尺寸可以形成为使得10mm的立方体内含物能够穿过。

如上所述,环210在主管52内向上和向下行进。在一些实施例中,主管52也由316L奥氏体不锈钢形成。主管52的示例性壁厚为大约0.044英寸,示例性的圆柱度在0.0025英寸内。

在至少一些实施例中,杯状物53由PEEK(聚醚醚酮)形成。尽管PEEK是非常刚性且耐久的,但是其具有足够的柔性而允许端部元件203的阻挡件224与出口49的内部上边缘和肩部之间的密封,由此避免当阀50关闭时需要额外的衬垫来密封出口49。

图6A为驱动套筒60的放大横截面透视图。图6A中的横截面与图4A和4B的横截面相同。图6B为驱动套筒60的透视图,其中套筒60的环已经被分开,以进一步展示内部结构细节。在所示的实施例中,驱动套筒60包括四个磁体保持环300a、300b、300c和300d。每个环300包括两个半环。例如,环300d包括半环301d和302d。半环301d和302d的端部在接头303d和304d处接触。第二环300c包括在接头303c和304c处接触的半环301c和302c。第三环300b包括在接头303b和304b处接触的半环301b和302b。第四环300a包括在接头303a和304a处接触的半环301a和302a。覆盖板310包括在接头313和314处接触的两个半板311和312。

每个半环可以由PEEK加工而成,并且可以包括形成在上表面中的七个通道319。然后,两排磁体230放置到每个通道中,并且通过固定螺钉320保持就位。磁体230在套筒60中的取向(以下讨论该取向)产生磁性排斥力,该磁性排斥力将这些磁体230沿径向向外推。固定螺钉320抵抗这些向外的力并且固定磁体230。磁体230和固定螺钉320已经从半环301c中的一个通道319中省略,以示出该通道319的额外的细节。半环301a、302a、301b、302b、301c、302c、301d和302d中的每个通道319包括埋头孔321,螺栓插入穿过该埋头孔并固定到下部半环中的螺纹孔322。这针对半环301c中的一个孔321和半环301d中的对应孔322用不均匀的虚线表示。

每个环300的取向相对于邻接的环300转动90度。例如,环300d的接头303d和304d之间的线垂直于环300c的接头303c和304c之间的线。至于环300c和300b以及环300b和300a也具有相似的样式。环300的半环彼此不是直接螺栓连接。相反,每个环300的半环通过它们附接到相邻的环300而保持就位。例如,环300d的半环301d附接到半环301c的一个端部和半环302c的一个端部。相似地,半环302d附接到半环301c和302c的另一个端部。半环301c和302c相对于半环301b和302b以及半环301b和302b相对于半环301a和302a具有相似的样式。

驱动套筒60可以通过将磁体230装载到半环301d和302d的通道319中、利用固定螺钉320固定这些磁体230、然后将半环301d和302d绕主管52放置就位,来进行组装。然后,在磁体230没有安装的情况下,半环301c和302c可以在半环301d和302d的顶部上绕主管52放置就位。然后,紧固件穿过半环301c和302c的通道319中的孔321而进入半环301d和302d的孔322,并张紧。然后,磁体230可以放置到半环301c和302c的通道319中,并用固定螺钉320固定。对于环300b和300a可以执行相似的过程。最后,通过将螺栓(图6B中未示出)插入穿过半板311和312中的埋头孔以及半环301a和302a中的孔322,而将半板311和312安装在环300a的顶部上。另外,图6B中还示出了孔399a(环300a)和399c(环300c),通过这些孔,套筒60可以附接到竖立件托架91(参见图3G)。

在至少一些实施例中,穿梭物200和驱动套筒60的磁体230可以是弯曲的钕铁硼(NDFeB)等级的N45H。这种等级(对应于高达248°F的工作温度)允许磁体230在清洁和/或消毒循环期间承受与阀50的消毒相关的温度。具有较高最大工作温度的磁体是可获取的,并且可以用于某些实施例。磁体230的尺寸可以形成为使得首尾相连地放置的十四个磁体形成外径为43mm、内径为39mm且高度为5mm的带。磁化可以是从内侧弯曲部到外侧弯曲部,使得每个磁体的北极处于外侧面上。磁体230放置到套筒60中,使得北极面朝向穿梭物200向内取向。磁体230放置在穿梭物200中,使得北极面朝向套筒60向外取向。

在一些实施例中,套筒60的某些通道319中的磁体230可以替换为PTFE(聚四氟乙烯)支承元件。例如,可以省略孔399a正上方的环300a的通道319中的所有磁体230(如箭头398a所示)、环300a的另一侧上的通道319中的所有磁体(如箭头397a所示)、接头303d的任一侧上的环300d的通道319中的所有磁体230(如箭头395d和396d所示)、以及接头304d的任一侧上的环300d的通道319中的所有磁体230(如箭头393d和394d所示)。然后,PTFE支承件可以插入到这些磁体230已经被省略的每个通道319中。在一些实施例中,通过由直径为7/16英寸的原料PTFE杆切割长度为大约9/16英寸的块,可以制造这些PTFE支承件。这些PTFE支承件从其相应的通道319的固定螺钉320延伸,并且稍稍超过环300a和300d的内径。然后,这些固定螺钉320可以用来调节PTFE支承件上的压缩,使得这些PTFE支承件的内端部接触主管52的外壁。使用这样的PTFE支承件平滑了套筒60在主管52上的行进,并且可以减小主管52上的磨损。

从图4A和4B中可以理解,并且根据结合图5A-5G对穿梭物200的描述以及结合图6A和6B对套筒60的描述,穿梭物200的驱动环210a的磁体230由套筒环300a和套筒环300b的磁体230跨坐。穿梭物200的环210b和210c的磁体分别由环300b和300c以及环300c和300d的磁体跨坐。磁体230的排斥力防止每个环210运动超过套筒60的环300,该环在环210的紧上方或紧下方。这产生联接,由此可以通过使套筒60向上或向下运动,而使穿梭物200向上或向下运动。

环210相对于环300的交错布置提供了额外的优点。例如,这种布置使得环300和环210之间的排斥力沿竖向精确地且可重复地对准。此外,这种交错布置提供一定程度的磁性弹簧力。具体地,当阻挡件元件203抵靠在出口49的内边缘和肩部上(如图4A所示)时向穿梭物200施加向上的竖向力,同时还向环60施加向下的竖向力,使环300a至300d分别运动至更靠近环210a至210d。当环300和环210之间的间距减小时,试图将这两个环分离的磁性排斥力增大。当套筒60接下来再次向上运动时,穿梭物200弹性回复到其相对于套筒60的初始位置。这允许套筒60在关闭阀50时稍稍行进超过穿梭物200,从而压缩磁性弹簧,并且使得穿梭物向出口49的内边缘和肩部施加恒定的力。

另外,如图4A所示,环210和300交错布置,使得在每个环210上方都具有环300,但是仅仅在210a、210b和210c下方具有环300。这种构造允许沿向下方向的较大磁性联接,从而在穿梭物200上提供可获得的增大的向下的力,以便在关闭时密封阀50。在至少一些实施例中,穿梭物200和套筒60之间的沿向下方向的联接力为至少30磅,以提供足够的关闭力和足够快的关闭时间。该关闭力还便于剪切在阀50关闭时可能靠在出口49中的内含物。

在一些实施例中,单环磁体可以代替环210中的磁体230的分段组件。相似地,单环(或半环)磁体可以代替用在套筒60的环中的磁体230的分段组件,但是用于环300的单环磁体的直径比用于环210的单环磁体的直径大。这样的单环磁体也可以是NDFeB等级的N45H。

返回简要参考图1A和1B,在一些实施例中,填充器单元10与容器抓握臂20结合使用。除了以下描述的某些臂20部件的轻微运动之外,臂20相对于填充单元10基本上是固定的。在填充操作开始时或之前,空的容器C接纳在臂20的夹持器中。在打开填充器单元10的填充阀50的情况下,饮料产品从填充阀50的出口49分配并穿过容器C的敞开顶部。该容器C的重量随着其被填充而增大。臂20中的测力传感器发送表示该重量的信号。然后,控制器可以基于这些信号确定何时关闭填充阀50。

容器C可以以常规方式放置到臂20上。例如,当连续转动的转盘使填充系统40的一个臂20(图2)转动经过一个位置(例如,在图2中的6点钟位置)时,该臂20可以接纳容器C,在该位置处,第一传送器传送空的容器C以便由经过的抓握臂接纳。然后,当转盘继续朝向第二传送器转动时,产品通过与该臂20相对应的填充器单元10分配到接纳的容器C中。当转盘的转动已经使该臂20到达第二传送器的位置(例如,在图2中的12点钟位置处)时,现在填充的容器C从臂20移除,并且被第二传送器系统运送离开。然后,转盘使该臂20返回到第一传送器,以接纳新的空容器C。

图7A为根据至少一些实施例的容器抓握臂20的左前透视图。臂20的支撑梁401包括吊杆402、竖立件403和测力传感器附接延伸部404。在至少一些实施例中,梁401是单个部件。梁401是刚性的,并且相对于臂20所对应的填充单元10保持固定。具体地,竖立件403可以通过螺栓或以其它方式附接到结合有臂20的转盘或填充系统的其它结构。在附接到填充系统结构的情况下,吊杆402是悬臂式的,并且水平地取向。

臂20的附接到吊杆402的部件包括一对支点托架405、测力传感器406和测力传感器联结件407。平衡杠杆408通过由托架405保持就位的支点元件409而可枢转地联接到吊杆402。支点元件409在多个枢转位置中的一个枢转位置处与杠杆408的配合特征结构相互作用,以便允许杠杆408绕支点元件409进行转动运动。在臂20的实施例中,支点元件409可以是螺栓或销,配合的臂特征结构是杠杆408中的孔410a至410f中的一个孔。在图7D中可以看到孔410e和410f。

