用于改善生物传感中背景上信号的磁致旋转的制作方法

文档序号:6109067阅读:279来源:国知局
专利名称:用于改善生物传感中背景上信号的磁致旋转的制作方法
技术领域
本发明涉及检测或诊断领域,尤其是生物分子诊断领域,例如生物体内或生物体外应用的药品和食品诊断。更具体而言,本发明涉及一种方法和装置,用于在生物体内或生物体外检测在样品流体(诸如液体或液体介质)中的靶分子,以及用于区分磁性纳米粒子和另一实体表面之间的次特异性键合(less specific binding)和特异性键合(specific binding)。
生物感测的挑战是在具有高浓度(例如mmol/L)的背景材料(例如诸如白蛋白这样的蛋白质)复杂混合物中检测小浓度的特定靶分子(例如pmol/L或更低范围的瘤标记和病原体材料)。
生物传感器一般使用具有特异性捕获分子2,3和标签4的表面1以便于检测。这在

图1中示出,图1示出了生物传感器表面1,第一捕获分子2耦合到该表面。在溶液5中存在靶6和标签4,第二捕获分子3与所述靶6和标签4耦合。允许靶6和标签4键合到生物传感器表面1。图2中,示出了键合到生物传感器表面1的标签4的可能的键合形状的实例。例如,类型1是期望的特异性键合,更具体而言是这样一种结构,其中靶分子6夹在生物传感器表面1上的第一捕获分子2和标签4上存在的第二捕获分子3之间。而且,标签4可以以非特异性方式粘附到生物传感器的表面1,即,键合到表面1,而没有特异性靶分子6的干预。图2中类型2表示[标签4和/或与标签4耦合的第二捕获分子3]和[生物传感器表面1和/或与生物传感器表面1耦合或键合的第一捕获分子2]之间的单个非特异性键。类型2b也称为交叉反应。通常,类型2的键合种类是与表面1的弱键合,可以通过诸如冲洗或磁力的严苛度(stringency)过程去除。图2中类型3表示跨过[标签4和/或与标签4耦合的第二捕获分子3]和[生物传感器表面1和/或与生物传感器表面1耦合或键合的第一捕获分子2]之间较大区域的多个非特异性键。类型3的键种类比类型1的键更强地键合到所述表面。图2中类型4表示类型1的退化型式,其中标签4通过特异性以及非特异性键而键合到生物传感器表面1。
图3示出了具有与嵌入在表面7中的靶6键合的标签4的生物感测。靶63例如可以是细胞膜上的受体分子,或蛋白质或组织中的其他生物分子。例如,这种情形在使用专用对比试剂的分子成像中发生,其中也需要特异性生物键合。标签4的存在或浓度与靶分子6的存在、浓度或活性相关。可以通过本领域中多种已知方法执行成像,例如通过扫描激励场,使用与位置相关的激励、扫描感测系统、在研究中扫描实体、使用传感器阵列等。
为了改善检测极限和基于捕获的生物感测的特异性,开发可以区分不同标签键合类型种群的技术是很重要的。一种减少非特异性信号的已知解决方法是通过化学地(例如使用高盐浓度的冲洗)或者物理地(例如,温度、剪切流、磁力)施加严苛度过程来实现。严苛度步骤目标是去除弱键合标签(例如图2中的类型2),而使特异性键合(图2中的类型1)不受干扰。这样,增加了背景上特异性(specific-over-background)比。然而,当这些标签4比根据类型1的特异性键合更强地键合到表面1时,根据类型3和4与生物传感器表面1键合的标签4保留在表面1上。对于具有可用于非特异性相互作用的大表面积的纳米粒子标签4来说,这是重要问题,[‘High-fluorescencenano-particles’,Perrin等人,J.Immunological Methods 224,77(1999)]。磁性纳米粒子标签4的非特异性键合也是GMR生物传感器中已知的问题[Rife等人,Sens.Act.A107,209(2003)]。
一种研究生物分子的机械属性和分子键的已知研究方法是所谓的磁镊子[例如,Harada等人,Nature vol.409,p.113(2001);Assi等人,J.Appl.Phys.Vol.92,p.5584(2002)]。这种仪器基于向磁性粒子施加磁力和磁致旋转,使生物分子一端粘附到粒子,另一端粘附到静态表面。一般地,磁性粒子的直径在1到5μm之间,磁距的量级为10-13A.m2。通过外部磁体的机械控制来施加磁场,一般地,磁场为0.1-1T,场梯度高达103T/m。那么磁珠上的力F则等于F=▿(m.B)≅m▿B---(1)]]>m是磁珠或磁性纳米粒子的磁距,B是磁场。右边的近似适用于例如由磁性饱和导致的恒定的粒子力矩。磁镊子实验一般用于研究施加的力在pN到nN范围时的单个分子。通过旋转外部磁体来研究低频分子旋转和分子扭转。磁珠的光学检测允许测量磁珠位移。通过磁珠的热振动的光学成像可以确定所施加的力。
然而,该方法具有以下局限性。首先,很难将该仪器转化为一种实际应用的紧凑的、小型化且易于使用的生物传感器阵列。其次,为具有足够高的磁距以及便于光学检测,要使用大磁珠。然而,为实现传感器上的快速扩散、低沉积(sedimentation)、大的表面积-体积定量(ration)以及低的位阻,在生物传感器中,磁珠大小优选地小于1微米,更优选地是小于500nm。此外,磁镊子技术一般应用于研究在所研究环境中的单个分子。在实际生物传感器中,将具有很多标签(例如多于100个标签),以进行有意义的统计,其密度为100/mm2到1000/μm2。另一个缺点在于,在电流磁镊子中,旋转研究仅限于低频,一般为1Hz,且很难检测磁珠的旋转状态。由于光学成像相对较慢并且不准确,因而很难执行高频测量。
本发明的一个目的是提供一种方法和装置,用于在具有高浓度的背景材料的混合物中检测靶分子,而具有改善的信号背景比。
通过本发明的方法和装置来实现上述目的。
本发明的第一方面中,提供一种传感器装置,用于区分至少一个可极化的或极化的纳米粒子标签和另一实体表面之间的次特异性键合和特异性键合,所述传感器装置包括至少一个电或磁场发生装置,用于向包含极化的或可极化的纳米粒子标签的样品流体施加电或磁场,至少一个磁性传感器元件,以及检测装置,当纳米粒子标签粘附到表面时,用于检测与纳米粒子旋转或运动自由度相关的参数,以区分所述纳米粒子标签和另一实体表面之间的次特异性键合和特异性键合。
根据本发明装置的优势在于,它使得可以在诸如生物传感器表面的另一实体表面上的不同类型的标签键合之间进行区分,或使得可以区分诸如像磁珠、细胞、传感器表面、组织等的另一实体表面上的不同标签键合种群。
