填充装置的制作方法

文档序号:16442535发布日期:2018-12-28 21:28阅读:199来源:国知局
填充装置的制作方法

本发明涉及用于将例如为氢气的燃料填充至车辆的填充装置。

背景技术

在图10所示的常规氢填充装置200中,装备于填充管口201上的光电探测器202接收来自燃料电池车辆的通信装置的光学信号,包括诸如油箱压力、油箱温度及类似信息(美国汽车工程师学会:sae-j2799);将光学信号转换为电力串行通信信号;以及将转换后的信号经由线缆204传输至安装在安全区域的接收器203。接收器203将接收到的信号传输至控制器205,然后控制器205将信号进行处理以控制氢填充装置200的设备。

装设线缆204不仅是为了传输信号,也为了输送驱动电力,且沿填充管206从填充管口201开始经由氢填充装置200的内部,到达接收器203。在此,填充工作拉动并扭曲线缆204,导致临近填充管口201的连接器部分204a及类似物经常受损。当线缆204断了之后,就无法填充例如为氢气的气体燃料。此外,由于线缆204很长,线缆204容易遭受来自氢填充装置200的电力噪音影响,存在有线缆204由于噪音而无法简洁地传输信号的可能性。

作为另一种常规技术的示例,提出了一种易于装配的氢填充装置(参见jp2015-137671a)。然而,该氢填充装置并无意解决上述问题。

jp2015-137671a的内容通过引用其全文的方式包含于此。



技术实现要素:

本发明要解决的问题

本发明是在考虑到在先技术的上述问题之后做出的,其目的在于提供一种能够消除将光电探测器连接到接收器的线缆的缺点的填充装置。

解决该问题的手段

本发明的填充装置100的特征在于,包括在填充管口50上的无线传输部分(光电探测器)10,该无线传输部分具有经由无线传输方式传输车辆信息的功能。

在如上所述的填充装置100中,优选为无线传输部分10能从填充管口50的端部拆卸。并且,优选为无线传输部分10具有防爆结构。

在如上所述的填充装置100中,无线传输部分10优选包含电池15。进一步地,优选无线传输部分10包含信息处理器13,且信息处理器13具有检查带有填充管口50的车辆的信息的功能,以及将电池剩余容量传输至填充装置100的功能。

在如上所述的填充装置100中,信息处理器13优选为具有不传输自无线传输部分10产生的噪音的功能。或者,优选为在填充管口50上安装有运行/关闭无线传输部分10的开关(自动开关)51,且开关51具有当填充管口50连接至车辆时传输用于运行无线传输部分10的信号的功能。

如上所述的填充装置100优选为具有控制器20,该控制器20具有仅当控制器20接收到来自在填充管口50从管口钩上取下时起作用的管口开关的信号且在接收到该信号后经过预定时间后时才处理传输自无线传输部分10的信号的功能。或者,优选为控制器20安装至填充装置100;填充开始按钮安装在填充管口50上;以及控制器20具有仅当控制器20接收到指示填充开始按钮被按下的信号时才处理传输自无线传输部分10的信号的功能。

本发明具有以下效果:具有无线传输车辆信息功能的无线传输部分10安装在填充管口50上,使得不再需要通信线缆,从而也不会产生归因于线缆断开的缺陷。此外,由于车辆信息经由短距无线通信来传输,也不会受到电气噪音的有害影响。进一步地,当填充装置100受损或损坏时,没有线缆使得维修工作易于进行。

在本发明中,当无线传输部分10可从填充管口50的端部拆卸时,其可从填充管口50上被拆卸以在损坏或类似情况下容易修复。此外,当无线传输部分10具有防爆结构时,填充装置100的安全性得以提升。在本发明中,当无线传输部分10具有电池15时,可以在不带供电线缆的情况下运行。

在此,如果无线传输部分10总是被电池15供电,存在有将诸如由阳光产生的偏差信号之类的噪音作为信号从无线传输部分10传输至填充装置100的控制器20的可能性。但是,在本发明中,当无线传输部分10包含信息处理器13且信息处理器13具有不传输由无线传输部分10产生的噪音的功能时,防止了噪音被传输至填充装置100的控制器20,从而使得控制器20无需处理噪音,控制器20的负荷得以减轻。