在某些构造中,且如图7A和7B所示,抗蛇形托架411可以附接在吊杆402的远侧端部处。托架411包括引导狭槽412,该引导狭槽约束杠杆408到吊杆402的左侧或右侧的运动,并且有助于保持杠杆408在竖直平面中与吊杆402对准。引导狭槽412的尺寸形成为使得杠杆408能够在狭槽412中自由地向上和向下运动。在如下所述的其它构造中,可以省略托架411。

容器夹持器415通过托架416和螺栓417附接到杠杆臂408的远侧端部。在图7A-7D所示的构造中,夹持器415是常规的夹持器,具有弹簧加载的钳口418,钳口的尺寸形成为用以接纳和保持容器C的颈部的一部分。在一些实施例中,夹持器415可以被构造成用以保持颈部最终尺寸在28mm至43mm之间的瓶。钳口418的弹簧张力可以被容器颈部水平地推靠表面419的力(例如,当接纳来自上述第一传送器系统的空容器时)以及容器颈部从钳口418内向外推的力(例如,当填充的容器被上述第二传送器系统移除时)克服。夹持器415可以被移除并被替换为不同类型的夹持器,以抓握不同类型的容器。可以使用其它类型的夹持器。例如,在一些实施例中,夹持器可以不具有弹簧加载的钳口,并且可以简单地为托架,该托架具有与容器的颈部的形状相对应的凹陷部。

测力传感器406的近侧端部通过螺栓421固定地附接到支撑梁401的延伸部404。测力传感器406的远侧端部通过联结件407联接到杠杆408的近侧端部。联结件407的下端部通过销422可枢转地附接到测力传感器406。联结件407的上端部通过销423可枢转地附接到杠杆408。如图7C所示,保持在夹持器415中的容器施加向下的力F1。这通过杠杆408绕支点元件409转动而产生在联结件407上拉动的向上的力F2。力F2通过联结件407传递到测力传感器406,使得测力传感器406稍稍变形。应变仪和测力传感器406内的其它元件生成与该变形的幅值相对应并由此与力F2的幅值相对应的信号SLC,并且通过缆线425输出信号SLC。基于信号SLC、臂20的已知尺寸以及托架405的构造(如下所述),结合有臂20的填充系统的控制器可以确定由臂20保持的容器的重量。因为该容器的体积以及分配的饮料产品的密度是已知的,所以该控制器还可以利用信号SLC来确定容器已经被填充的程度。

在至少一些实施例中,测力传感器406的范围为0至7.5千克(kg)。测力传感器是众所周知的重量传感器,其利用应变仪来检测变形并输出表示引起该变形的力的信号。测力传感器和用于处理测力传感器信号输出的控制软件可以从多种渠道商购获得。

一般来讲,如果测力传感器的较大范围的能力得到利用,那么测力传感器的精度增大。例如,假设容器C在填充时保持20流体盎司的产品,并且所讨论的产品是牛奶。20流体盎司的牛奶的重量为大约0.61kg。假设测力传感器406被布置成使得当容器C完全填充时由测力传感器406测量的重量仅仅增加0.61kg,并且测力传感器406可获取的范围为7.5kg。在这种情形下,测力传感器406测量能力的仅仅大约8%(0.61kg/7.5kg)用来测量空的和完全的容器之间的差。现在假设测力传感器406被布置成使得当同样的容器C填充有牛奶时由测力传感器406测量的载荷增加2.58kg(因子为4.227)。在这种情形下,将利用大约34%的测力传感器406能力,从而提高了重量测量精度。在该第二种情形下,测力传感器406的变形也将增大。然而,即使在最大载荷下,测力传感器变形的大小也相对较小。

容器及其内容物的重量与测力传感器406所经历的重量之间的关系根据支点元件409相对于夹持器415和联结件407的位置而变化。如果假设容器及其内容物的力心穿过钳口418的夹持区域的中心,并且如果支点元件409在钳口418的中心与联结件407的销423之间是等距的,那么填充的产品的重量与由该产品施加在测力传感器406上所得的重量的比为1:1。然而,如果支点元件409更靠近销423,那么这个比增大。一般来讲,如果用于被夹持的容器及其内容物的力F1的中心与支点元件409之间的距离为x并且支点元件409和销423之间的距离为y,那么由容器及其内容物的重量施加在测力传感器406上的力F2为(x/y)*F1。

在一些实施例中,臂20可以被重新构造成用以更好地适应使得填充的容器具有不同重量的填充操作。具体地,保持托架405和支点元件406的螺栓430可以被移除,并且托架405可以被重新定位成使得支点元件409与不同的一个孔410配合。在图7A-7C中,托架405被定位成使得螺栓430穿过吊杆402中的在孔410e的任一侧上的孔,并且使得支点元件409与孔410e相配合。在图7D中,抗蛇形托架411已经被移除,并且托架405已经重新定位在吊杆402的远侧端部处。在这个位置中,螺栓430穿过吊杆402中的在孔410a的任一侧上的孔,并且支点元件409与孔410a相配合。作为另外一种选择,托架405可以被定位成使得支点元件409与孔410a至410f中的任一个孔相配合。

在一些实施例中,杠杆408和其它臂20部件的尺寸形成为使得与孔410a至410f中的每一个孔中的支点元件409的定位相关的力F2(容器和内容物施加在测力传感器上所得的力)与力F1(容器和内容物)的比如表1中所列。

表1

在一些实施例中,标记可以在每个孔410附近添加到杠杆408。当设定填充系统填充特定类型的容器时,该标记可以对应于输入到填充系统的控制器的设定。该标记还可以或者作为另外一种选择来识别与每个孔410相关的容器尺寸。除此之外或作为另外一种选择,这样的标记还可以或者作为另外一种选择来包含在吊杆402中,以针对特定容器尺寸识别托架405的位置。

在一些实施例中,臂20可以包括一个或多个可调节的止挡件,该止挡件限制杠杆408的运动范围。例如,支撑梁401的竖立件403可以包括在杠杆408的近侧端部上延伸的突起431。第一螺栓432可以延伸穿过突起431的端部中的螺纹孔,并且可以包括螺母433。螺栓432可以进行调节并与螺母433固定,使得螺栓432的端部在杠杆408上方间隔开预定距离。如果杠杆498在其远侧端部处无意中经受过量的向下的力,那么杠杆408的顶部将接触螺栓432的端部,并且限制联结件407和测力传感器406上的向上的力。第二螺栓434可以延伸穿过杠杆408的近侧端部的端部中的螺纹孔,并且可以包括螺母435。螺栓434可以进行调节并与螺母435固定,使得螺栓434的端部在吊杆402的顶部上方间隔开预定距离。如果杠杆408在其远侧端部处无意中经受过量的向上的力,那么螺栓434的端部将接触吊杆402的顶部,并且限制联结件407和测力传感器406上的向下的力。

臂20提供了许多优点,方便使用单个填充系统来用宽范围的产品类型填充宽范围的饮料容器。当填充饮料容器时,可能重要的是,在填充操作期间监测置于容器中的饮料的量。未足量填充的容器可能不能够进行销售。过度填充容器导致产品浪费和溢出,这可能弄脏生产设备。在常规上,在填充容器时,利用流量计来监测流过填充阀的产品的量。然而,当用具有大内含物的饮料填充容器时,现有的流量计不能够足够精确地监测容器中的产品的填充水平。使用臂20来基于容器及其内容物的重量监测容器的填充水平避免了使用流量计来确定填充水平。臂20的可调节性方便了将填充系统用于宽范围尺寸的容器和密度显著不同的产品。此外,测力传感器406在臂20上的定位使得必须位于无菌区域中的部件的数量最小化。

臂20的构造还提供了进一步的优点。具体地,杠杆408、联结件407、支撑梁401和其它部件的布置形式将测力传感器406与不受控制的环境力(例如容器进入和离开夹持器415的力)隔离开。在图7A-7D所示的构造中,仅仅处于竖直平面中的力被传递到测力传感器406。由于测力传感器406在载荷下偏转的量有限,所以这有效地使得在测力传感器406上仅仅引起纯粹的竖向力。消除了测力传感器406上的转矩和侧载荷,由此避免了侧载荷或转矩可能导致的测量精度的下降。测力传感器406上的竖向力被螺栓432和434的止挡件限制到安全范围。联结件408保持在受力情况下,由此消除了机构中的反冲,并且减少了重量测量中的变化。

在一些实施例中,与臂20类似的抓握臂可以被改动成使得支点元件的位置的调节是自动的。但是作为该实施例的一个例子,托架405可以安装在滑块或其它线性运动装置上,并且能够通过伺服机构或其它类型的致动器而进行运动。另外的伺服机构可以用来将支点元件移入和移出杠杆408上的位置,并且在调节支点元件的位置时用来支撑杠杆408。

为了减少填充单个容器所需的时间并由此增大整体生产速度,有用的是,以较高的流量填充容器。然而,当容器中的产品的水平接近其期望水平时,期望的是降低产品流入到该容器中的速度。具体地,较慢的流量允许更多的时间来完全停止产品流动,从而能够更加精确地填充到期望水平。

在填充阀为用于适应各种类型产品的系统的一部分的情况下,可预期地减少通过填充阀的流动变得更加复杂。通过部分地关闭填充阀并由此减小产品从填充阀流到容器所穿过的开口的尺寸,可以减少通过填充阀的流动。填充阀必须部分地关闭的程度可能受产品粘度和内含物的存在的影响。流动应当被减少的时间可能受容器的尺寸影响。