电或磁场发生装置可以产生旋转的磁场。在另一实施例中,电或磁场发生装置可以产生单向或一维磁场,例如,脉冲单向磁场,或正弦调制场。这种情况,运动自由度可以与在某一方向经过流体(例如液体或气体)的平移速度(speed of translation)相关。
电或磁场发生装置可以位于传感器装置上,并且可以是例如电流导线或二维导线结构。磁性传感器元件可以是AMR、GMR或TMR传感器元件的其中之一。
本发明的一个实施例中,装置可以包括定位于一个磁性传感器元件任一侧(即左和右,或上和下)的两个电或磁场发生装置。
另一实施例中,传感器装置位于两个电流线之间。这样,可以使对磁性传感器的磁串扰最小化。电流线例如可以是平行的电流片。其优势在于,根据本发明该实施例的磁性传感器对于经过电流片的电流部分地敏感或完全不敏感,并且仅感觉由于磁性粒子存在导致的磁场。在电流存在且同时传感器测量磁性粒子产生的场的情况下,通过将磁场传感器放置在该体积中避免了可能的传感器饱和。
本发明还包括一种传感器装置(10),用于区分不同类型的纳米粒子标签或者用于区分单个纳米粒子标签和纳米粒子团标签,所述传感器装置(10)包括至少一个电或磁场发生装置(14),用于向包含极化的或可极化的纳米粒子标签(11)的样品流体施加电或磁场,至少一个磁性传感器元件(15),以及检测装置,当纳米粒子标签粘附到表面时,用于检测与纳米粒子旋转或运动自由度相关的参数,用以区分不同类型的纳米粒子标签或者用以区分单个纳米粒子标签和纳米粒子团标签。
检测装置可以是光学、磁性或电学装置。该方法和传感器的优势在于,可以自动区分不希望的团或诸如磁珠的纳米粒子,而不需要依靠物理分离步骤或可视观察,例如通过显微镜。
本发明的另一方面,提供一种方法,用于区分出至少一个极化或可极化的例如磁性纳米粒子和另一实体表面之间的次特异性键合和特异性键合。该方法包括提供至少一种纳米粒子标签,施加电或磁场,以及当该至少一种纳米粒子标签粘附到表面上时,检测与纳米粒子旋转或运动自由度相关的物理参数,由此区分所述纳米粒子标签和表面之间的次特异性键合和特异性键合。
本发明的优势在于,它区分了诸如生物传感器表面的另一实体表面上的不同类型的标签键合,或区分了诸如磁珠、细胞、传感器表面、组织等的另一实体表面上的不同标签键合种群。
另一优势在于,本发明的方法辨别了具有特异性键合的种群和具有次特异性键合种群和/或辨别了具有单个特异性键的种群和具有多个次特异性键的种群。
提供磁性纳米粒子标签可以包括提供铁磁性纳米粒子。磁距和磁性粒子材料之间存在的转距归因于产生内部磁场的磁性粒子的磁各向异性以及产生内部摩擦力的粒子的磁糙度。相对于热能,铁磁性粒子具有大的磁各向异性能,所以K.V>kB.T。当在施加的磁场中磁各向异性能也大于磁偶极子能,即K.V>m.B时,则粒子方向与力矩方向强耦合。
在本发明的另一实施例中,可以使用除铁磁性纳米粒子之外的其它磁性粒子,例如在相关时标(例如,磁场调制周期)粒子方向和磁距方向之间具有可变角度的粒子,例如超顺磁性粒子。
根据本发明,施加的电或磁场可以是旋转磁场。例如,磁珠的旋转可用于优化生物化学化验中的曝光速率(exposure rate),即,碰撞吸附速度或有效键合速率(Kon)。当标签相对于其它实体(例如生物芯片的表面或细胞的表面)旋转时,可以提高标签和其它实体之间的相互作用和键合速率。
另一实施例中,施加的电或磁场可以是单向或一维磁场,例如脉冲单向磁场。在这种情况下,运动自由度可以与经过流体(例如液体或气体)某个方向中的平移速度相关。
根据本发明,优选地是,可以磁性地执行与磁性纳米粒子旋转或运动自由度相关的物理参数的检测。备选地,可以执行光学检测,但是旋转的光学检测可能需要包括磁性纳米粒子上或其中或附近的光学标签,使光学标签或它们的光学激励根据纳米粒子的磁各向异性轴定向。在光学检测的情况下,通过磁或电力产生的标签的机械激励将调制源于光学元件的信号,所述光学元件位于与表面键合的生物化合物中。在一个实例中,标签旋转可以改变该光学信号,因为光学活性元件具有极化轴。在另一实例中,光学元件的移动可以在光学消逝场中导致效率改变的内耦合和/或光学外耦合。另一实例中,光学元件的移动导致相对于光学干扰元件(例如,表面、淬灭元件以及诸如像等离子体纳米粒子的增强元件)的距离或方向不同。光学信号的调制分析可以用于进一步提高SNR比,这是因为源于标签的光学信号将根据标签动作而调制。例如,因为生物学环境的自身荧光将不根据标签动作而调制,所以背景信号可以得到抑制。备选地,可以通过化学发光或电致化学发光产生光学信号,同时可以通过标签动作来调制光学信号。例如当氧化还原酶用作检测标签时,还可以通过电流或电压来执行检测。同样,可以由标签的动作导致电学信号的调制。而且可以使用利用了长寿命标签(诸如光学活性稀土金属化合物)的发光极化检测。同样可以使用磁光效应用于检测,例如Kerr旋转、循环二色性等。而且,通过测量作为时间函数的信号弛豫(signal relaxation),来执行与磁性纳米粒子旋转或运动自由度相关的物理参数的检测。
根据本发明的方法还可包括提供具有内部旋转自由度的耦合或链接半族(moiety)的磁性纳米粒子标签以增加旋转自由度,例如,耦合或链接半族是具有自由碳-碳键的链接分子,或例如是少烷烃(oligo-alkane)或少乙二醇(oligo-ethyleneglycol)链。在1984年纽约出版的、Hiemenz,P.C.Dekker的“Polymer Chemistry”中可以找到链接分子的其它实例。由于旋转自由度,类型1的键合状态中的磁性粒子标签将自由旋转,而类型3和4键合中的标签的旋转受到很强的阻碍。这样,特异性和次特异性键合之间的区分可以得到改善。
磁性粒子的旋转性能或运动自由度将取决于局部粘滞摩擦的强度以及与另一实体表面键合的存在。而且,磁性粒子的旋转性能或运动自由度将取决于键合的种类。通过使用本发明的方法,由此可以同时检测不同的靶分子和包含靶分子的不同的化合物。
根据本发明的方法可用于生物分子诊断,体内或体外的生物分子诊断。
而且,根据本发明的方法可用于区分具有不同属性的磁性粒子,例如,不同的磁距和/或旋转摩擦属性。因此旋转光谱可用于执行磁珠复用,即区分具有不同本征属性的磁珠或磁性粒子。
