电化学气体传感器的制作方法

文档序号:5861708阅读:245来源:国知局
专利名称:电化学气体传感器的制作方法
技术领域
本发明的领域本发明涉及电化学气体传感器;本说明书中所使用的术语“气体”将函盖气体和蒸汽两者。
背景技术
如所周知,电化学气体传感器用于检测各种气体的存在。一般,这种电化学气体传感器包括相关的气体可在其上被氧化或还原的一检测电极及一反电极。检测和反电极由一包含电解质的多孔物体分离。这种传感器还一种机构,用于限制气体接近检测电极,使得气体到达检测电极的量与被检测的气氛中气体的量成比例。这种气体在检测电极上被氧化或还原,引起一电流在一外部电路中流动。流过该电路的电流与在检测电极处氧化或还原的气体量成比例,这又正比于被检测的外部气氛中的气体量。这样,该电流提供了对由传感器检测的气氛中气体量的直接测量。
除了检测和反电极之外,该传感器可包括没有电流流过的一基准电极。基准电极保持检测电极电位在一固定电位范围,从而改进传感器的精确度。
电解质能够通过检测电极蒸发,从而引起传感器干燥而停止操作。于是,已经建议(参见GB2094005)提供一种电解质储罐及一个吸液芯,其一端与储罐接触而另一端与检测与反电极之间的分离器接触。当分离器干燥时,吸液芯从储罐向分离器抽取电解质,从而防止传感器完全干燥。以上专利建议由硼硅酸盐玻璃纤维滤器垫或聚酯纤维制成吸液芯和分离器。
使用离子导电电解质诸如酸性电解质,例如硫酸,气体传感器所遇到的另一个问题在于,取决于外部环境条件,诸如湿度和温度,电解质能够吸收并失去水分。诚然,在高湿度下,电解质的体积可能很大而引起传感器泄漏。因而,在传感器设计中需要考虑由于电解质膨胀体积最大可能的增加,以防止电解质从传感器泄漏。于是,传感器很大的比例以电解质储罐的形式占据。
本发明的公开根据本发明的第一方式,提供了一种电化学气体传感器,包括(a)检测电极;(b)反电极;(c)分离器,包含位于其间的一种电解质,并与检测电极及反电极接触,该分离器由具有毛细作用的材料制成,能够在与分离器接触时把电解质抽入分离器;(d)储罐,包含一种电解质和具有毛细作用的吸液材料,能够抽起电解质并将其从储罐传送到分离器;改进在于,使得分离器的毛细作用强于吸液芯材料对应的毛细作用。
根据本发明,分离器胜过吸液芯较大的毛细作用将是指,当传感器中的电解质量已经落到低水平或由于任何原因,例如传感器的定向,吸液芯的基部不与任何电解质接触时,吸液芯将不从分离器抽取电解质(或至少将不会抽取电解质到假如分离器和吸液芯材料有相同毛细作用时那样相同的程度)。这样,分离器最好将对吸液芯材料保持电解质,且传感器将连续维持电极之间操作的足够的离子电导率。此外,如果分离器成为电解质过饱和,例如因为气氛中检测到高相对湿度而电解质已吸收过多的水分,则吸液芯仍然有足够大的毛细作用排到分离器。
与分离器相比吸液芯相对体积最好尽可能大。在电解质主要保持在分离器内,而不是整个传感器时,可在电极之间以最少的电解质量维持良好的离子电导率。因而传感器在低湿度环境中呈现良好的性能。传统上,这通过使用较大的电解质容积实现。因而本发明允许减小传感器尺寸,由于只需较少的电解质保持传感器操作,因而现在需要较小的储罐空间适应在高湿度条件下电解质体积的增加。以相同的传感器尺寸,提供了大得多的容量适应高温度环境中增加的电解质体积。对于给定的传感器尺寸,传感器耐受高相对湿度、由于在传感器内由水分吸收引起形成的压力而无泄漏的能力大有改进。
分离器与吸液芯一般都将由亲水纤维制成(虽然可使用具有毛细作用的其它物体),且吸液芯与分离器可由相同的或不同的材料制成。如果由相同的材料制成,分离器增加的毛细作用可通过适当调节分离器和吸液芯中纤维之间中的空间实现。分离器与吸液芯中纤维之间间隙的不同尺寸一般将通过比吸液芯更细的纤维制成分离器实现。还能够通过压缩分离器使分离器纤维的毛细作用最大实现增加的吸液作用,但这一结构难以在均匀和一致的基础上实现,并因而如果它们都由相同的基本纤维材料制成,则最好由比吸液芯更精细的细丝制成分离器。