在至少一些实施例中,填充器单元包括便于将填充阀关闭到可调节低流量设定点的部件。例如,且如上文结合图3A-3F所述的,填充器单元10包括致动器80,该致动器为低流量设定点系统的一部分。可中断的流体回路连接致动器80的两个腔室。当开始填充容器时,致动器70向上推横杆92,以打开填充阀50。向上推横杆92拉动致动器80的杆82。如果流体能够在致动器80的腔室之间流动,那么致动器80中的活塞可以运动,由此允许杆82从壳体81收回。当容器接近完全时,致动器70通过横杆92上的向下拉动而开始关闭填充阀50。横杆92上的向下的力推动杆82,这继而向下推动致动器80的活塞。初始,当致动器80的活塞响应于杆82的推动而向下运动时,流体能够在致动器80的腔室之间沿相反方向流动。然而,当填充阀50到达用于产品和填充的容器的低流量设定点时,致动器80的腔室之间的流体流动被中断。这使得致动器80的活塞停止运动,并且停止横杆92的向下运动,由此将填充阀50保持在阀50仅仅部分地打开的低流量设定点处。一旦容器及其内容物的重量表明填充到合适的水平,就再次允许致动器80的腔室之间的流动,并且填充阀50能够运动到完全打开位置。

图8A至8H为填充器单元10的局部示意图,进一步解释了低流量设定点系统的操作。图8A至8H示出了填充器单元10的后视图。以简化形式示出了搁架11、驱动套筒60、竖立件托架91、横杆92、光学标志121以及光学传感器120。此外,还以简化形式示出了致动器80的壳体71和杆72以及致动器80的壳体81和杆82。为了便利起见,从图8A至8H中省略了图3A-3G所示的填充器单元10的其它元件。

如上所述,且如现在图8A至8H中可以看到的,致动器70包括活塞501。活塞501用作致动器70中的腔室502和503之间的阻挡物。当活塞50向上运动时,腔室502的体积增大,并且腔室503的体积减小。杆72的下端部附接到活塞501。杆72通过壳体71的顶壁中的密封开口从壳体71伸出。活塞501包括密封件,该密封件防止流体在腔室502和503之间穿过活塞501的边缘。为了使杆72从壳体71延伸,在允许流体离开腔室503时,可以将加压流体引入到腔室502中。为了使杆72缩回到壳体71中,在允许流体离开腔室502时,可以将加压流体引入到腔室503中。在一些实施例中,致动器70可以是可商购获得的流体致动器,并且利用加压空气作为工作流体进行操作。为了方便起见,图8A-8H的其余说明部分将致动器70的工作流体指定为空气,并且利用点画来表示空气。在其它实施例中,可以采用不同的工作流体。

压缩空气通过端口505进入和离开腔室502。压缩空气通过端口506进入和离开腔室503。配合件74和75(图3D)可以分别附接到端口505和506。双位置控制阀507连接到端口506。当控制阀507处于其第一位置时,端口506与压缩空气源流体连通。当控制阀507处于其第二位置时,端口506通过受限的排气口508与大气环境流体连通。控制阀507的位置由螺线管509进行控制。当螺线管509未被激活时,弹簧将控制阀507偏压到其第二位置。当螺线管509被激活时,控制阀507运动到其第一位置。螺线管509响应于来自控制器的控制信号而激活,如下所述。

另一个双位置控制阀517连接到端口505。当控制阀517处于其第一位置时,端口505与压缩空气源流体连通。当控制阀517处于其第二位置时,端口505通过受限的排气口518与大气环境流体连通。控制阀517的位置由螺线管519进行控制,该螺线管接收来自控制器的控制信号,如下所述。当螺线管519未被激活时,弹簧将控制阀517偏压到其第二位置。激活螺线管519使控制阀517运动到其第一位置。

如图8A至8H进一步所示,致动器80还包括活塞551。活塞551用作致动器80中的腔室552和553之间的阻挡物。当活塞551向上运动时,腔室552的体积增大,并且腔室553的体积减小。杆82的下端部附接到活塞551。杆82通过壳体81的顶壁中的密封开口从壳体81伸出。活塞551包括密封件,该密封件防止流体在腔室552和553之间穿过活塞551的边缘。

双位置控制阀559插置在流体回路560中,该流体回路连接致动器80的端口555和556。配合件84和85(图3C)可以分别附接到端口555和556。当控制阀557处于其第一位置时,流体回路560被阻塞,油不能够在腔室552和553之间流动。当控制阀557处于其第二位置时,流体回路560未被阻塞,油能够在腔室552和553之间流动。控制阀557的位置由螺线管559进行控制,该螺线管接收来自控制器的控制信号,如下所述。当螺线管559未被激活时,弹簧将控制阀557偏压到其第二位置。激活螺线管559使控制阀557运动到其第一位置。弹簧加载的供应阀561将流体回路560连接到油的重力进给源562,以保持回路560中的流体水平。

为了将杆82从壳体81收回,允许流体进入腔室552,同时允许流体离开腔室553。为了允许杆82推入到壳体81中,允许流体进入腔室553,同时允许流体从腔室552流动。在一些实施例中,致动器80可以是可商购获得的流体致动器,并且利用液体(例如,食品级的硅油)进行操作。为了方便起见,图8A-8H的其余说明部分将致动器80的工作流体指定为油,并且利用阴影来表示油。在其它实施例中,可以采用不同的工作流体。与致动器80结合使用的流体可以根据粘度进行选择,以便控制杆82能够从壳体81拉出或被推入到壳体中的速度。

图8A示出了时间T1处的填充器单元10。在时间T1处,填充阀50关闭,并且穿梭物200处于其行程的底部(如图4A所示)。时间T1可以是在完成填充一个容器之后且在开始填充下一个容器之前的时间。活塞501和551分别处于其在壳体71和81内的行程的底部处。螺线管509、519和559未被激活,因此各个控制阀507、517和557处于其第二位置(腔室502和503通到大气环境,流体回路560未被阻塞)。光学传感器121响应于位于传感器121中的标志120生成检测信号。然而,在填充器单元10操作的这一阶段,控制器根据检测信号不采取动作。

图8B示出了时间T1之后的时间T2处的填充器单元10。在时间T2处,填充器单元10开始打开填充阀50。螺线管519响应于来自控制器的信号而被激活,并且使控制阀517运动到其第一位置(将腔室502连接到压缩空气源)。螺线管509未被激活,并且控制阀507保持处于其第二位置(使腔室503通到大气环境)。螺线管559也未被激活,并且控制阀557保持处于其第二位置(流体回路560未被阻塞)。压缩空气开始流入到腔室502中,并且向上推动活塞501。这将杆72向上从壳体71推出,其中杆71向上推动横杆92。因为横杆92经由竖立件托架91和驱动套筒60联接到穿梭物200,横杆92的向上运动引起穿梭物200向上运动并且打开填充阀50。因为光学标志120仍然处于光学传感器121中,所以传感器121继续输出检测信号。然而,在填充器单元10操作的这一阶段,控制器根据检测信号不采取动作。

因为流体回路560未被阻塞,所以油能够在致动器80的腔室552和553之间流动。从致动器70的杆72对横杆92施加的向上的力使得横杆92拉动致动器80的杆82。当从壳体81拉动杆82时,杆82上的拉力引起活塞551的向上运动。活塞551的运动使得油随着腔室553体积减小而从腔室553流动,并且随着腔室552体积增大而流到腔室552。

为了方便起见,图8B包括处于端口505和506附近的、表示空气流动方向的箭头。相似地,端口555和556附近的箭头表示油流动方向。位于竖立件托架91的顶部附近的箭头表示横杆92及其联接的部件(活塞501和551、杆72和82、光学标志120、竖立件托架91以及驱动套筒60(以及由此,穿梭物200))运动的方向。

图8C示出了时间T2之后的时间T3处的填充器单元10。在时间T2处,填充阀10完全打开,并且穿梭物200处于其行程的顶部处。螺线管519响应于来自控制器的信号而保持被激活,并且保持控制阀517处于其第一位置(将腔室502连接到压缩空气源)。螺线管509保持未被激活,并且控制阀507保持处于其第二位置(使腔室503通到大气环境)。螺线管559也保持被激活,并且控制阀557处于其第二位置(流体回路560未被阻塞)。横杆92及其联接的部件的向上运动通过可调节的杆110(图3D)而停止。因为活塞501不再运动,所以穿过端口505和506的空气流已经停止,尽管控制阀517处于其第一位置且控制阀507处于其第二位置。相似地,即使流体回路560未被阻塞,穿过端口555和556的油流由于活塞551不再运动而已经停止。光学标志120已经从光学传感器121移出,并且传感器121不再发送检测信号。

图8D示出了时间T3之后的时间T4处的填充器单元10。在时间T3和时间T4之间,一个或多个信号SLC从臂20的测力传感器406输出到控制器,表明填充的容器及其内容物的重量已经达到与容器的预定“接近完全”填充水平相对应的水平。在时间T4处,且响应于“接近完全”的表示,控制器发送激活螺线管509的信号并停止发送激活螺线管519的信号。这使得控制阀507运动到其第一位置(将腔室503连接到压缩空气源),并且使得控制阀517返回到其第二位置(使腔室502通到大气环境)。螺线管559保持未被激活,并且流体回路560保持未被阻塞。

由于压缩空气流入到腔室503中且空气从腔室502流出,并且由于油能够在流体回路560中流动,所以活塞501向下运动。这将杆72和横杆92向下拉动。横杆92的向下运动引起竖立件托架91、驱动套筒60和穿梭物200的向下运动,以及杆82和活塞551的向下运动。端口505和506附近的箭头表示空气流动方向。端口555和556附近的箭头表示油流动方向。位于竖立件托架91的顶部附近的箭头表示横杆92及其联接的部件运动的方向。