进一步的优势在于,根据本发明的方法可用于生物传感器阵列或所谓的生物芯片,或在3D分辨率成像中使用。
本发明还包括一种方法,用于区分不同类型的纳米粒子标签或从单个纳米粒子标签区分纳米粒子团标签,该方法包括提供纳米粒子标签(11),施加电或磁场,以及检测与纳米粒子旋转或运动自由度相关的物理参数,由此区分纳米粒子团标签和单个纳米粒子标签。该检测可以是光学的、磁性的或电学方法。纳米粒子的大小可以是1nm到5μm之间的范围内,优选地在5nm到500nm之间。
结合附图,本发明的这些和其它特点、特征和优势将从下面的详述中显而易见,所述附图以举例的方式阐述了本发明的原理。给出这些描述仅是为了举例,而并非是限制本发明范围。下面引用的附图是指以下附图。
图1示出了溶液中与第一捕获分子耦合的生物传感器表面,所述溶液包括与第二捕获分子耦合的标签和靶。
图2示出了标签如何与生物传感器表面键合的不同方法。
图3示出了标签可以如何与嵌入在表面中的靶(例如细胞膜上的受体分子或组织表面的靶分子)键合。
图4示出了传感器表面上的可旋转的和完全固定的纳米粒子之间的区别。
图5示出了粒子的磁距M和磁场B的向量表示。
图6和7示出了根据本发明的一个实施例与场发生电流导线相邻的磁性粒子以及磁阻检测条。
图8示出了一种可用在根据本发明实施例的传感器中作为磁场发生装置的二维导线结构。
图9-12示出了根据本发明的实施例使用二维导线结构的可能的传感器结构。
图13示出了根据本发明的实施例的传感器结构的剖面图。
图14示出了图12的传感器结构的顶视图。
图15示出了作为时间函数的信号弛豫的简图。
图16示出了两种不同类型键合的弛豫时间分布简图。
图17是频谱的示意性实例。
不同的图中,相同附图标记表示相同或相似的元件。
本发明将参考某些附图对特定实施例进行描述,但本发明不限于此,而仅受权利要求书限制。附图仅起示意性作用,而非限制。在附图中,为示意性目的,一些元件的尺寸可能被放大而并未按照比例示出。当涉及单数冠词,例如“一”或“一个”“那个”,在使用定冠词或不定冠词之处,它包括多个该名词,除非特别指出。
而且,说明书和权利要求书中的术语第一、第二和第三等,是用于在相似的元件之间进行区分,而并非必然表示顺序或时间顺序。应当理解这样使用的术语在适当的环境中可以互换,此处描述的本发明的实施例能够以不同于此处描述或阐述的其它顺序操作。
而且,说明书和权利要求书中的术语顶部、底部、上、下等是为了描述性目的,并非必然用于描述相对位置。应当理解这样使用的术语在适当的环境中可以互换,此处描述的本发明的实施例能够以不同于此处描述或阐述的其它方向操作。
应当注意,不应将权利要求书中使用的术语“包括”理解成局限于此后列出的器件;它不排除其它元件或步骤。因此,“包括器件A和B的装置”表示的范围并不局限于仅包括部件A和B的装置。根据本发明,它意味着仅与装置相关的部件是A和B。
本发明提供一种传感器10,例如生物传感器阵列,其中定位有标签以使其受场发生装置产生的场以及至少一个磁场传感器元件的影响,场发生装置例如可以是包括导体(例如电流导线)的旋转磁场发生装置或电场发生装置,所述至少一个磁场传感器元件例如可以是GMR或TMR或AMR传感器元件。
在本发明的一个方面中,施加电或磁场以使得其在标签上产生转距。这样,使用磁或电场使标签相对于另一实体(例如,另一磁珠、芯片、细胞、组织)旋转。标签包含磁性材料。例如,标签可以是磁珠、磁性粒子、磁棒、磁性粒子串,或合成粒子,例如包含磁性以及光学活性材料或非磁性矩阵中的磁性材料的粒子。在进一步描述中,标签将被称为标签、磁性纳米粒子或磁珠以及纳米粒子。通过传感器元件检测与其键合条件下纳米粒子旋转或运动自由度相关的参数。本发明的方法允许高频运动自由度或旋转自由度测量。尽管通过测量标签从另一目标的分离力的方法可以获得键合强度,然而这些方法并非必然确定未断开的键合是特异性键合还是其它类型的键合。本发明的方法提供键合标签的运动或旋转自由度的附加信息,由此可以更准确地确认键合是特异性的。这样,本发明提高了生物传感器中信号背景比,由此提高了生物传感器的特异性。
根据本发明的传感器10在一个传感器10中将与另一实体(例如另一磁珠、细胞、传感器表面、组织等)表面键合的纳米粒子或标签的检测以及键合质量和在传感器10周围三维xyz空间中磁性粒子或标签11的属性的确定相结合。为了区分旋转的标签12和完全固定的标签13(图4),测量三维旋转势(在z轴、y轴和/或z轴附近)是一种有价值的方法(见后)。
将通过与传感器表面键合的标签或纳米粒子11对本发明的方法和装置进行描述。然而,这并不限制本发明。如已经指出的,当标签或纳米粒子11键合至其它实体(例如组织或细胞)的表面时,也可使用本发明的方法和装置。而且,本发明的方法和装置可以应用于体内或体外生物分子学诊断。
施加的磁场应该足够大以在粒子11中产生磁距方向。所需的场取决于粒子11的大小和类型,例如超顺磁性、铁磁性、球状或非球状。例如,直径为100nm的超顺磁性粒子可以具有约10-16A.m2的饱和磁距,而直径为1μm的超顺磁性粒子可以具有m=10-13A.m2的饱和磁距。另一方面,直径为100nm的高密度磁性材料制成的粒子具有10-15A.m2的饱和磁距m。
通过应用旋转磁场施加至具有磁距m的磁性纳米粒子或磁珠的磁转距τ由等式2给出[见Reitz等人,‘Foundations of electromagnetic theory’,chapter 8,Addison-Wesley,3rded.(1979)]τ=m×B (2)磁珠或磁性纳米粒子磁距上的转距使磁珠或粒子的力矩朝向与所施加磁场平行的方向。在生物传感器中,施加的转距与下面原因产生的转距相反(i)相对于粒子本身磁距的旋转;(ii)相对于粒子驻留的粘滞环境的粒子旋转,以及(iii)源于键合到生物传感器表面的粒子的力τappl=τmagn+τviscous+τbinding(3)
对于液体中的小粒子11,相对于粘滞力,惯性力一般可以忽略。这意味着共振被阻尼,粒子11的质量在运动等式中不重要。例如,在施加转距后到达稳定状态的时间近似地由ρR2/3η给出,ρ是粒子的质量密度,R是粒子半径,η是流体的粘滞度。对于密度为1.5.102kg/m3,R=50nm以及η=10-3Pa.s的粒子,可以获得大约1纳秒的到达稳定状态时间,这一般比粒子11的旋转周期短很多(见后)。