以及多孔材料,分离器和吸液芯还能够由其它具有类似有效孔尺寸,或分离器与吸液芯之间有效孔尺寸相同的比例的材料制成。可使用包含所需的有效孔尺寸及对电解质为惰性并对电解质具有适当毛细作用的铸造,烧结,模制或压缩聚合物,金属或陶瓷材料。某些本质上疏水的材料,特别是聚合物材料,可能需要进一步的处理,例如通过电晕或等离子放电,使它们成为适当的亲水性。在传感器中使用高度活泼的电解质时,分离器和吸液芯材料的范围受到限制,且它们趋向更为昂贵因而是不希望的。还需要考虑分离器和吸液芯材料的刚性和弹性。刚性越高及弹性越低,则传感器制造中所需的尺寸允差越紧。在制造期间能够插入到传感器而无需附加的处理的预成形分离器和吸液芯元件的使用,在高容量传感器制造中特别有优势。确实在传感器中无论是否使用分离器和吸液芯之间如上所述差别毛细作用,这种预成形分离器和吸液芯元件的使用都是有优势的。
通过把材料放置在电解质中,并测量电解质在材料中上升的高度,材料的毛细作用能够易于被测量。重要的是要在电解质通过传感器中的材料被抽取的相同方向使用该材料进行这一测量。特别地,吸液芯材料可能在一个方向与另一不同方向上相比有不同的毛细作用。
分离器和吸液芯材料应当有实质的毛细作用,但在以上测试中电解质高度对于分离器最好比吸液芯材料至少高25%,更好至少高50%。如果分离器和吸液芯材料有相同的基本组成,最好是吸液芯中的孔的直径至少比分离器中的孔的直径大于1.5倍,例如两倍。
本发明的另一重要优势特性在于,吸液芯应当基本在储罐整个体积上延伸,使得不论传感器的方向如何它仍然与电解质接触。
本发明的其它方式在所附权利要求中定义。
附图的简要说明现在将只通过根据本发明的气体传感器的例子参照附图对它们进行说明,其中

图1是供本发明传感器中使用的分离器的平面图;图2是供本发明传感器中使用的吸液芯的平面图;图3是本发明的传感器的分解视图;图4是本发明另一传感器的分解视图;图5是本发明第三传感器的分解视图;及图6是供本发明传感器中使用的吸液体的平面和剖视图。
优选实施例的详细说明实现参见图3,设计为检测一氧化碳的传感器具有刚性模制的塑料壳体1,其底部包括(如所周知)几个黄铜接触针8,通过壳体壁伸出供提供到外部电路的连接。这些针可以是在壳体模制期间模制到壳体基部的插入物。由于接触物结构是熟知的且与本发明无关,故不再对其说明。集电器导线20,22,24焊接到壳体内侧的接触针。通过向它们施涂灌注混合物,例如环氧树脂,使得它们不与侵蚀针的酸性电解质接触,对导线和接触针的底部进行绝缘。虽然导线由铂制成且本身不在电解质中侵蚀,但每一导线的基部也被绝缘以防止电解质沿导线渗漏到针。稍后将给出施涂灌注混合物方法的进一步细节。
形成为非结合硼硅酸盐玻璃纤维(BS2000玻璃纤维,平均孔尺寸4.8μm)垫块的材料条带12(参见图2)被缠绕而形成螺旋(参见图3),放置在壳体内。垫块中大部分纤维通过条带的宽度延伸,就是说当卷起到图3所示的螺旋时,它们垂直延伸。
反电极10和基准电极14放置在螺旋缠绕的条带12上。每一电极通过粘结聚四氟乙烯(PTFE)和粉末铂(铂黑)混合物为微孔的PTFE衬层(这些电极及它们的制造方法是周知的)而形成。如所示两个电极能够被装设在一共用的PTFE层而不是分开的层上。基准和反电极导线20和22向上弯曲,使得它们处于与两个电极涂有铂黑的上侧接触,以提供电极与针8直径的电接触。可使用其它催化剂材料(取决于被检测的气体性质);这些催化剂一般将是贵金属或合金或它们的混合物。
分离器11(参见图1)放置在基准和反电极及相关导线20和22的顶部。分离器是由非结合的硼硅酸盐玻璃纤维(例如由WhatmanInternational Limited提供,GF/A级平均孔尺寸1.9μ);分离器直径大约与壳体的直径相同。
由与壳体相同材料制成的顶帽2传感器的最后的元件。它具有焊接到其底侧的检测(或工作)电极(未示出)。检测电极的构成与上述基准/反电极的构成相同,但电化学活泼的铂层位于PTFE层之下,即它面向分离器。导线24与检测电极底侧接触。