或者,当在填充管口50上安装有用于运行/关闭无线传输部分10的开关51且开关51具有当填充管口50连接至车辆时传输用于运行无线传输部分10的信号的功能时,即使阳光照射无线传输部分10,无线传输部分10在不填充任何燃料的情况下也不运行,从而防止了噪音被传输至控制器20,可以减轻控制器20的负荷。

进一步地,当根据本发明的填充装置100具有控制器20且控制器20具有仅当控制器20接收到来自在填充管口50从管口钩上取下时起作用的管口开关的信号且在接收到该信号后经过预定时间后时才处理来自无线传输部分10的信号的功能,填充装置100的控制器20判断填充没有进行,即,没有填充任何类型的燃料,且填充装置100不处理传输自无线传输部分10的信号,直至接收到来自管口开关的信号且经过预定时间。因此,在不进行填充等情况下,控制器20不处理所产生的噪音,控制器20的负荷可以减轻。

或者,当根据本发明的填充装置100具有控制器20;填充开始按钮安装于填充管口50;以及控制器20具有仅当控制器20接收到指示填充开始按钮被按下的信号时才处理传输自无线传输部分10的信号的功能时,填充装置100的控制器20不处理传输自无线传输部分10的信号,直至填充开始按钮被按下。因此,控制器20不处理当填充开始按钮被按下而填充未进行时所产生的噪音,控制器20的负荷可以减轻。

附图说明

图1是示出根据本发明第一实施例的填充装置的示意图。

图2是示出填充管口连接至无线传输部分/从其上卸下来的状态的示意图。

图3是填充装置的无线传输部分及控制器的框图。

图4是示出了无线传输部分的信息处理器的框图。

图5是示出了根据本发明第二实施例的填充装置的填充管口和无线传输部分的示意图。

图6是示出了根据本发明第三实施例的填充装置的框图。

图7是示出了第三实施例的控制的流程图。

图8是示出了根据本发明第四实施例的填充装置的框图。

图9是示出了第四实施例的控制的流程图。

图10是示出了常规的填充装置的示意图。

附图标记说明

10无线传输部分

13信息处理器

15电池

20控制器

40cpu板

50填充管口

51自动开关

100填充装置

具体实施方式

在下文中,将参考附图对作为本发明的实施例的用于填充氢气的填充装置进行说明。首先,参考图1-4来解释根据本发明的第一实施例的填充装置。在图1中,填充装置100具有例如为光电探测器的无线传输部分10以及控制器20。如图2所示,无线传输部分10可拆卸地连接至填充管口50的端部50a,填充管口50安装至填充管60的端部(参见图1),无线传输部分10具有接收车辆信息的功能以将其通过短距无线通信的方式传输至控制器20,填充管口50插入该车辆的油箱,车辆信息例如是油箱压力、油箱温度、油箱容量及类似信息。无线传输部分10具有密封结构和防爆结构,且控制器20也具有防爆结构。此外,红外线通信用作无线通信系统。

控制器20安装在填充装置100中,且具有例如是转换器的无线接收部分30以及cpu板40。自无线传输部分10传输的车辆信息被无线接收部分30转换,转换后的信息用串行通信或类似方式传输至cpu板40。在填充氢气时,cpu板40处理传输自无线传输部分10的信息,以控制填充装置100的未图示的设备。

在图3中,无线传输部分10具有红外线接收模块11、信号转换模块12、例如是微处理器的信息处理器13、无线信号转换模块14以及电池15。当填充管口50(参见图1、2)连接至未图示的车辆氢气填充端口时,上文所述的车辆信息通过未图示的安装于车辆上的车辆信息通信系统传输,且红外接收模块11接收车辆信息。接收到的信息通过信号转换模块12被传输至信息处理器13。车辆信息被信息处理器13处理,并经由无线信号转换模块14通过无线通信传输至控制器20。无线传输部分10由电池15供电。

在图3中,控制器20安装在填充装置100中,且控制器20的无线接收部分30具有无线信号转换模块31、信息处理器32、信号传输模块33及电源部分34。自无线传输部分10传输的车辆信息接收于无线接收部分30的无线信号转换模块31,且在信息处理器32中被处理,然后通过信号传输模块33被以例如串行通信的方式传输至cpu板40。来自cpu板40的直流电供给至电源部分34。