在本发明使用气态流体的情况下,相对于粘滞力忽略惯性力可能是不准确的,需要更完整的分析。
假设粒子的磁距m和磁场B位于相同的平面内,例如xz平面,在该平面内场B的向量相对于参考轴(例如图3所示的x轴)根据角度B对准,而在该平面内对准m使相对于参考轴(例如图3中的x轴)偏转m。则施加的转距为τappl=mBsin(B-m)(4)在磁距和磁性粒子材料之间存在的转距源于产生内部磁场的磁性粒子磁各向异性,以及产生内部摩擦的粒子磁糙度。为简化起见,假设磁性粒子具有单轴对称的椭圆形状,相对于参考轴(例如x轴)其各向异性轴偏转角度p 其中K是磁各向异性(单位J/m3),V是粒子的磁容量,而γ是磁性摩擦系数。
粘滞转距由环境的旋转摩擦确定。在粘滞度为η的溶液占主导地位的情况,粘滞转距近似等于 d是粒子的流体动力直径。如在生物传感器的情况,粒子附近表面的存在可以导致与式(6)的偏差。标签与表面的键合导致的转距可以变化很大,这取决于标签与表面键合的种类。
旋转摩擦可能从非常低(例如图2中,类型1,其中当存在可旋转的链时,摩擦可以接近在溶液自由(free-in-solution)的情况,见后)变化到非常高或完全阻碍旋转(例如图2,类型3b)。下面,估算强键合到表面(接近共价键)且直径为1μm的较大粒子的键合能。当两种材料共价键合时,单位面积的键合能的量级为10-18J/nm2=1N/m。如果假设粒子11跨过例如0.1μm2的大面积键合,则键合能变成1N/m×0.1μm2,等于10-13J。现在就可能计算所施加的磁转距。例如,当向磁距为10-13A.m2的μm大小的粒子施加1T的场时,所施加的磁转距等于10-13J。换句话说,使用磁性旋转甚至可以使极强键合的标签动作。
尽管本发明主要参考磁场和磁场发生器进行举例说明,然而本发明也包括通过电力(即通过来自电场发生器的电场)来旋转和定向粒子。电力在粒子上产生的转距等于τ=p×E(7)其中p是粒子的电偶极距,E是施加的电场。与磁场的情况一样,偶极距可以是永久的或暂时的,并且偶极距可以源于粒子的不均匀形状(例如,棒)、与环境材料不同的电学极性、所使用的材料的铁电性、材料的(超)顺电性等。
为知道电学转距是否可以抵抗热随机化使粒子定向,计算电能U=Φ12ϵE2---(8)]]>其中Φ是粒子体积,ε是电极化率,E是施加的电场。例如,对于100nm直径的粒子,极化率量级为10-11F/m,场的范围是E=106-108V/m,我们发现静电能为10-21-10-17J。换句话说,电学定向能与室温的热能(KBT=4.10-21J)在同一量级或比其高很多。
例如由于材料中的离化电荷、电偶极子、感应电偶极子等,环绕粒子的流体通常是电学活性的。这种电学活性可以将粒子部分地屏蔽出所施加的电场。此外,施加的场可以导致电化学反应或电击穿。因此,优选地的是,所施加的场随时间变化(AC)。
在下面的描述中,将通过不同的实施例对根据本发明的方法进行讨论。然而,本发明并不仅仅局限于所描述的实施例,它们仅是本发明的代表性实例。
本发明的第一实施例中,铁磁性粒子11用作靶分子(例如像血液的生物流体材料中的蛋白质或核酸)检测的标签。铁磁性粒子11可以具有第一捕获分子,这已参考图1有所描述。
相对于热能,铁磁性粒子11具有大的磁各向异性能,所以K.V>kB.T。当磁各向异性能也大于施加的场中的磁偶极能,即K.V>m.B时,则粒子方向和力矩方向强耦合。假设m=p,对于可以自由旋转而并不严格或部分键合到表面(τbinding=0)的铁磁性粒子11,运动等式变成(见等式(3)到(6)) 假设磁场具有恒定的幅值和变化的方向,则等式(9)简化为 其中α=mBπηd3---(10)]]>例如,如果η=10-3Pa.s,d=100nm而m=10-16A.m2,则α/B等于31,8MHz/T。假设施加10mT的场幅值,获得的频率α量级约为300kHz。必须注意,热振动可以影响粒子并导致大约kBT/mB的理论角度和实际角度之间的误差,其中kB是玻尔兹曼常数,T是温度。当T=300K,m=10-16A.m2且B=10mT时,存在仅0.2度的角度误差。
现在假设施加的磁场在xy平面以角频率ω旋转(见图5),根据sin(Δ)=ω/α(11)磁性粒子11将分割成在场和力矩之间具有不同角度延时Δ=B-p的种群。
α>ω的磁性粒子11将以确定角度延时顺着磁场。α<ω的磁性粒子11不能顺着磁场并失去其净方向。
例如可以通过磁场发生装置向铁磁性粒子11施加旋转的磁场,磁场发生装置例如可以是磁性材料(旋转或非旋转的)和/或诸如电流导线14的导体(见图6和7)。在本实例中,优选地,可以通过电流导线14a,b产生旋转磁场。优选地磁性地执行纳米粒子旋转检测。备选地,可以执行光学检测,但旋转的光学检测可能需要在磁性纳米粒子11之中或之上包括光学标签,使光学标签或它们的光学激励相对于纳米粒子11的磁各向异性轴定向。可以使用利用了长寿命标签(诸如光学活性稀土化合物)的发光极化检测。而且,也可使用磁光效应用于检测,例如Kerr旋转、循环二色性等。
该第一实施例中,优选地,通过使用集成的磁性传感器10来执行磁性检测。可以使用各种类型的传感器,例如霍尔传感器、磁阻抗、SQUID或其它任何合适的磁性传感器。图6和7示出了包括磁性传感器元件15的集成磁性纳米粒子传感器10,磁性传感器元件15包括磁阻元件,例如GMR或TMR或AMR传感器元件。提供了旋转磁场发生装置。旋转磁场发生装置可以在传感器10外部或集成在传感器10内部,例如,它可以包括两个导体,该实施例中它可以是位于磁性传感器元件15每侧的电流导线14a和b,以及用于导线的电流发生装置。磁性传感器元件15可以具有细长型(长且窄)几何形状。这样通过流经集成电流导线14a和b的电流向铁磁性粒子或标签11施加旋转磁场。优选地,电流导线14a和b可以这样放置,使得它们在存在铁磁性粒子11的体积内产生磁场。如图6所示,通过在正y方向上向电流导线14a和14b施加电流Iy1和Iy2,产生在正x方向的磁场,如箭头16所示。如图7所示,通过反转电流方向,产生的磁场转到负x方向,如箭头17所示。当产生磁场的区域的体积与存在标签或纳米粒子11的区域匹配良好时,则系统具有最小电感,这对于高频和在相对高的磁场下的低功率操作是有益的。