顶帽2还包括一孔26,它允许来自气氛被检测的气体进入传感器。顶帽2焊接到壳体1以形成一不透液的密封。传感器内部元件的厚度大于壳体1的高度,以便当顶帽焊接到位时所有的元件被压缩。这保持元件彼此紧密的啮合并防止它们在壳体内部滑动,螺旋缠绕的条带12特别重要的是要实现这一压缩。如上所述,条带12中大部分的纤维穿过图2所示的条带宽度,就是说它们从螺旋缠绕的顶部到底部延伸。当帽被装配时,这些纤维能够弯曲,因而允许有供传感器其它元件用的空间。因为纤维是弹性的,它们还保持其它元件在传感器的寿命周期在壳体内被压缩。
壳体的基座包括一孔30(参见图3d),有向内的锥形侧壁。在帽固定到壳体之后,电极被馈送到传感器底部。在电极已被注入之后,孔30透光熔化对应于孔30的锥形的插塞13a而被封闭到位。插塞13a在浇口13的中心形成,并通过把插塞端头13a插入孔并就地熔化,例如通过加热,而实现封闭。然后浇口13被折断。
电解质被向上吸到螺旋缠绕条带12。因为基准和反电极10,14小于分离器11和螺旋缠绕条带12两者,分离器11和螺旋缠绕条带12的外边缘部分直接彼此接触,且电解质由条带12向上被吸引到围绕电解质10和14的边缘的分离器,并通过整个分离器11的毛细作用被抽出,从而保持电极的电化学活泼层与电解质接触。这种电解质例如可以是吸收湿气的浓硫酸(5克分子),因而增加了检测电极11中的液量。分离器11的纤维比条带12的纤维更精细,因而在分离器中的纤维之间的间隔比条带12的纤维狭窄,并因而分离器施加比条带较强的毛细效果。由于电解质优先保持在分离器内,而不是整个的传感器,因而以最小电解质量保持电极之间良好的离子电导率。吸液芯的毛细作用虽然低于分离器但仍然足够高,当过多的电解质在高湿度环境中通过吸水效果形成时,能够有效从分离器抽取过多的电解质。由于根据本发明高毛细性电解质优先迁移到分离器,该传感器比先有技术的传感器需要较少的电解质保持其工作。这样,电解质向传感器的填充量一般低于先有技术的传感器,于是在液压对密封到帽中的多孔PTFE检测电极形成之前,传感器吸水的容量大大增加(对于给定的传感器尺寸)。由于形成的压力能够引起检测电极爆裂且电解质从传感器泄漏,故这是极有好处的。
如上所述,导线20,22和24焊接到它们各接触针8,并密封在灌注混合物中。在添加灌注混合物之前,导线保持在壳体1侧壁分离槽9中;该槽宽度为0.2-1.2mm,例如0.4-0.9mm,且最好是0.8mm,就是说当液体灌注混合物添加到壳体时,由毛细作用上抽到槽并然后固定,因而还封闭附加到针的导线端头。这种结构不仅密封导线下端(从而使电解质较少到达针8),而且在导线焊接到针期间,槽9作为“夹具”而保持导线。在其它元件插入壳体时,这些槽还保持导线对壳体壁到位,从而便于这种插入并还便于导线后来的弯曲以便与相关电极接触。因而槽使得单元的制造增加了自动化。
所使用的灌注混合物最好是环氧/氨基树脂,例如ResinDP270(从3M Adhesive Division of 3M Center,Building 220-7E-05,StPaul,MN,United States of America),这是在使用之前变形混合的两部分的配方。显然,树脂的黏滞性必须使其能够从槽抽取;如果在室温下太黏稠,则壳体和灌注混合物可被加热,例如到80-100℃。升高温度还加速固化,固化在100℃大约30分钟发生。
不希望灌注混合物延伸到壳体壁顶部,于是在壁的高度大约三分之一,槽9的宽度增加使其不再能够对灌注混合物施加毛细力,从而灌注混合物不会上升到槽的狭窄部分之上。
将对一氧化碳传感器简要说明传感器的操作,但本发明可适用于检测其它气体的传感器。
一氧化碳通过孔26在顶帽1中以正比于被检测的气氛中气体浓度的速率迁移。它通过检测电极的PTFE层孔迁移并在检测电极的铂催化剂处被氧化。这引起电流流过已知设计的外部电路并跨越分离器中的电解质;电流的量值取决于被氧化的一氧化碳的量,并进而取决于被检测的气氛中一氧化碳的量。这样外部电路中的电流量值给出气氛中一氧化碳的量的测量。