如图1-3所示,该实施例并不使用图10中所示的常规的线缆204,而是采用了无线通信,这不会产生由线缆导致的问题。

如果无线传输部分10总是被电池15供电,则存在这样的可能:太阳光照射在无线传输部分10而产生例如是偏差信号的噪音,噪音被传输至氢填充装置100的控制器20。在该连接中,第一实施例通过安装在无线传输部分10上的信息处理器13去除了这一噪音。

在图4中,无线传输部分10的信息处理器13具有车辆信息检查模块16和电池剩余容量信号产生模块19,且车辆信息检查模块16具有判断模块17和噪音去除模块18。此外,连接模块的箭头指示的是信号通信线路。车辆信息检查模块16的判断模块17具有判断功能,能够判断自信号转换模块12传输的信号是与经由车辆中的通信系统通信的车辆信息相关,还是已知技术中的归因于阳光的噪音。噪音去除模块18具有去除被判断模块17根据已知技术判断为噪音的信号的功能。

当车辆信息自无线传输部分10传输至控制器20时(参见图1、3),只有未被判断模块17判断为噪音的信号才被经由无线信号转换模块14传输至控制器20。然后,被判断模块17判断为噪音的信号被噪音去除模块18去除,不会传输至控制器20。结果,防止了阳光引起的噪音被传输至控制器20。在图4中,电池剩余容量信号生成模块19具有使用已知技术确定电池15的剩余容量并生成指示所确定的电池剩余容量的信号的功能,以用无线信号转换模块14将其传输至控制器20。

在上述第一实施例中,由于具有通过无线通信来传输车辆信息的功能的无线传输部分10被安装至填充管口50,因此不再需要通信线缆。因此,能避免线缆断开,而当受损或毁坏时填充装置100的修复工作变得容易。此外,由于通过无线通信来传输车辆信息,不再有噪音影响车辆信息的可能。

此外,无线传输部分10可拆卸地连接至填充管口50的端部,使得当受损时无线传输部分10可从填充管口50上拆下,易于维修。此外,无线传输部分10具有防爆结构,因此能维持填充装置100的安全。此外,无线传输部分10包含电池15,因此无需线缆即可保证填充装置100的运行。

进一步地,由于无线传输部分10具有信息处理器13,且产生自无线传输部分10的噪音被具有判断模块17和噪音去除模块18的车辆信息检查模块16去除,因此防止了噪音被传输至填充装置100的控制器20。因此,控制器20无需处理噪音,控制器20上的负荷得以减轻。此外,用于驱动无线传输部分10的电池15的剩余容量由控制器20管理,因此当剩余容量减少时,可立即进行必要的测量。

下面结合图5描述根据本发明的第二实施例的填充装置。本发明具有与第一实施例(参见图4)不同的用于处理无线传输部分10中的噪音的模式。在图5中,无线传输部分10可拆卸地连接至填充管口50的端部,且具有无线传输部分驱动模块21。在填充管口50上安装有自动开关51,且自动开关51和无线传输部分驱动模块21通过信号通信线路sl彼此连接。

自动开关51具有这样的功能:当填充管口50连接至车辆的填充端口时,用信号通信线路sl将运行信号传输至无线传输部分驱动模块21;以及这样的功能:当填充管口50从其上分离时,用信号通信线路sl将停止信号传输至无线传输部分驱动模块21。无线传输部分10的无线传输部分驱动模块21具有这样的功能:当从自动开关51接收到运行信号时,运行无线传输部分10;以及这样的功能:当从自动开关51接收到停止运行信号时,停止运行无线传输部分10。在图5所示的第二实施例中,除非填充管口50附接至车辆的填充口并且自动开关51打开,否则无线传输部分驱动模块21不运行无线传输部分10。因此,如果由于阳光照射无线传输部分10而产生噪音,无线传输部分10不会运行,因此噪音不会传输至填充装置100的控制器20。