图8E示出了时间T4之后的时间T5处的填充器单元10。横杆92及其联接的部件继续向下运动。螺线管509保持被激活,并且螺线管519和559保持未被激活。空气和油继续沿着所示的方向流动。

图8F示出了时间T5之后的时间T6处的填充器单元10。横杆92的向下运动已经使得光学标志120到达由传感器121检测到的点。这使得光学传感器121将检测信号发送到控制器。响应于该检测信号,控制器发送激活螺线管559的信号。这使得控制阀557运动到其第一位置(阻塞流体回路560)。螺线管509保持被激活,并且螺线管519保持未被激活。因为油不再能够在流体回路560中流动,所以油不再能够在腔室552和553之间运动。因此,活塞551的运动停止。这使得杆82、横杆92和与横杆92联接的其它部件停止运动。尽管控制阀507处于其第一位置(将腔室503连接到压缩空气源)且控制阀517处于其第二位置(使腔室502通到大气环境),但是活塞501借助于其联接到横杆92而保持就位,并且空气不再流入或流出致动器70。

穿梭物200在时间T6处的位置对应于低流量设定点。当穿梭物200处于这个位置时,饮料产品穿过开口49的流动受到部分堵塞,产品从开口49流到容器的速率下降。低流量设定点将根据饮料类型而变化,并且可以根据容器类型而变化。例如,与不具有内含物的较低粘度的产品相对应的第一低流量设定点可以将穿梭物200放置在几乎完全关闭开口49的第一位置中。与粘度较大和/或具有内含物的产品相对应的第二低流量设定点可以将穿梭物200放置在部分地堵塞开口49但是堵塞程度比第一位置小的第二位置中。

上述系统允许简单地调节低流量设定点。具体地,当驱动套筒60的向下运动停止时,控制光学传感器121和标志120的位置。通过使光学传感器121向上或向下运动(和/或调节标志120在相关横杆92上的位置),可以改变低流量设定点。

在一些实施例中,不使用光学传感器来控制低流量设定点。相反,当获得“接近完全”的指示时,控制器启动计时器。计时器所设定的值表示在发送激活螺线管509的控制信号(并且同时停止激活螺线管519的控制信号)之后套筒60向下行进到低流量设定点位置所需的时间。通过利用所讨论的产品执行若干次填充器单元10的试运行并且对到达低流量设定点所需的时间进行计时,可以容易地确定计时器的值。然后,该时间值可以用于该填充器单元以及填充系统中的其它填充器单元。

图8G示出了时间T6之后的时间T7处的填充器单元10。一个或多个信号SLC从臂20的测力传感器406输出到控制器,表明填充的容器及其内容物的重量已经达到与完全填充的容器相对应的值。响应于“完全”指示,控制器停止发送激活螺线管559的信号。这使得控制阀557运动到其第二位置(不阻塞流体回路560)。控制器继续发送激活螺线管509的信号,从而将控制阀507保持在其第一位置(将腔室503连接到压缩空气源)。螺线管519未被激活,并且控制阀517处于其第二位置(使腔室502通到大气环境)。因为油现在能够从腔室553流到腔室552,所以活塞501和551及其联接的部件(包括穿梭物200)继续向下运动。

图8H示出了时间T7之后的时间T8处的填充器单元10。在时间T8处,填充阀50完全关闭。来自控制器的激活螺线管509的信号现在可以被中断,以使填充器单元10返回到图8A所示的状态。然后,当下一个容器处于填充位置时,可以重复图8B至8H所示的操作。在一些实施例中,控制器继续发送激活螺线管509的信号,直到再次打开填充阀50的时刻。

图8I至8P为结合有根据另一个实施例的低流量设定点系统的填充器单元的局部示意性后视图。图8I-8P的填充器单元类似于图8A-8H所示的填充器单元10。然而,在图8I-8P的实施例中,圆筒80已经用圆筒81'代替。圆筒80'类似于圆筒80,其中壳体81'、杆82'、活塞551'、端口555'和556'、腔室552'以及腔室553'分别类似于圆筒80的壳体81、杆82、活塞551、端口555和556、腔室552以及腔室553。

然而,流体回路560已经被取代。腔室552'经由端口555'通过两个路径连接到油贮存器581。第一路径包括止回阀583。第二路径包括与控制阀557相似的控制阀557',并且包括流动限制孔口582。控制阀557'具有流动被阻塞的第一位置和流动未被阻塞的第二位置。控制阀557'的位置由螺线管559'进行控制,该螺线管接收来自控制器的控制信号,如下所述。当螺线管559'未被激活时,弹簧将控制阀557'偏压到其第二位置。激活螺线管559'使控制阀557'运动到其第一位置。

腔室553'经由端口556'连接到油贮存器581的顶部。在图8I-8P的实施例中,油在下部腔室552'和油贮存器581之间流动。腔室553'包含有空气,并且包含有仅仅少量的油以用于密封和润滑。腔室553'连接到油贮存器581,使得可能通过端口556'排出的任何油能够返回到油贮存器581。油贮存器581的上部部分通到大气环境。在图8I-8P的实施例中使用的油也可以是食品级的硅油。

止回阀583在活塞551'向上运动时允许从油贮存器581到腔室552'的流动,并且在活塞551'向下运动时阻止另一个方向的流动。孔口582允许沿任一个方向的流动,但是限制该流动。这样,孔口582减缓活塞551'的向下运动。这减缓了穿梭物200的向下运动,以防止阻挡件225猛烈撞击出口49而导致过早的磨损。当阀50打开时,止回阀583允许油绕过孔口582,以便允许穿梭物更快速地升高。

在图8A-8H的实施例中使用的同样的控制信号可以用于图8I-8P的实施例,以实现相同的阀运动。在图8I中(时间T1),填充阀50关闭,穿梭物200处于其行程的底部,活塞501和551'处于其行程的底部,螺线管509、519和559'未被激活。光学传感器121响应于位于传感器121中的标志120生成检测信号。然而,在填充器单元操作的这一阶段,控制器根据检测信号不采取动作。

在时间T2(图8J)处,填充器单元开始打开填充阀50。螺线管519响应于来自控制器的信号而激活。螺线管509未被激活。螺线管559'未被激活,并且控制阀557'保持处于其第二位置(不阻塞)。当活塞552'向上运动时,油从贮存器581流到腔室552',以增大该腔室的体积。该油流过止回阀583,并且在较小程度上流过孔口582和控制阀557'。

在时间T3(图8K)处,填充阀完全打开,并且穿梭物200处于其行程的顶部处。螺线管519响应于来自控制器的信号保持被激活。螺线管509保持未被激活。螺线管559'也保持被激活,并且控制阀557'处于其第二位置(不阻塞)。因为活塞501和551'不再运动,所以空气和油停止流动。光学标志120已经从光学传感器121移出,并且传感器121不再发送检测信号。

在时间T4(图8L)处,响应于“接近完全”的表示,控制器发送激活螺线管509的信号并停止发送激活螺线管519的信号。螺线管559'保持未被激活,并且控制阀557'保持处于其不阻塞的位置。油从腔室552'流到油贮存器581,但是仅仅穿过控制阀557'和孔口582。

在时间T5(图8M)处,螺线管509保持被激活,并且螺线管519和559'保持未被激活。空气和油继续沿着所示的方向流动。

在时间T6(图8N)处,阀50已经到达其低流量设定点,光学传感器121将检测信号发送到控制器。在响应的情况下,控制器发送激活螺线管559'的信号。这使得控制阀557'运动到其第一位置(阻塞流体流动)。螺线管509保持被激活,并且螺线管519保持未被激活。因为油不再能够从腔室552'流到油贮存器581,所以活塞551'停止运动。

在时间T7(图8O)处,控制器已经接收到“完全”指示,并停止发送激活螺线管559'的信号。这使得控制阀557'运动到其第二位置(不阻塞)。控制器继续发送激活螺线管509的信号。螺线管519未被激活。因为油现在能够从腔室552'流到油贮存器581,所以活塞501和551'继续向下运动。

在时间T8(图8P)处,填充阀50完全关闭。来自控制器的激活螺线管509的信号现在可以被中断,以使填充器单元返回到图8I所示的状态。

如上所述,在一些实施例中,填充器单元10用于填充系统,该填充系统能够用多种类型的饮料产品填充容器。这些产品可以具有宽范围的粘度,并且可以或者可以不包括内含物。为了适应具有较大内含物的产品,填充阀50的开口49的尺寸形成为使得这些内含物能够穿过。例如,杯状物53的开口49可以具有大约0.625英寸的宽度。然而,尺寸形成为通过较大内含物(例如,10mm的方块)的开口可能导致对于缺少内含物和/或粘度较低的产品而言不期望地高的流量。在一些实施例中,包括填充阀50的填充系统还可以包括压力控制系统,该压力控制系统保持该填充系统中的位置处的期望压力。该位置可以处于供应一个或多个填充阀的产品贮存器中,或者其可以处于来自该贮存器的流动路径中。对于某些产品,期望的压力可以高于大气压,以便促进产品流过填充阀。对于其它产品,期望的压力可以低于大气压(即真空),以便减缓产品流过填充阀。如在此所用的,“大气”、“大气压”和“周围环境大气压”均指的是围绕填充系统的空间内的周围环境压力,包括填充阀的出口处的空间。

图9A为根据至少一些实施例的包括压力控制系统600的饮料容器填充系统的一部分的示意图。图9A所示的填充系统部分可以是填充系统(例如图2所示的填充系统40)的一部分并且包括填充阀50。因为填充阀50在图9A中象征性地示出为矩形,所以再循环管道13的位置是为了表示取向的目的。如不均匀的虚线所示,可以并行地包括额外的填充阀50。在图9A和9B的整个剩余说明中,“填充阀50”表示具有1至n个填充阀50,其中n是任意数(例如,对于图2的填充系统40而言为72)。填充阀50的再循环管道13连接到产品再循环系统。结合图9B进一步讨论产品再循环系统。