图4的传感器与图3的相同,所不同在于基准电极14和反电极12不共面而是由与分离器11组成相同的一分离器11’分离。两个电极的面积比分离器11和11’小,于是电解质从围绕电极外部的储罐通过条带12的毛细作用馈送到(或脱离)分离器11和11’,并通过分离器的毛细作用最终分布到分离器内。
除了没有装设基准电极之外,图5的传感器与图3的相同。
如图6中所示,条带12能够由有把电解质吸入分离器的毛细孔的物体50代替。如所示,该物体是已等离子处理使其成为疏水的聚乙烯烧结物,但如上所述可使用其它材料。该物体有一中空52以使电解质在制造时可迅速注入传感器;电解质将通过时间由物体20和分离器11和11’吸收。该物体有切口54以适应针8和相关电流收集器导线。该物体的形状使得它充满传感器中整个电解质储罐。
权利要求
1.一种电化学气体传感器,包括(a)一个监测电极;(b)一个反电极;(c)一个分离器,包含位于其间的一种电解质,并与检测电极及反电极接触,该分离器由具有毛细作用的材料制成,能够在与分离器接触时将电解质抽入分离器;(d)一个储罐,包含一种电解质和具有毛细作用的吸液材料,能够抽起电解质并将其从储罐传送到分离器;其特征在于分离器的毛细作用强于吸液材料的毛细作用。
2.根据权利要求1的传感器,其中储罐的吸液材料与分离器物理接触。
3.根据权利要求1或2的传感器,其中分离器和吸液材料每个由纤维垫块制成,分离器的纤维比吸液材料的纤维细。
4.根据权利要求1或2的传感器,其中分离器和吸液材料每个由预成形(例如模制、烧结、或铸造)多孔材料制成。
5.根据权利要求1至4任何之一的传感器,其中反电极的面积小于分离器的面积,从而电解质能够围绕反电极的边缘从储罐传送到分离器。
6.根据权利要求1至5任何之一的传感器,还包括一个基准电极。
7.根据权利要求6的传感器,其中基准电极与反电极并排设置,并且与分离器接触,该分离器将检测电极与反电极分离。
8.根据权利要求7的传感器,其中反电极的面积与基准电极的面积之和小于分离器的面积,从而电解质能够围绕反电极和基准电极的边缘从储罐传送到分离器。
9.根据权利要求6的传感器,其中基准电极通过另一个分离器与反电极分离。
10.根据权利要求9的传感器,其中反电极的面积与基准电极的面积每一个都小于分离器的面积,从而电解质能够围绕反电极和基准电极的边缘从储罐传送到每个分离器。
11.根据权利要求1至10任何之一的传感器,包括一个壳体,并且其中由储罐的吸液材料的弹性将电极在壳体中推压在一起。
12.一种制造电化学气体传感器的方法,包括一个壳体,壳体内的一个检测电极和一个基准电极,一对接触针,每一个与各检测或反电极相关,这些针通过壳体延伸以提供壳体内部和外部的接触,以及一导线,从每一电极延伸到其各接触针,以提供每一电极与其各接触针之间的电接触,其中该方法包括连接每一导线到其各接触针,以及施加灌注混合物,以便使接触针与壳体储罐其余部分绝缘,其特征在于,每一导线保持在壳体内的槽中,同时施加灌注混合物,槽的宽度使得灌注混合物通过毛细作用抽吸到槽,以使连接到其接触针的每一导线端部绝缘。
13.如权利要求12中所述的方法,其中每一槽的宽度为0.4到1.2mm。
全文摘要
描述了一种电化学气体传感器,包括(a)位于帽(2)的下侧的电极检测;(b)反电极(10);(c)基准电极(14);(d)分离器(11),包含位于其间的一种电解质,并与检测电极、反电极及基准电极接触,该分离器由具有毛细作用的材料制成,能够在与分离器接触时把电解质抽入分离器;(e)一个储罐,包含一种电解质和具有毛细作用的吸液材料(12),能够抽起电解质并将其从储罐传送到分离器(11)。分离器(11)的毛细作用大于吸液材料的毛细作用,使得电解质在分离器中的吸收优先于吸液材料中的吸收,从而分离器保持电极之间足够的离子浓度供传感器操作。
文档编号G01N27/49GK1516810SQ02806132
公开日2004年7月28日 申请日期2002年3月8日 优先权日2001年3月9日
发明者泰伦斯·J·莫莱, 泰伦斯 J 莫莱 申请人:茨尔维格分析有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1