在第二实施例中,无线传输部分10不会在非填充状态运行,从而产生的噪音不会传输至控制器20,因此负荷得以减轻。第二实施例的其它构造和作用效果与前述第一实施例相同。

下面参考图6和7来描述根据本发明的第三实施例的填充装置。根据本实施例的填充装置具有无线接收部分30c,且其用于处理噪音的模式不同于第一和第二实施例。在图6中,构成无线接收部分30c的信息处理器32c具有管口信号模块35、计时模块36、确定模块37和控制模块38c。此外,连接模块的箭头指示信号通信线路。

尽管未在图6中明确示出,当填充管口从管口钩上取下来时,管口开关产生on信号,且当填充管口钩到管口钩上时,管口开关产生off信号。图6中的管口信号模块35具有这样的功能:通过无线信号转换模块31c接收管口开关on/off信号,并传输该信号至确定模块37。此外,管口信号模块35具有这样的功能:当接收到来自管口开关的管口开关on信号时,将计时开始信号传输至计时模块36。

当接收到来自管口信号模块35的计时开始信号时,计时模块36对接收到计时开始信号后流逝的时间计时。在此,计时模块36具有这样的功能:传输预定时间流逝信号至确定模块37,该信号指示流逝的预定时间。在此,预定时间是在填充管口从管口钩上取下来后直至填充实际开始的时间,且该时间根据燃料类型及类似信息合适地确定。确定模块37具有这样的功能:当接收到来自管口信号模块35的管口开关on信号和来自计时模块36的预定时间流逝信号时,判断填充确实已经在进行中,并传输运行信号至控制模块38c。当接收到运行信号时,控制模块38c经由无线信号转换模块31c接收诸如传输自无线传输部分10并指示车辆信息的各种信号。

当从确定模块37接收运行信号时,控制模块38c运行,且传输自无线传输部分10的各种信号在控制模块38c中被处理,以经由信号传输模块33c传输至cpu板40。cpu板40处理各种信号,以传输预定控制信号至填充装置100的设备。另一方面,控制模块38c直到接收到来自确定模块37的运行信号后才运行。换言之,控制模块38c直到管口开关打开后经过预定时间才运行。如果来自管口信号模块35的管口开关关闭信号被传输至确定模块37,确定模块37判断填充没有进行,以停止传输运行信号至控制模块38c。结果,控制模块38c不运行。

直到控制模块38c运行,传输自无线传输部分10的各种信号才被传输至cpu板40以被处理。直到管口开关打开后经过预定时间,控制模块38才运行,cpu板40才处理来自无线传输部分10的信号。因此,如果产生了噪音,则其不会被传输至cpu板40。因此,cpu板40的负荷得到减轻。同时,在第三实施例中,计时模块36可将计时开始后流逝的时间仅传输至确定模块37,而确定模块37可判断是否经过预定的时间。

下面主要结合图7来说明第三实施例中的控制。在图7中,在步骤s1中,信息处理器32c的管口信号模块35(参见图6)判断是否接收到来自管口开关的on信号。如果接收到on信号(步骤s1;yes),控制进入步骤s2。另一方面,在步骤s1中,如果管口信号模块35判断未接收到on信号(步骤s1;no),控制进入步骤s3。

在步骤s2中,计时模块36计算接收到on信号后流逝的时间。以及,控制进行到步骤s4。在步骤s3中,确定模块37不从管口信号模块35接收on信号,且控制模块38c不运行。在步骤s3结束后,控制返回至步骤s1。

在步骤s4中,控制判断在步骤s2中计时开始后是否经过预定时间。如果在计时开始后经过了预定时间(步骤s4;yes),控制进入步骤s5。另一方面,如果计时开始后未经过预定时间(步骤s4;no),控制返回至步骤s4。

在步骤s5中,实施填充控制。在控制中,cpu板40处理各种信号,且传输预定控制信号至填充装置100的设备。在步骤s5中,信息处理器32c的控制模块38c运行,各种信号被传输至cpu板40。在步骤s6中,确定模块37判断是否接收到来自管口开关的off信号。如果接收到off信号(步骤s6;yes),控制进行至步骤s7。另一方面,如果未从管口开关接收到off信号(步骤s6;no),控制返回至步骤s5。