在图6和7中,附图标记18表示第一电流导线14a产生的磁场。第二电流导线14b产生的磁场由附图标记19表示。影响磁性纳米粒子11的总磁场是集成电流导线14a和14b分别产生的磁场18和19、任意远场发生元件(例如线圈,磁体)的场、地磁场引起的小磁场以及其它装置的杂散磁场的总和。远场发生部件可以产生均匀场,而近场发生部件可以产生不均匀场。
传感器装置10可以具有敏感方向,使得如果被定位在xy平面内,磁性传感器元件15仅检测某一方向的磁场的分量,例如磁场的x分量,如图6和7中箭头20所示。换句话说,x方向是传感器15的敏感方向。因此,在缺少磁性纳米粒子11时,流经导线14a、14b的电流导致的磁场很难或不会被传感器15检测,因为它们在传感器11的位置主要朝向z方向。
当传感器10的表面存在磁性粒子11时,它们都形成磁距m。磁距m产生偶极杂散场,该场在传感器10的位置具有面内磁场分量21(图6和7)。
磁性传感器元件15测量由磁性粒子11的磁距的方向导致的场。磁距方向与粒子11的物理方向相关,因此,通过磁性传感器15可以区分具有不同旋转性能或不同运动自由度的粒子11的种群。
磁性粒子11的旋转性能或运动自由度将取决于局部粘滞摩擦的强度以及与传感器10表面键合的存在,本实施例的情况,是与其它实体的表面键合。而且,磁性粒子11的旋转性能或运动自由度将取决于发生在传感器表面或另一实体的表面处的键合种类,其中一些种类已经在图2描述。因此,具有不同(生物)化学环境的粒子种群将在测量的旋转光谱(例如,作为B和ω的函数测量的相位和幅值)中具有不同的轨迹。因此,通过使用本发明的方法,可以同时检测不同靶分子和包含靶分子的不同化合物。
优选地,通过旋转或运动自由度的磁性检测的键合辨别和种群辨别方法需要一种清晰的关系,所述清晰的关系是在物理旋转和磁致旋转或者物理运动自由度和磁化自由度的运动自由度之间的关系。对于铁磁性粒子11,这意味着,在感兴趣的频率范围中,所施加的场应该优选地比粒子的矫顽场小。
而且,可以沿着不同的旋转轴施加旋转激励。例如,可以比较测得谱以确定磁性纳米粒子环境的各向异性。例如,使用沿z轴和x轴旋转的测量可以区分图2中的类型1和类型3a的种群。而且,旋转各向异性可以揭示粒子11和表面之间的距离。
上述实施例中描述的传感器10并不限于本发明。本发明可以与其它传感器结构一起使用。例如,传感器10可以包括两个以上的磁场发生装置14a和b,并可以包括多于一个的磁性传感器元件15。
在第二实施例中,第一实施例的原理扩展到包括二维导线结构作为磁场发生装置的传感器10,如图8所示。二维导线结构可以包括y方向上的电流导线14a,b以及x方向上的电流导线22a,b,在进一步描述中,将分别称为y和x导线14a,b以及22a,b。依赖于箭头23a-d所示的电流方向,在x和y导线22a,b以及14a,b中,由箭头24a-d指示的净磁场在xy平面内旋转,并使磁性粒子或磁珠11一起旋转。这样,就产生了所谓的四极‘磁珠’动力。然而,该方法不局限于旋转。当粒子或磁珠11不能旋转时,它们在某一方向被弯曲或拉伸,这同样可以被检测到。这样,可以通过测量键合的硬度就可以测量键合质量。这通过测量某方向上的运动来实现,所述运动是对流导线14a,b和22a,b引起的磁力的响应。举一个简化实例,单个片上电流导线产生的磁场梯度为dBdR=μ0I2πr2---(12)]]>
I是流经电流导线14a,b的电流,r是到电流导线14a,b的距离。例如,在5μm的距离处,10mA电流产生80T/m的场梯度。假设磁珠11直径为100nm,在粘滞度为1mpa.s的环境中磁距为10-13A.m2,则由于场梯度导致的平移速度为0.8mm/s。当振荡周期是100μs时,磁珠横向位移约80nm,这可以被检测到。
而且,旋转粒子11的存在给出了它们存在的信息,所以通过这种方式还可以执行粒子11的检测。根据该第二实施例的方法给出了用于检测和旋转/移动磁性粒子或标签11的完全的3D空间分辨率。
在根据本发明的传感器10中,二维导线结构可以具有不同的配置,且可以以不同的方式应用。这在图9到12中示出。图9中,x和y电流导线22a-d以及14a,b彼此隔离,并可以由两个不同的金属层形成。磁性传感器元件15位于y电流导线14a,b之间。通过选择合适的x电流导线22a-d,可以旋转位于特定y位置的纳米粒子11。图9中所示的结构给出了使用单个磁性传感器元件15的磁性粒子的局部检测和旋转。
在图10和11中示出了另一可能的结构。该结构中,x和y电流导线22a-d和14a-d由相同的金属层形成。每个磁性传感器元件15a-d可以定位于两个y电流导线14a-d之间。可以单独控制经过x和y电流导线22a-d以及14a-d的电流。
在图12中,示出了另一结构,通过该结构可以执行局部磁珠旋转。该结构中,二维导线结构以相同的金属层形成,且位于磁性传感器元件15的顶部。然而,其它结构中,二维导线结构可以位于磁性传感器元件15下面。在这两种情况下,二维导线结构和磁性传感器元件15必须彼此隔离。
第二实施例具有获得局部磁珠旋转/移动的优势。局部磁珠旋转/移动提供表面和体处的键合质量的3D空间分辨率。而且,施加局部激励导致磁性纳米粒子11的3D检测。而且,由于局部激励因此第二实施例还具有低功耗的优点。
在根据本发明的另一实施例中,通过在磁性传感器10之上以及之下提供电流线(在该实施例中可以是电流片25),使得对磁性传感器10的磁串扰最小化,这可以产生无场体积,如图13中箭头26所示,传感器10定位在其中。因此,在不使传感器10饱和的情况下,可以同时使用强电流向这些粒子11施加高转距来测量磁性粒子11的场。在到电流片25的距离相对于电流片25的大小相比很小的限制内,所得磁场与到电流片25的距离无关(图13)。如果J是电流密度,则磁场由B=μ0.J/2给出。如图13的情况,在使用两个电流片情况下,在片25之间,如传送相同电流的平行电流片25之间存在无场体积26,那里没有磁场。优势在于,根据本发明该实施例的磁性传感器10对于电流片25中流过的电流完全不敏感,仅感觉到由于磁性粒子11存在而产生的磁场。因此,在电流存在的情况下,当传感器10测量磁性粒子的11场时,将磁场传感器10放置在该体积中避免了传感器10的可能的饱和。
通过同时在x和y方向施加随时间变化的电流,电流片25可用于在xy平面内旋转磁性粒子11。对于图13中给出的实例,这在图14中示出。如果Ix=J0.y.cosωt,且Iy=J0.x.sinωt则获得具有恒定幅值的旋转磁场。