填充阀50连接到产品贮存器601。贮存器601的内部具有的容量用以保持一定量的饮料产品,该量大于被填充的多个容器的组合体积。对于每个填充阀50而言,壳体的内部与产品贮存器601的内部流体连通。压力换能器(PT)602位于贮存器601和填充阀50之间的流体路径中。在一些实施例中,压力换能器602可以位于贮存器601内,例如在通向填充阀50的出口附近的贮存器601内部的下部区域中。压力换能器602将信号SPT输出到控制器。尽管在图9A中未示出,但是控制器形成压力控制子系统600(以及本文所述的其它系统)的一部分,并且在下文中结合图10进行描述。信号SPT表示在各个时间处由位于贮存器601和填充阀50之间的流体路径中的换能器602检测到的压力。液位换能器(LT)603位于贮存器601中,并且将信号SLT输出到控制器,其中信号SLT表示各个时间处贮存器601中的流体液位。

贮存器601通过供应入口606而填充有饮料产品。供应入口606可以接纳来自巴氏灭菌器或杀菌器的饮料产品,如结合图9B所述的。

贮存器压力控制系统600通过贮存器压力控制管线607连接到贮存器601的内部。管线607以及结合系统600所述的其它管线,可以包括一个或多个管道、管或其它类型的导管,它们能够容纳加压流体,并且对于系统600的某些部分而言,能够在不塌缩的情况下保持真空。贮存器加压控制系统600的工作流体可以是气体或气体混合物,例如空气、氮、二氧化碳等。通过调节管线607中的流体的压力,可以控制贮存器601内(以及来自贮存器601的流动路径中的各位置处)的压力。管线607可以包括真空断路器608以及安全阀609,该真空断路器用以防止由于无意中的高真空而导致的罐伸缩,安全阀用以防止由于管线607内的无意中的过压而导致的系统损坏。

管线607的第一分支连接到压力控制阀610的输出。压力控制阀610通过电流-压力换能器(l/P)611而选择性地打开和关闭。压力控制阀610的输入侧通过额外的管线联接到加压空气源618(或其它加压工作流体源)。连接压力控制阀610和源618的这些管线中可以包括有角度座阀614、过滤器615和616以及手动阀617。过滤器615和616可以是0.2微米的过滤器,并且可以用来防止微生物或其它污染物进入贮存器601。对于无菌填充操作,过滤器615和616可以是可灭菌的HEPAULPA过滤器。手动阀618可以用来将系统600与源618隔离。角度座阀614也可以用来将系统600与源618隔离,但是同时保持过滤器615和616被加压。角度座阀612将系统600的在源618和阀610的输入侧之间的部分连接到排放管613。

贮存器压力控制管线607的第二分支连接到真空泵622的输入侧。真空泵622的出口连接到排放管623。角度座阀620可以包含在将真空泵622连接到管线607的管线中。可调式真空安全孔口621(例如针阀)连接到角度座阀620和真空泵622之间的流体路径。

压力换能器602、液位换能器603、真空断路器608、安全阀609、压力控制阀610、电流-压力换能器611、角度座阀612、614和620、过滤器615和616、手动阀617、真空孔口621以及真空泵622可以是常规的可商购获得的部件。因此,除了它们用在本文所述的新颖的且创新性的系统中之外,并不提供这些部件的额外细节。

管线607中的压力进行调节,以将与压力换能器602对应的位置处的压力Piarget保持在Piarget处或附近(例如,+/-0.1psi,+/-0.05psi,等),如上文所述,该位置在图9A中的贮存器601和填充阀50之间。在其它实施例中,该位置可以处于贮存器601内,或者来自贮存器601的流动路径中的其它位置。Piarget压力可以是亚大气压(真空),可以是大气压,或者可以是比大气压大的压力。由于来自贮存器601的内容物的头部压力,管线607中的实际压力可能低于换能器602测量到的压力。但是,降低管线607内的压力降低了贮存器601和填充阀50之间的压力,增大管线607内的压力增大了贮存器601和填充阀50之间的压力。

真空泵622从管线607牵引流体,以在该管线中产生亚大气压(即真空)。阀610可以打开,以允许加压流体从其输入侧流动到其输出侧。根据阀610打开的程度,来自阀610的输出可以降低管线607中的亚大气压,中和管线607中的亚大气压以使得管线607的压力变成大气压,或者甚至克服由真空泵622在管线607中形成的亚大气压以使得管线607的压力超过大气压。控制器接收来自压力换能器602的信号SPT。利用以下结合图11C所述的控制算法,并且基于接收到的信号SPT和此前设定的控制参数,控制器将信号SPC输出到换能器611。响应于这些信号SPC,换能器611打开压力控制阀610以克服较多的由泵622产生的亚大气压(由此增大管线607中的压力),或者关闭控制阀610以克服较少的由泵622产生的亚大气压(由此降低管线607中的压力)。

每个角度座阀612、614和620通常是完全打开或完全关闭的。响应于来自控制器的信号,这些角度座阀中的每一个都可以由未示出的螺线管(或螺线管控制的气动式致动器)致动。当系统600正在运行时,控制器发送保持角度座阀614打开的信号,当系统600没有进行操作时或者在由于某种原因需要切断高压力流动的情况下,控制器停止发送该信号。当系统正在运行时,控制器发送保持角度座阀620打开的信号,当系统没有进行操作时或者在由于某种原因需要将真空侧与压力侧隔离的情况下,控制器停止发送该信号。角度座阀612在操作期间保持关闭;在需要从高压侧卸掉空气的情况下,控制器可以发送用以打开阀612的信号。

利用压缩流体源618和真空泵622来调节压力,能够更好地进行控制,尤其是当需要保持管线607中的真空时。在操作中,阀617、614和620可以是打开的,阀612关闭,并且真空泵622在打开任何阀50之前被激活。在压力控制阀610设定在其最佳操作范围的中间的情况下,孔口621可以进行调节,以使得换能器602检测到的压力为Piarget,然后,控制器可以开始执行如下所述的压力控制算法,并且开始利用阀50的填充操作。

期望的Piarget将取决于所考虑的饮料产品,尤其是该产品的粘度。通过执行有限数量的测试(例如,在14psia至15.5psia之间以0.1psia的间隔)来针对所考虑的产品绘制填充阀50的输入压力对通过该填充阀50的出口49的流量的图,可以确定用于特定饮料产品的期望的Piarget。可以选择期望的流量,然后可以采用对应的压力。然后,可以执行全系统测试以调节该压力,使得多个填充阀50能够接纳来自贮存器的产品。

在图9A所示的系统600的实施例中,压力控制阀610的输出端和真空泵622的输入端连接到压力控制管线607。从图9A中可以理解,管线607和贮存器601的内部形成公共流体空间。在其它实施例中,压力控制阀的输出端和真空泵(或其它真空源)的输入端可以连接到不同构造的管线,以形成包括贮存器内部的公共流体空间。

贮存器601被密封,并且能够保持高于、等于或低于大气压的压力。在一些实施例中,贮存器601可以通到大气环境,并且可以以通向大气环境的模式执行填充操作。

当执行热填充操作时,贮存器中的饮料产品的温度可以升高,以防止产品以及填充有该产品的容器中的微生物生长。例如,加热的产品可以有助于容器内部的灭菌。在某些填充操作中,在容器已经填充有加热的产品并利用封闭件封装之后,将该容器倒置。然后,容器内的加热的产品对封闭件的内表面进行灭菌。

在热填充操作期间,期望的是,保持填充阀50内部部件的温度接近贮存器的升高的温度。如果填充阀的温度下降太多,那么分配到容器中的产品的温度可能太低。如果当填充阀50关闭时产品完全停止流动,那么填充阀50的内部部件可能随着填充阀等待开始下一个容器填充操作而冷却。例如且如以上结合图2所解释的,填充阀50可以定位在连续转动的转盘上,并且当填充阀50在6点钟位置和12点钟位置之间运动时将饮料产品分配到容器中。当填充阀50在12点钟位置和6点钟位置之间运动以接纳另一个容器并开始新的填充操作时,产品不从该填充阀50的出口49流动。

为了在填充阀关闭时防止填充阀的过度冷却,已知的是将少量的加热的产品再循环通过该填充阀并回到产品罐。然而,对于许多类型的产品,过度的再循环可能降低产品的质量。因此,再循环流动应当足以保持填充阀被加热,但是相对于填充阀打开时通过填充阀的流动处于大大降低的流量下。

如上所述,填充阀50可以用来用各种饮料产品填充容器。这些产品中的一些可以具有较大的内含物。为了使具有大内含物的产品进行再循环,需要较大的流体通路。例如,为了使具有10mmx10mmx10mm的内含物的饮料产品进行再循环,期望的是,流动通路的宽度为至少0.625英寸(例如,对于圆形通路而言,直径为0.625英寸)。然而,对于没有内含物的粘度较低的饮料而言,简单地修改常规的产品再循环系统以包括具有该尺寸的通路,将导致针对具有较小(或没有)内含物的低粘度产品的不期望地高的再循环流量。

在某些实施例中,填充系统可以包括产品再循环系统,该产品再循环系统可以使大内含物产品进行再循环,也可以使其它产品进行再循环,但不会以不期望地高的流量进行再循环。可以利用流量计来监测通过该再循环系统的流量。根据流量计的输出,可以调节再循环系统内的流量,并且将该流量保持为预定水平。