在步骤s7中,基于预定协议执行填充结束控制。由此,信息处理器32c的控制模块38c不运行,而cpu板40不处理传输自无线传输部分10的各种信号。

在上述的第三实施例中,cpu板40不处理在非填充状态产生的噪音,因此其负荷得以减轻。此外,在本实施例中,可省略图7中的步骤s4,而仅执行基于步骤s1的填充控制。第三实施例中的其它构造和作用效果与第一和第二实施例的相同。

接下来,结合图8和9对根据本发明的第四实施例的填充装置进行说明。对比第一至第三实施例,本实施例中无线接收部分和填充管口的构造以及用于处理噪音的模式不同于第一至第三实施例。构成无线接收部分30d的信息处理器32d具有填充开始/结束信号模块39和控制模块38d。此外,连接模块的箭头指示信号通信线路。

在第四实施例中,在填充管口上安装有填充开始按钮和填充结束按钮。经由无线信号转换模块31d,填充开始/结束信号模块39接收当按下填充开始按钮时传输的填充开始信号,以及当按下填充结束按钮时传输的填充结束信号。填充开始/结束信号模块39具有这样的功能:当接收到填充开始信号时,传输运行信号至控制模块38d,当接收到填充结束信号时,传输非运行信号至控制模块38d。控制模块38d从填充开始/结束信号模块39处接收运行/非运行信号,经由无线信号转换模块31d接收从无线传输部分10传输的各种信号。

当接收到来自填充开始/结束信号模块39的运行信号时,控制模块38d运行。当控制模块38d运行时,自无线传输部分10传输的各种信号通过信号传输模块33d被传输至cpu板40。cpu板40处理各种信号,并将预定控制信号传输至填充装置100的设备。另一方面,直到接收到来自填充开始/结束信号模块39的运行信号或者直到开始填充氢气,控制模块38d才运行。此外,当从填充开始/结束信号模块39接收到非运行信号时,控制模块38d停止运行。如果控制模块38d不运行,自无线传输部分10传输的各种信号不被传输至cpu板40,而cpu板40判断为未进行填充,从而并不处理各种信号。即使当无线接收部分30d接收到来自无线传输部分10的信号时,cpu板40也不处理信号,从而减轻了cpu板40的负荷。

下面主要结合图9来说明第四实施例中的控制。在图9中,在步骤s11中,填充开始/结束信号模块39判断是否接收到填充开始信号。如果接收到填充开始信号(步骤s11;yes),控制进入步骤s12。另一方面,如果未接收到填充开始信号(步骤s11;no),控制进入步骤s13。

在步骤s12中,接收到填充开始信号,因此信息处理器32d的控制模块38d运行,并将各种信号传输至cpu板40。因此,在步骤s12中执行填充控制。在填充控制中,cpu板40处理各种信号,并传输预定信号至填充装置100的设备。在步骤s12之后,控制进入步骤s14。在步骤s13中,未接收到填充开始信号,因此控制模块38d不运行,且cpu板40不处理传输自无线传输部分10的各种信号。在步骤s13之后,控制返回至步骤s11。

在步骤s14中,填充开始/结束信号模块39判断是否接收到填充结束信号。如上所述,例如,当填充结束后时,再次按下填充开始按钮使得填充结束信号经过无线传输部分10被传输至无线接收部分30d。如果接收到填充结束信号(步骤s14;yes),控制进入步骤s15。另一方面,如果未接收到填充结束信号(步骤s14;no),控制返回至步骤s12,继续进行填充。

在步骤s15中,接收填充结束信号以执行填充结束控制。基于预定协议执行填充结束控制。当执行填充结束控制时,控制模块38d不运行,且cpu板40不处理传输自无线传输部分10的各种信号。控制返回至步骤s11。

根据如上所述的第四实施例,在填充开始按钮被按下之前,控制模块38d判断为未执行填充且不运行,而cpu板40不处理传输自无线传输部分10的各种信号。因此,当噪音产生于非填充状态时,该噪音不会在cpu板40中被处理,减轻了控制器20的负荷。除此之外,第四实施例的其它构造和作用效果与图1-7所示的实施例相同。

由于在图中示出的实施例仅仅是示例,因此实施例并不限制本发明的技术范围。例如,本发明可应用于填充汽油或其它燃料的填充装置。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1