其中J0=2B/μ0是所需的电流密度。为了在每个片中维持均匀的电流,例如,必须抑制在x方向流动的电流扩散到运输y方向电流的导线中。这通过在每个电流导线中应用所谓的电流梳27可以成功实现。因此电流梳27用于确保电流的均匀流动,因而确保在整个传感器区域28上磁场的均匀分布。电流梳27等效于一组并列电阻器,这减小了平行却向磁性传感器10区域之外的电流流动。
即使在很高的封装密度,相对于例如一系列平行导线,电流片25的优势在于,电流可以在传感器区域28内以任何方向流动,因此没有交叉导线,导致需要额外的层以允许传感器区域28内的磁场旋转。而且,分离的电流导线使磁场不均匀,潜在地影响了作用在粒子11和传感器10之上的场。使用电流片25,可以解决整个传感器区域28均匀性问题。
在另一个实施例中,通过设计旋转自由度,可以改善特异性键合(例如图2的类型1)中的粒子11和次特异性键合(例如图2,类型3b)中的粒子11的旋转或运动自由度差异,以及传感器特异性。例如,当涉及单个特异性键时,这通过使用自由旋转的磁性粒子标签11以及通过测量标签的运动自由度来实现。
当标签11处于所需的键合状态,例如图2类型1,存在设计标签11的旋转自由度的不同的方法。一种方法是在具有旋转自由度的表面上提供捕获分子。另一种方法是在具有旋转自由度的纳米粒子11上提供捕获分子。捕获分子本身可以具有旋转自由度(例如,在单链DNA或RNA链的情况)或可以使用专用链。为提高旋转自由度,可以使用具有旋转自由度的链半族,例如具有自由碳-碳键的链分子,例如少烷烃或少乙二醇链。在1984年纽约出版的、Hiemenz,P.C.Dekker的“Polymer Chemistry”中可以发现链分子的实例。由于旋转自由度,类型1键合状态中的磁性粒子标签11将自由旋转,而类型3和4键合中的标签的旋转将被强力阻止。
根据旋转扩散系数Dr(单位s-1)可以计算标签11的热旋转弛豫速率Dr=kbT8πηR3---(13)]]>其中,η是粒子11附近的流体的有效粘滞度,R是粒子半径。在例如水的情况(η=1mPa.s),在表1中总结与不同的R值对应的旋转扩散系数。
表1热旋转弛豫速率的测量可用于区分不同大小的标签11。而且,测量热旋转弛豫速率是区分不同类型键合的备选方法。当在传感器10的表面发生键合和解除键合过程时,测量磁性纳米粒子标签11的运动自由度,以区分不同的键合类型。一种方法是通过测量作为时间函数的信号弛豫,如图15的图表所示。施加可以是光学的、电学的或磁性的激励脉冲,信号记录为时间的函数。例如,时间标度可以从1ns到10s。接着,推导弛豫时间的分布(见图16),它指示了表面上不同键合类型。例如,由于类型1中旋转自由度较高,因此类型1键合的弛豫时间比类型3或类型4的弛豫时间更短。分布的宽度可以由磁性纳米粒子标签11的属性(例如,标签11的多分散性)确定。
通过在不同方向施加激励脉冲可以建立键合类型的另一种分离,例如区分类型1和类型3a。
类型1的键合有可能发展成具有某些延迟时的类型4的键合。在这种情况下,应该定期地记录运动弛豫谱,以使得可以推导出类型1的键合的总数目。
可以以不同的方式测量旋转弛豫,例如,可以磁学地或光学地测量。首先,当标签具有永久或可感应的磁距时,可以通过施加磁场脉冲来测量旋转弛豫。标签优选具有长奈尔(Nell)弛豫时间,即,奈尔弛豫时间大于类型1的特异性键合的旋转弛豫时间。例如,可以通过磁阻传感器20、通过磁感应线圈或通过超导量子干涉装置(SQUIDS)[例如,Chemla et al.,PNAS 97,14268(2000)]来测量磁性标签11的弛豫信号。
其次,发光极化(例如,荧光或磷光)可用于测量标签旋转。粒子11是磁性的,光学活性与磁性方向轴耦合。例如,光学标签可以包括在磁性纳米粒子11之中或之上,光学标签相对于纳米粒子11的磁各向异性轴定向。可以使用利用了长寿命标签(诸如光学活性稀土化合物)的发光极化检测。而且,磁光效应也可用于检测,例如Kerr旋转,循环二色性等。而且可以使用具有两个不同极化轴的光学检测,例如可以使用一个极化轴粒子照明11,使用另一极化轴执行检测。发光寿命(荧光、磷光)必须与标签旋转时间相当或大于标签旋转时间。发光极化中,通过极化光从标签产生的发光光谱取决于标签的键合状态,尤其是其旋转自由度。
在本发明的第三实施例中,使用施加到铁磁体粒子11的一维(单向)场来测量运动自由度。运动自由度可以与某一方向上经过流体(例如液体或气体)的平移速度相关。假设t=0,所有粒子11的磁距是位于=0处,以角度θ施加磁场B,粒子11将根据下式向角度θ旋转
粒子将分割成具有不同p(t)的种群,并由此在角度具有不同的到达时间,或彼此具有不同的角度间隔。
优选地,施加周期性信号,例如,脉冲链Bx+,Bx-、Bx+等。磁性粒子11将分割成具有不同速度和不同振荡幅值的种群。例如,沿着传感器条的长轴方向,预对准所有的磁距将是有利的,以从低幅值振荡获得低信号。为此,通过集成电流导线或外部(电)磁体,来施加预对准磁场。
当沿着x轴施加正弦磁场Bx=B0sin(ωt)时,运动等式变成 其中α0=mB0πηd3---(15)]]>种群将获得不同的角度与时间的依赖关系,所述依赖关系是磁距、流体动力直径和局部摩擦属性(例如,由于粘滞摩擦和由于局部生物化学键合)的函数。
另一实施例中,磁性转距可用于将生物化学键放置在应力(stress)之下并用于破坏不需要键。仅极强键合的磁性粒子11和具有足够旋转自由度的粒子11将不会被去除。
在静态情况,所需抵消施加的转距的力取决于力所作用的位置。对于直径为d的粒子,抵消磁转距(m.B)所需的最小力由下式给出Fmin=mBd/2---(16)]]>在m=10-16A.m2,B=10mT以及d=100nm的特定实例中,需要20pN(皮牛顿)的最小力。该力足够大可以破坏非特异性键合。这样,可使用小磁珠和低磁场施加pN力。注意在平移镊子中,为获得pN力,需要更高的场和更大的磁珠。
通过施加单向旋转应力,即在相同的方向旋转,可以进一步测试键的旋转自由度。破坏键所需的时间给出键的强度的度量。
相对于传统的严苛度过程(例如由化学清洗步骤组成),根据本发明的磁学方法的重要优势在于,在键合过程中执行本方法,所以在测试过程可以动态监控特异性信号。这改善了测试速度并增加了结果的可靠性。