图9B为根据至少一些实施例的包括产品再循环系统650的饮料容器填充系统的一部分的示意图。图9B为图9A的延伸,并且示出了同一个饮料容器填充系统的另一个部分。

产品再循环系统650的流动路径包括可变速度正排量泵651,该泵配备有变频驱动器(VFD)652。泵651的输入端连接到填充阀50的再循环管13。泵651的输出端通向平衡罐655。流量计653位于流动路径的在泵651的输出端和平衡罐655之间的部分中。流量计653可以包括质量流量计和流量传感器或其它类型的换能器,流量计输出的信号SRFM表示通过流量计653的流量,由此表示通过产品再循环系统650的流动路径的流量。快速冷却器或其它热交换器654可以位于产品再循环系统650的流动路径中,并且可以冷却饮料产品,以防止长时间加热所造成的损坏。泵651、变频驱动器652、流量计653和热交换器654可以是常规的可商购获得的部件。因此,除了它们用在本文所述的新颖的且创新性的系统中之外,并不提供这些部件的额外细节。

控制器接收来自流量计653的信号SRFM。尽管在图9B中没有示出,但是控制器形成产品再循环系统650的一部分,并且结合图10进行讨论。利用以下结合图11D所述的控制算法,并且基于接收到的信号SRFM和此前设定的控制参数,控制器将信号SRFC输出到驱动器652。响应于这些信号SRFC,驱动器652增大或减小泵651的速度,以调节泵651的输出侧上的流量。

平衡罐655输出到由变频驱动器657驱动的第二可变速度正排量泵656的输入端。液位换能器659将表示罐655中的产品液位的信号SLTB输出到控制器。根据这些信号SLTB,控制器生成用以增大或减小泵656的速度(以及由此流量)的信号SFBC。液位换能器659、泵656和变频驱动器657可以是常规的可商购获得的部件。

泵656的输出端是缓冲罐658的输入端。缓冲罐658的输出端连接到由变频驱动器驱动的第三可变速度正排量泵660的输入端。泵660的输出端通向处理器661。处理器661可以是巴氏灭菌器或其它杀菌器。处理器661的输出端通向贮存器601。通过蝶形阀664(连接至电流-压力换能器665)来控制从处理器661到贮存器601的流动。控制器生成信号SLL,该信号用以根据来自液位换能器603的信号SLT控制阀664的位置(图9A)。处理器661的输出端处的再循环回路包括连接至电流-压力换能器663的另一个蝶形阀662。来自控制器的信号(未示出)控制阀662的位置。如果例如到贮存器601的流动变缓或中断,那么可以打开阀662。从阀662的流动使饮料产品穿过第二快速冷却器669返回到缓冲罐658。图9B所示的系统的处于泵656之后的部分(即缓冲罐658、泵和驱动器660、处理器661、阀662和换能器663、阀664、快速冷却器669以及换能器665)可以类似于常规的系统,该常规的系统用来向供应填充阀的填充系统的罐供应加热的产品。在一些实施例中,产品再循环系统650中的通路具有的最小宽度为0.625英寸。

图9C为根据至少一些实施例的包括产品再循环系统650'的饮料容器填充系统的一部分的示意图。至于这样的实施例,图9C为图9A的延伸,而不是图9B的延伸。图9C所示的实施例的若干方面类似于图9B的实施例,其中图9C中的元件类似于图8B中具有相同附图标记的元件,并且以与图8B中具有相同附图标记的元件相似的方式进行操作。然而,在再循环系统650'中,已经增加了可变流量阀671。阀671可以是常规的隔膜阀或其它类型的减流量阀。可变速度泵670及其相关的变频驱动器类似于泵651和驱动器652。在系统650'中,阀671用来调节流量。控制器发送信号SRFCv(例如,发送到与阀671连接的电流-压力换能器),该信号使得阀671增大或减小通过系统650'的流动路径的产品的流量。控制器可以基于从流量计653接收到的信号SRFM生成信号SRFCv。在一些实施例中,除了处于某些设定下的阀671之外,产品再循环系统650'的通路具有的最小宽度为0.625英寸。然而,控制器可以周期性地使阀671跳到打开位置,足以允许冲洗任何积聚在阀671中的内含物。

图9D为根据至少一些额外的实施例的包括产品再循环系统650"的饮料容器填充系统的一部分的示意图。至于这样的实施例,图9D为图9A的延伸,而不是图9B的延伸。图9D所示的实施例的若干方面类似于图9B的实施例,其中图9D中的元件类似于图8B中具有相同附图标记的元件,并且以与图8B中具有相同附图标记的元件相似的方式进行操作。然而,在再循环系统650"中,平衡罐655被替换为加压平衡罐680。罐680通过压力控制阀673连接到压缩空气源,其中阀673连接到压力换能器672的流。可变速度泵670及其相关的变频驱动器类似于泵651和驱动器652。然而,在系统650"中,通过增大或减小罐680中的压力,由此增大或减小系统650"的流动路径中的背压,阀673用来调节流量。控制器将信号SRFCp发送到电流-压力换能器672,使得阀673增大或减小压缩空气进入罐680中的流量。控制器可以基于从流量计653接收到的信号SRFM生成信号SRFCp。在一些实施例中,产品再循环系统650"中的通路具有的最小宽度为0.625英寸。

图10为根据一些实施例的填充系统的控制器1000的输入和输出的方框图。控制器1000可以是微处理器、可编程集成电路(IC)、特定目的的IC、可编程逻辑控制器(PLC)、现场可编程门阵列(FPGA)或其它类型的装置,能够接收信号、执行指令以及基于接收到的信号和指令输出信号。控制器1000可以包括用于存储指令和数据的存储器和/或可以访问单独的存储部件(未示出)。尽管图10示出了单个控制器1000,但是在一些实施例中,填充系统可以包括多个控制器,其中如本文所述的控制器操作分布在这些多个控制器之间。

控制器1000连接到一个或多个输入信号管线,控制器1000在这些输入信号管线上接收来自各个填充系统部件的信号。这些输入信号管线中的一些带有来自臂20的测力传感器406(图7A-7D)的信号SLC。如图10所示,控制器1000可以接收来自多个测力传感器406中每一个的单独的输入。这些输入中的每一个可以是来自臂20的测力传感器406的、与单个填充器单元10相对应的信号SLC。控制器1000还连接到输入信号管线,控制器1000在这些输入信号管线上接收来自压力换能器602(图9A)的信号SPT、来自流量计653(图9B)的信号SRFM、来自液位换能器659的信号SLTB以及来自液位换能器603(图9A)的信号SLT。控制器1000可以包括额外的信号管线,以接收来自其它换能器的信号、编程指令等。例如且如上所述,当填充阀50处于低流量设定点时,控制器1000接收来自光学传感器121的信号。

控制器1000还连接到一个或多个输出信号管线,控制器1000在这些输出信号管线上将控制信号输出到各个填充系统部件。这些输出信号管线中的一些带有多个填充器单元10中每一个的致动器的螺线管的信号。如图10所示,针对每个填充器单元10,这可以包括每个螺线管509、519和559的单独的信号管线(图8A至8H)(或者图8I-8P的实施例中的螺线管509、519和559'的信号管线)。控制器1000将到填充器单元10中的一组螺线管509、519和559的每组输出信号管线与带有来自对应于填充器单元10的臂20的测力传感器406的信号SLC的输入信号管线相关联。控制器1000还连接到输出信号管线,控制器1000在这些输出信号管线上将信号SPC发送到换能器611(图9A)、将信号SRFc发送到变频驱动器652(图9B)、将信号SFBC发送到驱动器657、且将信号SLL发送到换能器665(图9B)。控制器1000可以包括额外的信号管线,控制器1000在这些信号管线上将信号发送到其它填充系统部件。这些信号可以包括但不限于,角度座阀612、614和620的信号,电流-压力换能器663和665的信号,阀671的信号(在图9C的实施例中),换能器672的信号(在图9D的实施例中),泵660的驱动器的信号,泵670的驱动器的信号(在图9C和9D的实施例中),以及真空泵622的开/关信号。

图11A为由控制器1000结合图8A-8H或图8I-8P中所示的操作所执行的算法的例子。图11A的算法涉及单个填充器单元及其对应的臂20,该算法将参考单个填充器单元及其对应的臂20进行说明。然而,针对每个填充器单元及其对应的臂20,控制器1000可以同时执行图11A的算法的分开的例子。

在步骤1101(可对应于图8A或图8I所示的填充器单元的状态)处,控制器1000确定空的容器是否已经被放置到臂20的夹持器415中。在一些实施例中,控制器1000可以基于定位在夹持器415上的用以检测容器的单独的光学或接触传感器来进行这种确定。在其它实施例中,控制器1000基于当前从测力传感器406接收到的信号SLC是否对应于空容器的重量来进行这种确定。如“否”环所示,控制器1000继续进行步骤1101的确定,直到空的容器处于臂20中。在该点处,算法在“是”分支上前进到步骤1102。在步骤1102(可对应于图8B(或图8J)所示的填充器单元的状态)中,控制器1000发送用以激活螺线管519的信号。

然后,控制器1000继续到步骤1103,其中控制器1000确定被填充的容器是否“接近完全”,例如,90%完全。步骤1103可以对应于图8C(或图8K)所示的填充器单元的状态。在一些实施例中,步骤1103中的确定是基于来自测力传感器406的信号SLC是否表示与接近完全容器相对应的重量。如“否”环所示,重复步骤1103,直到容器被确定为接近完全。一旦做出该确定,控制器1000就在“是”分支上前进到步骤1104。在步骤1104(可对应于图8D(或图8L)所示的填充器单元的状态)中,控制器1000停止向螺线管519发送信号,并且开始向螺线管509发送信号。

然后,控制器1000前进到步骤1105,其中控制器1000确定是否已经收到来自光学传感器121的信号。步骤1105可以对应于图8E(或图8M)所示的填充器单元的状态。如“否”环所示,重复步骤1105,直到已经接收到来自光学传感器121的信号。一旦接收到光学传感器的信号,控制器就在“是”分支上前进到步骤1106。在步骤1106(可对应于图8F(或图8N)所示的填充器单元的状态)中,控制器1000发送用以激活螺线管559(或螺线管559')的信号。然后,控制器1000前进到步骤1107,并且确定被填充的容器是否完全填充。基于从测力传感器406接收到的信号SLC是否表示完全容器的重量,控制器1000在步骤1107中做出该确定。重复步骤1107(“否”环),直到做出确实的完全容器确定,在这点处,控制器1000继续到步骤1108。

在步骤1108(可对应于图8G(或图8O)所示的填充器单元的状态)中,控制器1000停止发送用以激活螺线管559(或螺线管559')的信号。然后,控制器1000前进到步骤1109,并确定臂20是否是空的,也就是确定填充的容器是否已经被移除。在一些实施例中,控制器1000基于来自臂20上的光学或接触传感器的信号来进行步骤1109的确定。在其它实施例中,控制器1000基于来自测力传感器406的信号SLC是否对应于未装载的臂20的重量来进行步骤1109中的确定。重复步骤1109(“否”环),直到做出确实的空的臂的确定,在这点处,控制器1000继续到步骤1110。在步骤1110中,控制器1000停止发送用以激活螺线管509的信号。然后,控制器1000返回到步骤1101,并且等待表示下一个空的容器在臂20中就位的信号。

图11B为结合与图8A-8H和图8I-8P所示类似的操作,可以由控制器1000执行的可供选择的算法的例子,但是其中没有使用光学传感器120。步骤1121、1122、1123、1126、1127、1128、1129和1130分别类似于图11A的步骤1101、1102、1103、1106、1107、1108、1109和1110,从而不再进一步描述。在步骤1124中,控制器1000执行与图11A的步骤1104类似的操作,但是还启动计时器。该计时器具有的值表示填充阀从完全打开条件到部分打开条件所需的时间,该部分打开条件与期望的低流量设定点相对应。在步骤1125中,控制器1000确定该计时器是否已经终止。控制器1000重复步骤1125(“否”环),直到该计时器已经终止,在这点处,控制器1000在“是”分支上前进到步骤1126。

如上文所述,控制器1000还通过发送用以调节压力控制阀610的位置的信号SPC(图9A)来控制贮存器601(或来自贮存器601的流动路径)中的压力。在一些实施例中,控制器1000利用PID(比例-积分-微分)控制环算法执行指令以控制压力阀610的设定。图11C为该算法的例子的流程图。在控制器1000的时钟周期t处,算法接收到两个输入。第一输入是与贮存器601(或来自贮存器601的流动路径)中要保持的期望目标压力(Piarget)的值相对应的数据。该值可以是存储在存储器中作为程序参数的恒定值。第二输入是SPT(t),在时钟周期t处接收到的来自压力换能器602的信号SPT的值。加法器1151将一个输入从另一个输入减去,并且输出所得到的差EPr(t),时间t处的压力误差值。EPr(t)值由比例计算器方块1152、积分计算器方块1153和微分计算器方块1154接收。值P(1)、P(2)和P(3)是调节参数,“T”是积分时间间隔(例如,从开始执行算法所逝去的总时间)。方块1152、1153和1154的输出由第二加法器方块1155接收,该第二加法器方块输出和SPC(t),用于时钟周期t的控制信号SPC(到电流/压力换能器611)。在控制器1000的下一个时钟周期(t+1)处,再次执行图11C的算法,但是使用SPT(t+1)而不是SPT(t)作为第二输入,以获得EPr(t+1),时间t+1处的压力误差值,从而将EPr(t+1)提供至方块1152-1154等。信号SPT(t+1)将是在压力阀610已经响应于SPC(t)进行调节之后在周期t+1处接收到的信号SPT的值。针对后续的时钟周期,以类似的方式重复图11C的算法。

也如上所述,通过发送用以调节泵651的速度的信号SRFC(图9B),控制器1000控制正排量泵651的速度。在一些实施例中,控制器1000利用另一种PID控制环算法执行指令以控制泵651的设定。图11D为该算法的例子的流程图。在控制器1000的时钟周期t处,算法接收到两个输入。第一输入是与通过产品再循环系统650的流动路径的期望流量相对应的数据。在一些实施例中,该值(FLTarget)在进入贮存器601的总流量的5%至15%之间。通过计算进入贮存器601的流量的百分比,控制器1000可以计算FLTarget的值。进入贮存器601的流量可以由控制器1000基于随着时间而来自液位换能器603的连续数据进行确定。例如,基于值SLT(t)和SLT(t-n)的流量可以计算为[[与SLT(t)相对应的贮存器601的体积]-[与SLT(t-n)相对应的贮存器601的体积]/[(t)-(t-n)]]),其中n是时钟周期的数量,对应于用以检测产品水平变化的足够长的时间段。第二输入是SRFM(t),在时钟周期t处接收到的来自流量计653的信号SRFM的值。加法器1161将一个输入从另一个输入减去,并且输出所得到的差EFL(t),时间t处的流量误差值。EFL(t)值由比例计算器方块1162、积分计算器方块1163和微分计算器方块1164接收。值P(4)、P(5)和P(6)是调节参数,“T”是积分时间间隔(例如,从开始执行算法所逝去的总时间)。方块1162、1163和1164的输出由第二加法器方块1165接收,该第二加法器方块输出和SRFC(t),用于时钟周期t的控制信号SRFC(到变频驱动器652)。在控制器1000的下一个时钟周期(t+1)处,再次执行图11D的算法,但是使用SRFM(t+1)而不是SRFM(t)作为第二输入,以获得EFL(t+1),时间t+1处的流量误差值,从而将EFL(t+1)提供至方块1162-1164等。信号SRFM(t+1)将是在泵651的速度已经响应于SRFC(t)进行调节之后在周期t+1处接收到的信号SRFM的值。针对后续的时钟周期,以类似的方式重复图11D的算法。可以利用用于现有类型的流量系统的初始化和调节PID控制器的常规技术,来确定调节参数P(4)、P(5)和P(6)的值。

在图9C的实施例中,通过发送用以调节阀671的信号SRFVc,控制器1000控制通过系统650'的流动路径的流量。在一些实施例中,控制器利用与图11D类似的PID控制环算法生成信号SRFVc,但是SRFCv而不是SRFC作为输出。在图9D的实施例中,通过发送用以调节阀673的信号SRFVp,控制器1000控制通过系统650"的流动路径的流量。在一些实施例中,控制器利用与图11D类似的PID控制环算法生成信号SRFVp,但是SRFCp而不是SRFc作为输出。

也如上所述,控制器1000通过生成信号SFBC来控制泵656的速度。在一些实施例中,利用另一种PID控制环算法并基于来自液位换能器659的信号SLTB作为输入,控制器1000生成信号SFBC。例如,用于平衡罐655内产品液位变化的目标值(△LTarget)可以设定为0。输入△L(t)可以根据随时间的SLTB的值进行计算。然后,可以调整算法,以保持罐655内的恒定产品液位。作为另外一种选择,用以生成信号SFBC的算法可以更加简单。例如,每当罐655的液位到达某个值(例如,80%完全),控制器就可以生成信号SFBC,使得泵656以预设速度运行,直到罐655的液位到达另一个水平(例如,20%完全)。

图12A为根据一些实施例的方法中的步骤的方框图。在第一步骤1201中,使填充系统贮存器供应有第一饮料产品。该填充系统可以是诸如本文所述的填充系统,并且可以包括一个或多个填充阀50和/或诸如本文所述的其它部件。在步骤1202中,填充系统用于从具有第一饮料产品的贮存器进行容器的热填充。具体地,容器相对于一个或多个填充阀放置到填充位置中,并且加热的产品被分配到这些容器中。在步骤1202之后,在步骤1203中,使填充系统供应有第二饮料产品。然后,在步骤1204中,填充系统用于从具有第二饮料产品的贮存器进行容器的无菌填充。在步骤1204之后,在步骤1205中,使填充系统供应有第三饮料产品。然后,在步骤1206中,填充系统用于从具有第三饮料产品的贮存器进行容器的填充。在第三产品被冷冻或处于室温时并且在不保持无菌条件的情况下,可以执行步骤1206的填充操作。尽管在图12A中没有示出,但是可以在步骤1201之前、在步骤1202和1203之间、在步骤1204和1205之间以及在步骤1206之后执行额外的设定、清洁和/或灭菌操作。

第一、第二或第三饮料产品中的任一种可以具有在1cps至400cps之间的粘度。第一、第二或第三饮料产品中的任一种可以包含内含物(其尺寸在上述范围内,其浓度在上述范围内),或者可以没有内含物。但是作为一个例子,在一些实施例中,第一、第二或第三饮料产品中的一种没有内含物,且第一、第二或第三饮料产品中的另一种具有内含物,该内含物的体积百分比为至少10%,具有的体积在125立方毫米至1000立方毫米之间(例如,25%,400立方毫米)。在一些实施例中,第一、第二或第三饮料产品中的一种具有的粘度在大约1cps至大约50cps之间,第一、第二或第三饮料产品中的另一种具有的粘度在大约50cps至大约100cps之间,第一、第二或第三饮料产品中的另一种具有的粘度在大约100cps至大约200cps之间。在一些实施例中,第一、第二或第三饮料产品中的一种具有的粘度在大约1cps至大约50cps之间,第一、第二或第三饮料产品中的另一种具有的粘度在大约100cps至大约200cps之间。在一些实施例中,第一、第二或第三饮料产品中的一种具有的粘度在大约1cps至大约100cps之间,第一、第二或第三饮料产品中的另一种具有的粘度在大约200cps至大约400cps之间。