应当注意施加的转距可以作为单一时间、间歇的或甚至连续的严苛度。可以将其看作是一种物理方法,以增加它在应力下(生物)化学相互作用的有效分裂速度(koff)。
相反,标签11的旋转可用于优化生物化学化验中的曝光速度,换句话说,碰撞粘附速率或有效键合速率(kon)。这可以以两种方式应用。首先,当标签11存在于溶液中时,这些标签11的旋转可以提高溶液中的生物材料与标签11的表面之间的相互作用和键合速率。例如,这应用于化验中的打捞(fishing)步骤,其中标签11用于与样品溶液中的特异性生物材料键合和/或提取该材料。其次,当标签相对于其它物体(例如,生物芯片的表面或细胞的表面)旋转时,可以增强标签和其它物体之间的相互作用和键合。当标签的表面积相对于标签上相应的分子键合区域(例如,抗体结合部位、抗原决定部位或杂交匹配区域)的尺寸较大时,增加键合速率是尤其重要。例如,当打捞步骤得到的在标签表面具有仅很少感兴趣的生物化学材料时,这是低浓度化验的情况。作为参考,可以在K.S.Schmitz和J.M.Schurr‘The roleof orientation constraints and rotation diffusion inbimolecular solution kinetics’,J.Phys.Chem.vol.76,p.534(1972)中找到生物分子结构中方向和旋转作用的计算。
在生物化学键(需要在给定化验时间内形成)的可接受解除键合速率(koff)时,理想的旋转速度由最佳键合速率(kon)给出。换句话说,旋转的灵敏度以及特异性被优化。
根据本发明的另一实施例中,上述旋转测量可用于区分具有不同属性(例如,不同磁距和/或旋转摩擦属性)的磁性纳米粒子11。而且,可使用不同的磁化寿命、磁各向异性或磁摩擦。这样,旋转分光器可用于执行磁珠复用,即,区分具有不同本征属性的磁珠。这可用于标签复用的化验,例如,比较基因组杂交。而且,这可用于减少由于次特异性或非特异性吸收导致的信号,由此进一步增加信号背景比。区分具有不同大小或不同磁性的粒子或粒子团也是可能的。一个实例是为了严苛度目的而使用不同粒子。而且,旋转测量可用于检测溶液中和/或表面上的粒子团或粒子链。这对于团化验或凝结化验是有用的。同样,在一部分粒子显示出不受控制和不需要的凝结或链信息的情况下,根据本发明的方法可用于区分凝结的粒子产生的信号和单个粒子11产生的信号,这增加了生物测试的定量和可靠性。
尽管上面描述的是铁磁性粒子,可以使用其它磁性粒子11,例如,在相关时标上(例如,磁场调制周期)在粒子11的方向和磁距的方向之间具有可变角度的粒子11,诸如超顺磁性粒子。在本发明的另一个实施例中,可以向超顺磁性粒子施加旋转的场或脉冲单向磁场。超顺磁性粒子具有零矫顽磁场以及低的磁各向异性K,因此m≠p。粒子仅在施加的磁场中得到净磁距。这种情况,等式(3)中的所施加转距在τmagn和τviscous之间共享。因为磁场相对于粒子滑动和粒子相对于环境滑动,所以这可以看成双滑动系统。因此,角度延迟B-m取决于粘滞摩擦的强度和与表面键合的存在。注意磁化的旋转频率一般不等于粒子本身的旋转频率,如在滑动驱动中出现的情况。频谱测量可以区分具有不同磁性属性和不同键合状态的粒子11。图17中示出了一个实例。图中,可以区分不同的特征,该特征归因于不同粒子11和具有不同环境和不同键合状态的粒子11的较大或较小种群。例如,峰值1可以对应于没有键合到其它实体并可快速运动或旋转的非成团粒子。峰值2可以由以疏松方式(例如通过图2的类型1键)与另一实体键合的粒子11产生。另一峰值(例如,峰值3)可以由与其它磁珠聚成团的粒子11导致。峰值4可以由具有其它类型环境(例如,对应于图2的类型2)的粒子11导致。特征5可以由具有强受阻运动自由度的粒子11导致,例如,通过多个相互作用与表面键合的粒子11。因此,频谱中峰值的位置取决于磁珠11和另一实体表面之间的键合类型。应当注意图17的频谱仅起说明作用,并未限制本发明。
根据本发明的不同实施例的方法使用磁性纳米粒子或磁珠的旋转或运动自由度以区分生物传感器中的不同磁珠种群。通过使用本发明的方法,可以区分生物传感器表面的不同标签键合种群、辨别具有单个特异性键的种群和具有多个次特异性或非特异性键的种群。应用本发明的方法导致信号背景比和生物传感器检测极限的改善。
本发明的方法还可应用于多种装置结构。例如,装置可以是单个传感器或生物传感器阵列或所谓的生物芯片。而且,本方法可用在可随意使用的装置中。例如,所述装置可以是包含流体通道、贮水器、试剂等的盒(cartridge)或试验用装置。而且本方法可以用在可随意使用的吸液管尖中或亲和柱中。本方法还可以应用于微孔(well)或多个微孔中,例如应用于微孔板或微量滴定板。
根据本发明的方法的优势在于,当在表面发生键合和解除键合过程时,测量标签的运动自由度以区分不同的键合类型。
该申请中描述的方法还可用于分子化验和用于微生物、细胞、细胞片断、组织提取等检测。
除了旋转力之外,可以施加磁场梯度。这将产生平移力,例如,以使生物化学键伸长。
存在几种可以利用上述标签旋转方法的化验。一个是其中标签11键合或解除键合由此改变其旋转属性的化验,其中键合或解除键合取决于样品中特异性生物材料的存在。实例是键合化验、竞争化验、抑制化验、位移化验。
另一种类型的化验与磁镊子类似,其中磁性粒子11通过生物链与另一物体(例如固体表面)键合。作为实例,链可以是核酸分子,所述核酸分子被磁性施加的伸展力机械挤压,或与溶液的酶(例如,限制酶或DNA修复酶)相互作用。传统的磁镊子仪器中,磁性粒子11的xyz位置和运动表示生物链的状态以及它如何与其环境相互作用。使用本发明的方法,可以制备磁镊子,其中通过片上磁性传感器检测磁性粒子11或多个磁性粒子11的xyz位置和旋转。在化验过程中,可以在三维施加平移和旋转的磁力。对于通过与生物半族相互作用来分析溶液中的材料的化验,所述在三维施加磁力可以在紧凑多功能仪器中完成,所述生物半族将磁性粒子11或多个磁性粒子11链接到磁性传感器10。旋转镊子相对于z力镊子的优势在于,可以使用较小的磁珠,可以测量较高频率的属性。