图12A中的步骤不必按图示的顺序执行。例如,填充系统用来用第一饮料产品热填充容器的顺序、用第二饮料产品无菌填充容器的顺序以及用第三饮料产品冷填充容器的顺序可以改变。

图12B为根据一些实施例的另一个方法中的步骤的方框图。在步骤1211中,容器抓握臂被置于第一构造中,以用于填充第一类型的容器。容器抓握臂包括测力传感器,该测力传感器响应于由臂保持的容器以及该容器的内容物的力F1而输出表示施加在测力传感器上的力F2的信号。在第一构造中,力F2是力F1的第一比。在步骤1212中,在用来自填充阀的饮料产品进行填充时,处于第一构造的容器抓握臂用来保持第一类型的容器。在步骤1213中,容器抓握臂被置于第二构造中,以用于填充第二类型的容器。在第二构造中,力F2是力F1的第二比。第二比与第一比不同。在步骤1214中,在用来自填充阀的饮料产品进行填充时,处于第二构造的容器抓握臂用来保持第二类型的容器。在其它实施例中,图12B的方法可以包括另外的步骤,其中容器抓握臂被置于额外的构造中,以用于填充额外类型的容器,每一种额外构造对应于不同的F2:F1比,并且在用饮料产品进行填充期间以及当处于这些额外构造中时,容器抓握臂用来保持这些额外类型的容器。尽管在图12B中没有示出,但是可以在例如步骤1212和1213之间或步骤1213和1214之间执行额外的设定、清洁和/或灭菌操作。

图12C为根据一些实施例的另一个方法中的步骤的方框图。在步骤1221中,使填充系统贮存器供应有第一饮料产品。该填充系统可以是诸如本文所述的填充系统,并且可以包括一个或多个填充阀50和/或诸如本文所述的其它部件。在步骤1222中,填充系统用于从具有第一饮料产品的贮存器进行容器的填充。具体地,容器相对于一个或多个填充阀放置到填充位置中,并且产品被分配到这些容器中。在步骤1222中,贮存器内部(或来自贮存器内部的流动路径)中的位置处的压力保持为第一水平。在步骤1223中,使填充系统贮存器供应有第二饮料产品。在步骤1224中,填充系统用于从具有第二饮料产品的贮存器进行容器的填充。在步骤1224中,同一位置处的压力保持为与第一水平不同的第二水平。第一和第二水平中的至少一个是亚大气压。可以执行另外的步骤,其中填充系统用于从具有其它饮料产品的贮存器填充容器,同时将该位置处的压力保持为一个或多个其它水平。在一些实施例中,通过将压力保持在期望水平的+/-0.1psi内,来将压力保持为期望水平。该公差可以具有其它的值(例如,+/-0.05psi)。在一些实施例中,第一压力水平是亚大气压,第二压力水平是大气压或更高的压力,第一饮料的粘度小于第二饮料的粘度。在一些实施例中,第一压力水平是大气压或更高的压力,第二压力水平是亚大气压,第一饮料的粘度大于第二饮料的粘度。尽管在图12C中没有示出,但是可以在例如步骤1222和1223之间执行额外的设定、清洁和/或灭菌操作。在一些实施例中,图12C的方法可以包括另外的步骤:用第三饮料产品填充贮存器,然后从具有该第三饮料产品的贮存器填充容器,同时贮存器通向大气环境。

图12D为根据一些实施例的额外方法中的步骤的方框图。在第一步骤1231中,使填充系统贮存器供应有第一饮料产品。该填充系统可以是诸如本文所述的填充系统,并且可以包括一个或多个填充阀50和/或诸如本文所述的其它部件。在步骤1232处,且在第一时间段期间,填充系统用于从具有第一饮料产品的贮存器进行饮料容器的热填充。具体地,容器相对于一个或多个填充阀放置到填充位置中,并且产品被分配到这些容器中。在第一时间段期间,填充系统自动地保持通过产品再循环流动路径的流量(例如,在图9B的实施例中通过调节该流动路径中的可变流量泵的速度,在图9C的实施例中通过调节可变流量阀的设定,在图9D的实施例中通过调节压力控制阀)。在步骤1233中,使填充系统贮存器供应有第二饮料产品。在步骤1234处,且在第二时间段期间,填充系统用于从具有第二饮料产品的贮存器进行饮料容器的热填充。在第二时间段期间,填充系统再次自动地保持通过产品再循环流动路径的流量。尽管在图中没有12D示出,但是可以在例如用一种产品填充容器和接下来用不同的产品装载贮存器之间执行额外的设定、清洁和/或灭菌操作。

第一和第二饮料产品中的一种具有内含物(其尺寸在上述范围内,其浓度在上述范围内),而第一和第二饮料产品中的另一种缺少内含物。但是作为一个例子,第一和第二饮料产品中的一种具有的内含物的体积百分比可以为至少25%。这些内含物中的至少一部分的每一个都可以具有为至少400立方毫米的单体体积。可以执行额外的或可选的步骤,其中贮存器填充有其它产品,该产品具有其它尺寸和/或其它浓度的内含物(例如,浓度为大约1%,尺寸配合在1mm方块中的内含物),于是填充系统用于执行这些其它产品到容器中的加热填充,同时也自动地保持通过产品再循环流动路径的流量。

与利用常规系统能够实现的相比,根据各个实施例的系统能够用范围宽得多的产品类型填充容器。当产品的粘度大于大约20cps时,或者当产品具有内含物时,与利用常规系统能够实现的相比,根据各个实施例的系统能够以更高的速率填充容器。

除了迄今为止描述的变型和实施例之外,另外的实施例可以包括不同的特征和/或不同的特征的组合。例子包括但不限于以下方面:

其它类型、形状和构造的磁体可以用于填充阀。穿梭物和/或驱动套筒可以具有其它构造。穿梭物可以缺少流动拉直叶片,例如叶片208,和/或可以具有不同构造的流动拉直叶片。不同类型的端部元件可以附接到穿梭物(例如,用于具有不同尺寸的开口的杯状物)。在一些实施例中,填充阀杯状物(例如杯状物53)可以更换为另一种类型的杯状物。从图1A、1B和3A-4B中可以理解,通过松动夹具56、移除杯状物53、将新的杯状物放置就位以及重新张紧夹具56,可以容易地更换杯状物53。在一种情形下,容器将要填充的饮料产品可能缺少内含物,或者可能具有较小的内含物,这可能不需要杯状物的出口的尺寸形成为允许大内含物通过。在这种情形下,更换杯状物可能具有较小的开口,以便在填充期间获得更大的精度,和/或填充具有较小开口的容器。在另一种情形下,可能不需要执行热填充,因此可能不需要产品再循环。在这种情形下,更换杯状物可以不包括再循环管道,例如再循环管道13。

容器抓握臂可以包括以可供选择的构造布置和/或联接的杠杆、支撑梁和测力传感器。

低流量设定点系统可以包括控制阀的可供选择的布置形式和/或各种部件的可供选择的定位。

贮存器压力控制系统的各部件可以以可供选择的方式进行布置。可以采用可供选择的类型的流体控制阀、换能器和其它部件。

产品再循环系统的各部件可以以可供选择的方式进行布置。可以采用可供选择的类型的部件。

具有填充阀50的某些或全部特征的填充阀可以用在填充系统中,该填充系统不包括诸如容器抓握臂20的容器抓握臂、诸如结合图8A-8H(或图8I-8P)所述的低流量设定点控制系统、诸如结合图9A所述的压力控制系统或者诸如结合9B-9D所述的产品再循环系统。

具有臂20的某些或全部特征的容器抓握臂可以用在填充系统中,该填充系统不包括诸如填充阀50的填充阀、诸如容器抓握臂20的容器抓握臂、诸如结合图8A-8H(或图8I-8P)所述的低流量设定点控制系统、诸如结合图9A所述的压力控制系统或者诸如结合9B-9D所述的产品再循环系统。

诸如结合图8A-8H(或图8I-8P)所述的低流量设定点系统可以与其它类型的填充阀结合使用,和/或可以用于一系统,该系统不包括诸如容器抓握臂20的容器抓握臂、诸如结合图9A所述的压力控制系统或者诸如结合9B-9D所述的产品再循环系统。

诸如结合图9A所述的压力控制系统可以与其它类型的填充阀结合使用,和/或可以用于一系统,该系统不包括诸如容器抓握臂20的容器抓握臂、诸如结合图8A-8H(或图8I-8P)所述的低流量设定点控制系统或者诸如结合9B-9D所述的产品再循环系统。

诸如结合9B-9D所述的产品再循环系统可以与其它类型的填充阀结合使用,和/或可以用于一系统,该系统不包括诸如容器抓握臂20的容器抓握臂、诸如结合图8A-8H(或图8I-8P)所述的低流量设定点控制系统或者诸如结合图9A所述的压力控制系统。

诸如本文所述的系统也可以用来用其它类型的液体填充容器。这些产品可以包括但不限于食品、涂料、油墨和其它液体。这样的其它产品还可以具有处于以上针对饮料产品所述的范围内的粘度和内含物。

为了举例说明和描述起见,已经提供了实施例的上述说明。前述说明并不是详尽的,也不是用来将本发明的实施例限制为所公开的精确形式,根据上述教导可以进行修改和变型,或者根据各种实施例的实践需要进行修改和变型。本文所述的实施例选择和描述为用以解释各个实施例的原理和特性以及它们的应用,使得本领域技术人员能够以各种实施例使用本发明,并且各种修改适合于能够想到的具体使用。从上述实施例中得到的特征的任何和全部组合、子组合和排列都处于本发明的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1