可以使用粒子旋转的另一类化验是粒子开始旋转受阻而其它材料的介入增强了旋转自由度的化验。例如,与分子信标(一种簪形核酸,当它与互补核酸串杂交时打开)连接的粒子11在闭合状态可以具有受阻的旋转,在信标打开状态具有增强的旋转自由度。而且,探测分子可以改变它与靶分子键合的形状,由此改变粘附或相邻磁性粒子的旋转自由度。而且,酶可以劈开部分链分子,由此增强粒子的旋转自由度。
其它类型的化验中,粒子11的旋转自由度通过与分子种(molecular species)的相互作用而减小。例如,通过单链(single-stranded)DNA与物体链接的粒子,在通过互补链杂交变成双链DNA时,将释放一部分旋转自由度。这是由双链DNA的机械硬度导致的。而且,由于靶分子的键合,粒子可以改变它与临近区域大物体(例如表面)的距离,由此改变摩擦和旋转自由度。
另一类化验中,旋转通过生物活性驱动,例如酶或酶基片导致分子或细胞种的旋转。旋转酶的实例例如是解螺旋酶。可以磁性地探测和检测粒子11的旋转。
另一类化验利用细胞。磁性粒子11键合到细胞表面或进入细胞,由此改变它的旋转属性。或者,已经存在的粒子11由于与其它生物分子相互作用而改变它们的旋转属性。细胞可以与传感器表面粘附或可以在溶液中存在。
注意,例如,上述方法可应用于细胞、组织、微生物和活体的体外诊断以及体内诊断。例如当用于分子成像形式的体内诊断时,需要注意避免磁性动作和磁性检测之间的干扰,例如,使用外部磁场用于粒子旋转,使用光学系统用于检测旋转,或通过使用时间分离的作用和检测(例如,切换的磁场振动)。
应当理解的是,尽管对于本发明的装置此处讨论了优选实施例、特定结构和配置以及材料,然而在不偏离本发明的范围和精神的情况下,可以做出形式和细节上的各种改变或变型。
权利要求
1.一种传感器装置(10),用于区分至少一个可极化的或极化的纳米粒子标签(11)和另一实体表面之间的次特异性键合和特异性键合,所述传感器装置(10)包括至少一个电或磁场发生装置(14),用于向包含极化的或可极化的纳米粒子标签(11)的样品流体施加电或磁场,至少一个磁性传感器元件(15),以及检测装置,当纳米粒子标签(11)粘附到表面时,用于检测与纳米粒子旋转或运动自由度相关的参数,以区分所述纳米粒子标签(11)和另一实体表面之间的次特异性键合和特异性键合。
2.根据权利要求1所述的传感器装置(10),其中电或磁场发生装置(14)产生旋转磁场。
3.根据权利要求1所述的传感器装置(10),其中电或磁场发生装置(14)产生单向磁场。
4.根据权利要求1所述的传感器装置(10),其中电或磁场发生装置(14)位于传感器装置(10)上。
5.根据权利要求1所述的传感器装置(10),其中电或磁场发生装置(14)是二维导线结构。
6.根据权利要求1所述的传感器装置(10),其中磁性传感器元件(15)是AMR、GMR或TMR传感器元件的其中之一。
7.根据权利要求1所述的传感器装置(10),所述装置包括定位于一个磁性传感器元件(15)每侧的两个电或磁场发生装置(14)。
8.根据权利要求1所述的传感器装置(10),其中所述传感器装置(10)位于两个电流导线之间。
9.一种传感器装置(10),用于区分不同类型的纳米粒子标签(11)或者用于区分单个纳米粒子标签(11)和纳米粒子团标签(11),所述传感器装置(10)包括至少一个电或磁场发生装置(14),用于向包含极化的或可极化的纳米粒子标签(11)的样品流体施加电或磁场,至少一个磁性传感器元件(15),以及检测装置,当纳米粒子标签(11)粘附到表面时,用于检测与纳米粒子旋转或运动自由度相关的参数,用以区分不同类型的纳米粒子标签(11)或者用以区分单个纳米粒子标签(11)和纳米粒子团标签(11)。
10.一种用于区分至少一个可极化的或极化的纳米粒子标签(11)和另一实体的表面之间的次特异性键合和特异性键合的方法,所述方法包括提供至少一个纳米粒子标签(11),施加电或磁场,以及当所述至少一个纳米粒子标签(11)粘附到表面时,检测与纳米粒子旋转或运动自由度相关的物理参数,由此区分所述纳米粒子标签(11)和表面之间的次特异性键合和特异性键合。
11.根据权利要求10所述的方法,其中所述至少一个纳米粒子标签(11)是磁性纳米粒子标签。
12.根据权利要求11所述的方法,其中提供至少一个磁性纳米粒子标签(11)包括提供至少一个铁磁性纳米粒子标签。
13.根据权利要求11所述的方法,其中提供至少一个磁性纳米粒子标签(11)包括提供至少一个超顺磁性纳米粒子标签。
14.根据权利要求10所述的方法,其中施加旋转磁场。
15.根据权利要求10所述的方法,其中施加单向磁场。
16.根据权利要求11所述的方法,其中磁性检测与磁性纳米粒子旋转或运动自由度相关的物理参数。
17.根据权利要求10所述的方法,所述方法还包括提供具有内部旋转自由度的耦合半族的至少一个纳米粒子标签(11)。
18.根据权利要求10所述的方法,其中通过测量作为时间函数的信号弛豫,来执行与纳米粒子旋转或运动自由度相关的物理参数的检测。
19.一种用于区分不同类型的纳米粒子标签(11)或用于区分单个纳米粒子标签(11)和纳米粒子团标签(11)的方法,所述方法包括提供纳米粒子标签(11),施加电或磁场,以及检测与纳米粒子旋转或运动自由度相关的物理参数,由此区分不同类型的纳米粒子标签(11)或区分单个纳米粒子标签(11)和纳米粒子团标签(11)。
20.根据权利要求10所述的方法在生物分子诊断中的应用。
全文摘要
本发明提供一种方法和装置(10),用于在磁性纳米粒子(11)与表面粘附时,通过施加磁场以及检测与磁性纳米粒子旋转或运动自由度相关的物理参数,区分至少一个磁性纳米粒子(11)和另一实体表面之间的次特异性键合和特异性键合。所述方法和装置(10)可用于体内和体外生物分子诊断。根据本发明的传感器(10),在一个传感器(10)中将检测磁性粒子或标签(11)和确定与另一实体表面键合的磁性粒子或标签(11)的键合质量以及属性相结合。
文档编号G01R33/09GK1957251SQ200580016148
公开日2007年5月2日 申请日期2005年5月13日 优先权日2004年5月18日
发明者M·W·J·普林斯, M·B·范德马克, P·C·杜纳弗尔德, M·默根斯, J·A·H·M·卡尔曼 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1